A grain-oriented silicon steel was normalized with a novel high magnetic field using one-stage cooling process.The effect of high-magnetic-field normalizing on the microstructures and textures was studied with a hot-r...A grain-oriented silicon steel was normalized with a novel high magnetic field using one-stage cooling process.The effect of high-magnetic-field normalizing on the microstructures and textures was studied with a hot-rolled sheet as initial material.It was found that recrystallization and the grain growth were enhanced owing to the external magnetic field driving force.The angle between Goss orientation and magnetic field direction was small,resulting in a high nucleation rate of Goss grains,and hence,the intensity of Goss texture was increased and the deviation angle of Goss grains was reduced after high-magnetic-field normalizing.Furthermore,the migration of dislocation was promoted with an external magnetic field driving force and the density of dislocation decreased,reducing the proportion of low-angle grain boundaries around the Goss grains.The enhancement of recrystallization process and grain growth increased the proportion of high-energy grain boundaries and high-angle grain boundaries,providing a favorable condition for the growth of Goss grains.展开更多
Deep learning has emerged as a powerful tool for predicting the remaining useful life(RUL)of batteries,contingent upon access to ample data.However,the inherent limitations of data availability from traditional or acc...Deep learning has emerged as a powerful tool for predicting the remaining useful life(RUL)of batteries,contingent upon access to ample data.However,the inherent limitations of data availability from traditional or accelerated life testing pose significant challenges.To mitigate the prediction accuracy issues arising from small sample sizes in existing intelligent methods,we introduce a novel data augmentation framework for RUL prediction.This framework harnesses the inherent high coincidence of degradation patterns exhibited by lithium-ion batteries to pinpoint the knee point,a critical juncture marking a significant shift in the degradation trajectory.By focusing on this critical knee point,we leverage the power of normalizing flow models to generate virtual data,effectively augmenting the training sample size.Additionally,we integrate a Bayesian Long Short-Term Memory network,optimized with Box-Cox transformation,to address the inherent uncertainty associated with predictions based on augmented data.This integration allows for a more nuanced understanding of RUL prediction uncertainties,offering valuable confidence intervals.The efficacy and superiority of the proposed framework are validated through extensive experiments on the CS2 dataset from the University of Maryland and the CrFeMnNiCo dataset from our laboratory.The results clearly demonstrate a substantial improvement in the confidence interval of RUL predictions compared to pre-optimization,highlighting the ability of the framework to achieve high-precision RUL predictions even with limited data.展开更多
DDoS attacks represent one of the most pervasive and evolving threats in cybersecurity,capable of crippling critical infrastructures and disrupting services globally.As networks continue to expand and threats become m...DDoS attacks represent one of the most pervasive and evolving threats in cybersecurity,capable of crippling critical infrastructures and disrupting services globally.As networks continue to expand and threats become more sophisticated,there is an urgent need for Intrusion Detection Systems(IDS)capable of handling these challenges effectively.Traditional IDS models frequently have difficulties in detecting new or changing attack patterns since they heavily depend on existing characteristics.This paper presents a novel approach for detecting unknown Distributed Denial of Service(DDoS)attacks by integrating Sliced Iterative Normalizing Flows(SINF)into IDS.SINF utilizes the Sliced Wasserstein distance to repeatedly modify probability distributions,enabling better management of high-dimensional data when there are only a few samples available.The unique architecture of SINF ensures efficient density estimation and robust sample generation,enabling IDS to adapt dynamically to emerging threats without relying heavily on predefined signatures or extensive retraining.By incorporating Open-Set Recognition(OSR)techniques,this method improves the system’s ability to detect both known and unknown attacks while maintaining high detection performance.The experimental evaluation on CICIDS2017 and CICDDoS2019 datasets demonstrates that the proposed system achieves an accuracy of 99.85%for known attacks and an F1 score of 99.99%after incremental learning for unknown attacks.The results clearly demonstrate the system’s strong generalization capability across unseen attacks while maintaining the computational efficiency required for real-world deployment.展开更多
Microstructure, precipitate and magnetic characteristic of fmal products with different normalizing cooling processes for Fe-3.2%Si low-temperature hot-rolled grain-oriented silicon steel were analyzed and compared wi...Microstructure, precipitate and magnetic characteristic of fmal products with different normalizing cooling processes for Fe-3.2%Si low-temperature hot-rolled grain-oriented silicon steel were analyzed and compared with the hot-rolled plate by optical microscopy (OM), transmission electron microscopy (TEM), and energy dispersive spectrometry (EDS). The results show that, the surface microstructure is uniform, the proportion of recrystallization in matrix increases, and the banding textures are narrowed; the precipitates, whose quantity in normalized plate is more than that in hot-rolled plate greatly, are mainly A1N, MnS, composite precipitates (Cu,Mn)S and so on. Normalizing technology with a temperature of 1120 ℃, holding for 3 min, and a two-stage cooling is a most advantaged method to obtain oriented silicon steel with sharper Goss texture and higher magnetic properties, owing to the uniform surface microstructures and the obvious inhomogeneity of microstructures along the thickness. The normalizing technology with the two-stage cooling is the optimum process, which can generate more fine precipitates dispersed over the matrix, and be beneficial for finished products to get higher magnetic properties.展开更多
A rapid and simple liquid chromatography method with on-line solid phase extraction was developed and validated for the quantitative determination of cyclophosphamide in rat plasma.The plasma sample was first extracte...A rapid and simple liquid chromatography method with on-line solid phase extraction was developed and validated for the quantitative determination of cyclophosphamide in rat plasma.The plasma sample was first extracted on an Acclaim? Polar Advantage II C18 guard column(PA II C18,10 mm×4.6 mm,5 μm),which was also the on-line Extraction Cartridge SPE column,by washing with 100% H2O for 1 min.The extracted sample was then eluted onto a PA II C18 column(150 mm×4.6 mm,5 μm) and separated by isocratic elution with acetonitrile-water(40:60,v/v).The mobile phase was run at a flow rate of 1.0 mL/min,and the UV detector was set at 195 nm.Retention time of cyclophosphamide was 4.3 min and the total run-time was 6 min.The linear range of the standard curve was from 1.0 to 200 μg/mL(r2 = 0.9999),and the limits of quantification and detection were 1.0 μg/mL(RSD10%,n = 5) and 0.3 μg/mL(RSD13%,n = 5),respectively.Both intra-and inter-day variations were less than 5.6%.The developed method can be used for the therapeutic drug monitoring of cyclophosphamide in the clinic.展开更多
The principle and the constitution of an intelligent system for on-line and real-time montitoring tool cutting state were discussed and a synthetic sensors schedule combined a new type fluid acoustic emission sens...The principle and the constitution of an intelligent system for on-line and real-time montitoring tool cutting state were discussed and a synthetic sensors schedule combined a new type fluid acoustic emission sensor (AE) with motor current sensor was presented. The parallel communication between control system of machine tools, the monitoring intelligent system,and several decision-making systems for identifying tool cutting state was established It can auto - matically select the sensor way ,monitoring mode and identifying method in machining process- ing so as to build a successful and effective intelligent system for on -line and real-time moni- toring cutting tool states in FMS.展开更多
This paper introduces the development and industrial application of an on-line corrosion monitoring device for condenser tubes. Corrosion sensors are made up of representative condenser tubes chosen by eddy current te...This paper introduces the development and industrial application of an on-line corrosion monitoring device for condenser tubes. Corrosion sensors are made up of representative condenser tubes chosen by eddy current test, which enable the monitoring result to be consistent with the corrosion of actual condenser tubes. Localized corrosion rate of condenser tubes can be measured indirectly by a galvanic couple made up of tube segments with and without pits. Using this technology, corrosion problems can be found in time and accurately, and anticorrosive measures be made more economic and effective. Applications in two power plants showed the corrosion measurements are fast and accurate.展开更多
The effects of on-line solution, off-line solution and aging heat treatment on the microstructure and hardness of the die-cast AZ91D alloys were investigated. Brinell hardness of die-cast AZ91D alloy increases through...The effects of on-line solution, off-line solution and aging heat treatment on the microstructure and hardness of the die-cast AZ91D alloys were investigated. Brinell hardness of die-cast AZ91D alloy increases through on-line solution and off-line aging treatment but decreases after off-line solution treatment. By X-ray diffractometry, optical microscopy, differential thermal analysis, scanning electron microscopy and X-ray energy dispersive spectroscopy, it is found that the microstructures of the die-cast AZ91D magnesium alloy before and after on-line solution and off-line aging are similar, consisting of α-Mg and β-Al12Mg17. The precipitation of Al element is prevented by on-line solution so that the effect of solid solution strengthening is enhanced. The β-Al12Mg17 phases precipitate from supersaturated Mg solid solution after off-line aging treatment, and lead to microstructure refinement of AZ91D alloy, so the effect of precipitation hardening is enhanced. The β-Al12Mg17 phases dissolve in the substructure after off-line solution treatment, which leads to that the grain boundary strengthening phase is reduced significantly and the hardness of die cast AZ91D is reduced.展开更多
We have developed an on-line detection method using acridine orange as the fluorescence probe and applied this method to rapidly identify active compounds in herbal medicines. This on-line method was equipped with a h...We have developed an on-line detection method using acridine orange as the fluorescence probe and applied this method to rapidly identify active compounds in herbal medicines. This on-line method was equipped with a high-performance liquid chromatography tandem diode array detector, electrospray ionization-ion-trap time-of-flight mass spectrometry and DNA- acridine orange fluorescence detection (HPLC-DAD-MSn-DNA-AO-FLD). A large amount of information could be simultaneously obtained during one run, which included HPLC fingerprint, ultraviolet spectra, total ion chromatograms, MSn data of high-resolution mass spectrometry and activity profile of each compound binding with DNA. The method also provided information on structureactivity relationships and mechanism of interaction. We used this on-line method to identify five DNA-binding activity components from Lithospermum erythrorhizon sample for the first time. The result showed that the parent nucleus of shikonin derivatives could bind with DNA. The structure-activity relationship showed that the parent nucleus of shikonin derivatives plays a major role in DNA binding, not the carboxyl group on the side chain. This simple, rapid, high precision and good stability on-line method should be useful for compound separation, structural identification and screening of DNA-binding compounds in herbal medicines.展开更多
A technique of detecting cutting tool fracture and ultimate wear by si- multaneously monitoring both the spindle motor current and cutting process related acoustic emission(AE)in the cutting process is reported.The te...A technique of detecting cutting tool fracture and ultimate wear by si- multaneously monitoring both the spindle motor current and cutting process related acoustic emission(AE)in the cutting process is reported.The technique can detect breakage of drills having diameter over 0.8mm,turning cutter crack of area over 0.2mm,and the ultimate wear.The principle,system construction,experimental method and result of the technique are discussed.The ratio of success in detection approaches 96% or higher.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52274393,52074200 and 12102310)the Key R&D Program of Hubei Province(No.2023BAB141).
文摘A grain-oriented silicon steel was normalized with a novel high magnetic field using one-stage cooling process.The effect of high-magnetic-field normalizing on the microstructures and textures was studied with a hot-rolled sheet as initial material.It was found that recrystallization and the grain growth were enhanced owing to the external magnetic field driving force.The angle between Goss orientation and magnetic field direction was small,resulting in a high nucleation rate of Goss grains,and hence,the intensity of Goss texture was increased and the deviation angle of Goss grains was reduced after high-magnetic-field normalizing.Furthermore,the migration of dislocation was promoted with an external magnetic field driving force and the density of dislocation decreased,reducing the proportion of low-angle grain boundaries around the Goss grains.The enhancement of recrystallization process and grain growth increased the proportion of high-energy grain boundaries and high-angle grain boundaries,providing a favorable condition for the growth of Goss grains.
基金supported by the National Natural Science Foundation of China(Grant No.62227814,52205040,22279070,and U21A20170)the Natural Science Basic Research Program of Shaanxi(2023-JC-QN-0140)+3 种基金the Young Talent Fund of Xi’an Association for Science and Technology(Grant No.959202313096)the Key Projects of the Shaanxi Province Natural Science Foundation(Grant No.2025JC-QYXQ-038)the Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems(Grant No.GZKF-202430)the National Key Research and Development Program of China(Grant No.2024YFB3311204)。
文摘Deep learning has emerged as a powerful tool for predicting the remaining useful life(RUL)of batteries,contingent upon access to ample data.However,the inherent limitations of data availability from traditional or accelerated life testing pose significant challenges.To mitigate the prediction accuracy issues arising from small sample sizes in existing intelligent methods,we introduce a novel data augmentation framework for RUL prediction.This framework harnesses the inherent high coincidence of degradation patterns exhibited by lithium-ion batteries to pinpoint the knee point,a critical juncture marking a significant shift in the degradation trajectory.By focusing on this critical knee point,we leverage the power of normalizing flow models to generate virtual data,effectively augmenting the training sample size.Additionally,we integrate a Bayesian Long Short-Term Memory network,optimized with Box-Cox transformation,to address the inherent uncertainty associated with predictions based on augmented data.This integration allows for a more nuanced understanding of RUL prediction uncertainties,offering valuable confidence intervals.The efficacy and superiority of the proposed framework are validated through extensive experiments on the CS2 dataset from the University of Maryland and the CrFeMnNiCo dataset from our laboratory.The results clearly demonstrate a substantial improvement in the confidence interval of RUL predictions compared to pre-optimization,highlighting the ability of the framework to achieve high-precision RUL predictions even with limited data.
基金supported by the National Science and Technology Council,Taiwan with grant numbers NSTC 112-2221-E-992-045,112-2221-E-992-057-MY3,and 112-2622-8-992-009-TD1.
文摘DDoS attacks represent one of the most pervasive and evolving threats in cybersecurity,capable of crippling critical infrastructures and disrupting services globally.As networks continue to expand and threats become more sophisticated,there is an urgent need for Intrusion Detection Systems(IDS)capable of handling these challenges effectively.Traditional IDS models frequently have difficulties in detecting new or changing attack patterns since they heavily depend on existing characteristics.This paper presents a novel approach for detecting unknown Distributed Denial of Service(DDoS)attacks by integrating Sliced Iterative Normalizing Flows(SINF)into IDS.SINF utilizes the Sliced Wasserstein distance to repeatedly modify probability distributions,enabling better management of high-dimensional data when there are only a few samples available.The unique architecture of SINF ensures efficient density estimation and robust sample generation,enabling IDS to adapt dynamically to emerging threats without relying heavily on predefined signatures or extensive retraining.By incorporating Open-Set Recognition(OSR)techniques,this method improves the system’s ability to detect both known and unknown attacks while maintaining high detection performance.The experimental evaluation on CICIDS2017 and CICDDoS2019 datasets demonstrates that the proposed system achieves an accuracy of 99.85%for known attacks and an F1 score of 99.99%after incremental learning for unknown attacks.The results clearly demonstrate the system’s strong generalization capability across unseen attacks while maintaining the computational efficiency required for real-world deployment.
基金Projects(51274083,51074062)supported by the National Natural Science Foundation of China
文摘Microstructure, precipitate and magnetic characteristic of fmal products with different normalizing cooling processes for Fe-3.2%Si low-temperature hot-rolled grain-oriented silicon steel were analyzed and compared with the hot-rolled plate by optical microscopy (OM), transmission electron microscopy (TEM), and energy dispersive spectrometry (EDS). The results show that, the surface microstructure is uniform, the proportion of recrystallization in matrix increases, and the banding textures are narrowed; the precipitates, whose quantity in normalized plate is more than that in hot-rolled plate greatly, are mainly A1N, MnS, composite precipitates (Cu,Mn)S and so on. Normalizing technology with a temperature of 1120 ℃, holding for 3 min, and a two-stage cooling is a most advantaged method to obtain oriented silicon steel with sharper Goss texture and higher magnetic properties, owing to the uniform surface microstructures and the obvious inhomogeneity of microstructures along the thickness. The normalizing technology with the two-stage cooling is the optimum process, which can generate more fine precipitates dispersed over the matrix, and be beneficial for finished products to get higher magnetic properties.
基金National Natural Science Foundation of China(Grant No.81072612)the Natural Science Foundation of Beijing(Grant No.7102107)+1 种基金the Open Foundation of State Key Laboratory of Natural and Biomimetic Drugs(Grant No.K20110109)Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20110001110021)
文摘A rapid and simple liquid chromatography method with on-line solid phase extraction was developed and validated for the quantitative determination of cyclophosphamide in rat plasma.The plasma sample was first extracted on an Acclaim? Polar Advantage II C18 guard column(PA II C18,10 mm×4.6 mm,5 μm),which was also the on-line Extraction Cartridge SPE column,by washing with 100% H2O for 1 min.The extracted sample was then eluted onto a PA II C18 column(150 mm×4.6 mm,5 μm) and separated by isocratic elution with acetonitrile-water(40:60,v/v).The mobile phase was run at a flow rate of 1.0 mL/min,and the UV detector was set at 195 nm.Retention time of cyclophosphamide was 4.3 min and the total run-time was 6 min.The linear range of the standard curve was from 1.0 to 200 μg/mL(r2 = 0.9999),and the limits of quantification and detection were 1.0 μg/mL(RSD10%,n = 5) and 0.3 μg/mL(RSD13%,n = 5),respectively.Both intra-and inter-day variations were less than 5.6%.The developed method can be used for the therapeutic drug monitoring of cyclophosphamide in the clinic.
文摘The principle and the constitution of an intelligent system for on-line and real-time montitoring tool cutting state were discussed and a synthetic sensors schedule combined a new type fluid acoustic emission sensor (AE) with motor current sensor was presented. The parallel communication between control system of machine tools, the monitoring intelligent system,and several decision-making systems for identifying tool cutting state was established It can auto - matically select the sensor way ,monitoring mode and identifying method in machining process- ing so as to build a successful and effective intelligent system for on -line and real-time moni- toring cutting tool states in FMS.
文摘This paper introduces the development and industrial application of an on-line corrosion monitoring device for condenser tubes. Corrosion sensors are made up of representative condenser tubes chosen by eddy current test, which enable the monitoring result to be consistent with the corrosion of actual condenser tubes. Localized corrosion rate of condenser tubes can be measured indirectly by a galvanic couple made up of tube segments with and without pits. Using this technology, corrosion problems can be found in time and accurately, and anticorrosive measures be made more economic and effective. Applications in two power plants showed the corrosion measurements are fast and accurate.
基金Projects (2011BAE22B01, 2011BAE22B06) supported by the National Key Technologies R&D Program During the 12th Five-Year Plan Period of ChinaProject (2010NC018) supported by the Innovation Fund of Inner Mongolia University of Science and Technology, China
文摘The effects of on-line solution, off-line solution and aging heat treatment on the microstructure and hardness of the die-cast AZ91D alloys were investigated. Brinell hardness of die-cast AZ91D alloy increases through on-line solution and off-line aging treatment but decreases after off-line solution treatment. By X-ray diffractometry, optical microscopy, differential thermal analysis, scanning electron microscopy and X-ray energy dispersive spectroscopy, it is found that the microstructures of the die-cast AZ91D magnesium alloy before and after on-line solution and off-line aging are similar, consisting of α-Mg and β-Al12Mg17. The precipitation of Al element is prevented by on-line solution so that the effect of solid solution strengthening is enhanced. The β-Al12Mg17 phases precipitate from supersaturated Mg solid solution after off-line aging treatment, and lead to microstructure refinement of AZ91D alloy, so the effect of precipitation hardening is enhanced. The β-Al12Mg17 phases dissolve in the substructure after off-line solution treatment, which leads to that the grain boundary strengthening phase is reduced significantly and the hardness of die cast AZ91D is reduced.
基金Peking University Comprehensive Platform for Innovative Drug Research and Development(Grant No.2009ZX--09301--010)
文摘We have developed an on-line detection method using acridine orange as the fluorescence probe and applied this method to rapidly identify active compounds in herbal medicines. This on-line method was equipped with a high-performance liquid chromatography tandem diode array detector, electrospray ionization-ion-trap time-of-flight mass spectrometry and DNA- acridine orange fluorescence detection (HPLC-DAD-MSn-DNA-AO-FLD). A large amount of information could be simultaneously obtained during one run, which included HPLC fingerprint, ultraviolet spectra, total ion chromatograms, MSn data of high-resolution mass spectrometry and activity profile of each compound binding with DNA. The method also provided information on structureactivity relationships and mechanism of interaction. We used this on-line method to identify five DNA-binding activity components from Lithospermum erythrorhizon sample for the first time. The result showed that the parent nucleus of shikonin derivatives could bind with DNA. The structure-activity relationship showed that the parent nucleus of shikonin derivatives plays a major role in DNA binding, not the carboxyl group on the side chain. This simple, rapid, high precision and good stability on-line method should be useful for compound separation, structural identification and screening of DNA-binding compounds in herbal medicines.
文摘A technique of detecting cutting tool fracture and ultimate wear by si- multaneously monitoring both the spindle motor current and cutting process related acoustic emission(AE)in the cutting process is reported.The technique can detect breakage of drills having diameter over 0.8mm,turning cutter crack of area over 0.2mm,and the ultimate wear.The principle,system construction,experimental method and result of the technique are discussed.The ratio of success in detection approaches 96% or higher.