考虑到传统物理分析方法无法解决导线舞动的预测问题,综合运用机器学习算法,对已有的舞动历史数据进行筛选和预处理,并挖掘有效信息,利用one class SVM算法解决舞动数据中负样本缺失问题,采用集成学习算法中Bagging算法建立分类器学习方...考虑到传统物理分析方法无法解决导线舞动的预测问题,综合运用机器学习算法,对已有的舞动历史数据进行筛选和预处理,并挖掘有效信息,利用one class SVM算法解决舞动数据中负样本缺失问题,采用集成学习算法中Bagging算法建立分类器学习方法,实现了数据的随机抽样,分成不同组数据集进行相互独立的训练,避免对舞动数据过拟合,提升机器学习算法的抗噪声能力以及泛化能力,采用k折交叉验证算法进行模型的验证,并利用F1-score描述导线舞动预警模型的性能,验证了该方法在舞动预测方面的有效性。展开更多
准确测量管道介质声速有助于分析介质的密度和组分,而传统的声速测量方法重复性低、鲁棒性差。为了实现介质声速的准确测量,首先,基于管道一维声波理论推导出线阵列传感器在管道轴向位置的声信号模型,介绍了空气与水的理论声速计算公式...准确测量管道介质声速有助于分析介质的密度和组分,而传统的声速测量方法重复性低、鲁棒性差。为了实现介质声速的准确测量,首先,基于管道一维声波理论推导出线阵列传感器在管道轴向位置的声信号模型,介绍了空气与水的理论声速计算公式以及不同管材、管径和壁厚对声速衰减的影响;其次,采用MUSIC(multiple signal classification)波束形成算法将多通道时域数据转换至波数频率域,呈现出斜率与声速相关的“声学脊”;最后,使用DN50不锈钢管道分别在水和空气流量标准装置上进行声速测量实验,与理论数据相比,水中声速的相对误差为1.61%,重复性为0.45%,空气中声速的相对误差为0.59%,重复性为1.27%。结果表明MUSIC算法可准确测量管道一维声波的介质声速。展开更多
文摘考虑到传统物理分析方法无法解决导线舞动的预测问题,综合运用机器学习算法,对已有的舞动历史数据进行筛选和预处理,并挖掘有效信息,利用one class SVM算法解决舞动数据中负样本缺失问题,采用集成学习算法中Bagging算法建立分类器学习方法,实现了数据的随机抽样,分成不同组数据集进行相互独立的训练,避免对舞动数据过拟合,提升机器学习算法的抗噪声能力以及泛化能力,采用k折交叉验证算法进行模型的验证,并利用F1-score描述导线舞动预警模型的性能,验证了该方法在舞动预测方面的有效性。
文摘准确测量管道介质声速有助于分析介质的密度和组分,而传统的声速测量方法重复性低、鲁棒性差。为了实现介质声速的准确测量,首先,基于管道一维声波理论推导出线阵列传感器在管道轴向位置的声信号模型,介绍了空气与水的理论声速计算公式以及不同管材、管径和壁厚对声速衰减的影响;其次,采用MUSIC(multiple signal classification)波束形成算法将多通道时域数据转换至波数频率域,呈现出斜率与声速相关的“声学脊”;最后,使用DN50不锈钢管道分别在水和空气流量标准装置上进行声速测量实验,与理论数据相比,水中声速的相对误差为1.61%,重复性为0.45%,空气中声速的相对误差为0.59%,重复性为1.27%。结果表明MUSIC算法可准确测量管道一维声波的介质声速。