The oil-based mud(OBM) borehole measurement environment presents significant limitations on the application of existing electrical logging instruments in high-resistance formations. In this paper, we propose a novel l...The oil-based mud(OBM) borehole measurement environment presents significant limitations on the application of existing electrical logging instruments in high-resistance formations. In this paper, we propose a novel logging method for detection of high-resistance formations in OBM using highfrequency electrodes. The method addresses the issue of shallow depth of investigation(DOI) in existing electrical logging instruments, while simultaneously ensuring the vertical resolution. Based on the principle of current continuity, the total impedance of the loop is obtained by equating the measurement loop to the series form of a capacitively coupled circuit. and its validity is verified in a homogeneous formation model and a radial two-layer formation model with a mud standoff. Then, the instrument operating frequency and electrode system parameters were preferentially determined by numerical simulation, and the effect of mud gap on impedance measurement was investigated. Subsequently, the DOI of the instrument was investigated utilizing the pseudo-geometric factor defined by the real part of impedance. It was determined that the detection depth of the instrument is 8.74 cm, while the effective vertical resolution was not less than 2 cm. Finally, a focused high-frequency electrode-type instrument was designed by introducing a pair of focused electrodes, which effectively enhanced the DOI of the instrument and was successfully deployed in the Oklahoma formation model. The simulation results demonstrate that the novel method can achieve a detection depth of 17.40 cm in highly-resistive formations drilling with OBM, which is approximately twice the depth of detection of the existing oil-based mud microimager instruments. Furthermore, its effective vertical resolution remains at or above 2 cm,which is comparable to the resolution of the existing OBM electrical logging instrument.展开更多
Two-dimensional(2D) nanomaterials have always been regarded as having great development potential in the field of oil-based lubrication due to their designable structures,functional groups,and abundant active sites.Ho...Two-dimensional(2D) nanomaterials have always been regarded as having great development potential in the field of oil-based lubrication due to their designable structures,functional groups,and abundant active sites.However,understanding the structure-performance relationship between the chemical structure of 2D nanomaterials and their lubrication performance from a comprehensive perspective is crucial for guiding their future development.This review provides a timely and comprehensive overview of the applications of 2D nanomaterials in oil-based lubrication.First,the bottlenecks and mechanisms of action of 2D nanomaterials are outlined,including adsorption protective films,charge adsorption effects,tribochemical reaction films,interlayer slip,and synergistic effects.On this basis,the review summarizes recent structural regulation strategies for 2D nanomaterials,including doping engineering,surface modification,structural optimization,and interfacial mixing engineering.Then,the focus was on analyzing the structure-performance relationship between the chemical structure of 2D nanomaterials and their lubrication performance.The effects of thickness,number of layers,sheet diameter,interlayer spacing,Moiré patterns,wettability,functional groups,concentration,as well as interfacial compatibility and dispersion behavior of 2D nanomaterials were systematically investigated in oil-based lubrication,with the intrinsic correlations resolved through computational simulations.Finally,the review offers a preliminary summary of the significant challenges and future directions for 2D nanomaterials in oil-based lubrication.This review aims to provide valuable insights and development strategies for the rational design of high-performance oil-based lubrication materials.展开更多
BACKGROUND Oil-based iodinated contrast media have excellent contrast properties and are widely used for hysterosalpingographic evaluation of female infertility.On abdominal radiography and computed tomography(CT)scan...BACKGROUND Oil-based iodinated contrast media have excellent contrast properties and are widely used for hysterosalpingographic evaluation of female infertility.On abdominal radiography and computed tomography(CT)scans,their radiodensity is similar to that of metallic objects,which can sometimes lead to diagnostic confusion in the postoperative settings.In this case,retained oil-based contrast medium was observed on an abdominal radiograph following a cesarean section,making it difficult to differentiate from an intraperitoneal foreign body from surgery.The patient was a 37-year-old pregnant woman who was referred to our hospital at 32 weeks and 1 day of pregnancy due to complete placenta previa for mana-gement of pregnancy and delivery.An elective cesarean section was performed at 37 weeks and 3 days.A plain abdominal radiograph taken immediately after surgery revealed a near-round,hyperdense,mass-like shadow with a regular margin in the pelvic cavity.An intraperitoneal foreign body was suspected;therefore,an abdominal CT scan was performed.The foreign body was located on the left side of the pouch of Douglas and had a CT value of 7000 Hounsfield units,similar to that of metals.The CT value strongly suggested the presence of an artificial object.However,further inquiries with the patient and her previous physician revealed a history of hysterosalpingography.Accordingly,retained oil-based iodinated contrast medium was suspected,and observation of the object’s course was adopted.CONCLUSION When intraperitoneal foreign bodies are suspected on postoperative radiographs,the possibility of oil-based iodinated contrast medium retention should be considered.展开更多
One of the main challenges in deep-water drilling is gas-hydrate plugs,which make the drilling unsafe.Some oil-based drilling fluids(OBDF) that would be used for deep-water drilling in the South China Sea were teste...One of the main challenges in deep-water drilling is gas-hydrate plugs,which make the drilling unsafe.Some oil-based drilling fluids(OBDF) that would be used for deep-water drilling in the South China Sea were tested to investigate the characteristics of gas-hydrate formation,agglomeration and inhibition by an experimental system under the temperature of 4 ?C and pressure of 20 MPa,which would be similar to the case of 2000 m water depth.The results validate the hydrate shell formation model and show that the water cut can greatly influence hydrate formation and agglomeration behaviors in the OBDF.The oleophobic effect enhanced by hydrate shell formation which weakens or destroys the interfacial films effect and the hydrophilic effect are the dominant agglomeration mechanism of hydrate particles.The formation of gas hydrates in OBDF is easier and quicker than in water-based drilling fluids in deep-water conditions of low temperature and high pressure because the former is a W/O dispersive emulsion which means much more gas-water interfaces and nucleation sites than the later.Higher ethylene glycol concentrations can inhibit the formation of gas hydrates and to some extent also act as an anti-agglomerant to inhibit hydrates agglomeration in the OBDF.展开更多
A general and versatile strategy to prepare melamine-formaldehyde(MF)microcapsules encapsulating oil-based fragrances by combining solvent evaporation and in situ polymerization was proposed in this work.The oil-based...A general and versatile strategy to prepare melamine-formaldehyde(MF)microcapsules encapsulating oil-based fragrances by combining solvent evaporation and in situ polymerization was proposed in this work.The oil-based fragrance was pre-encapsulated by an inner polyacrylate membrane via solvent evaporation,followed by in situ polymerization of MF precondensates as an outer shell.The polyacrylate membrane is used as an intermediate bridging layer to stabilize the oil-based fragrance,and to provide driving forces for in situ polymerization of MF precondensates through electrostatic attractions between carboxyl groups and ammonium ions.It was demonstrated that MF microcapsules containing clove oil were prepared successfully.The amount and the composition of the intermediate polyacrylate bridging layer were critical.Smooth and sphere-shaped MF-clove oil microcapsules were prepared when the weight ratio of polyacrylate to clove oil was over 60 wt%and the concentration of acrylic acid(AA)increased to 10 wt%in polyacrylate.In addition,MF microcapsules containing sunflower oil and hexyl salicylate were prepared by using this method.The work suggests that this new approach can be potentially used to encapsulate various core materials,tuning the shell properties of microcapsules such as thickness,mechanical strength and release properties.展开更多
The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at pressures up to 138 MPa and temperatures up to 204 ℃ using the RheoChan 7400 Rheometer.The experimental ...The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at pressures up to 138 MPa and temperatures up to 204 ℃ using the RheoChan 7400 Rheometer.The experimental results show that the apparent viscosity,plastic viscosity and yield point decrease with the increase of temperature,and increase with the increase of pressure.The effect of pressure on the apparent viscosity,plastic viscosity and yield point is considerable at ambient temperature.However,this effect gradually reduces with the increase of temperature.The major factor influencing the rheological properties of oil-based drilling fluids is temperature instead of pressure in the deep sections of oil wells.On the basis of numerous experiments,the model for predict the apparent viscosity,plastic viscosity and yield point of oil-based drilling fluids at high temperature and pressure was established using the method of regressive analysis.It is confirmed that the calculated data are in good agreement with the measured data,and the correlation coefficients are more than 0.98.The model is convenient for use and suitable for the application in drilling operations.展开更多
In order to study the squeeze-strengthening effect of silicone oil-based magnetorheological fluid (MRF), theoretical basis of disc squeezing brake was presented and a squeezing braking characteristics test-bed for M...In order to study the squeeze-strengthening effect of silicone oil-based magnetorheological fluid (MRF), theoretical basis of disc squeezing brake was presented and a squeezing braking characteristics test-bed for MRF was designed. Moreover, relevant experiments were carded out and the relationship between squeezing pressure and braking torque was proposed. Experiments results showed that the yield stress of MRF improved linearly with the increasing of external squeezing pressure and the braking torque increased three times when external squeezing pressure achieved 2 MPa.展开更多
Phenol is considered as pollutant due to its toxicity and carcinogenic effect.Thus,variety of innovative methods for separation and recovery of phenolic compounds is developed in order to remove the unwanted phenol fr...Phenol is considered as pollutant due to its toxicity and carcinogenic effect.Thus,variety of innovative methods for separation and recovery of phenolic compounds is developed in order to remove the unwanted phenol from wastewater and obtain valuable phenolic compound.One of potential method is extraction using green based liquid organic solvent.Therefore,the feasibility of using palm oil was investigated.In this research,palm oil based organic phase was used as diluents to treat a simulated wastewater containing 300×10^(-6) of phenol solution using emulsion liquid membrane process(ELM).The stability of water-in-oil(W/O) emulsion on diluent composition and the parameters affecting the phenol removal efficiency and stability of the emulsion;such as emulsification speed,emulsification time,agitation speed,surfactant concentration,pH of external phase,contact time,stripping agent concentration and treat ratio were carried out.The results of ELM study showed that at ratio7 to 3 of palm oil to kerosene,5 min and 1300 r·min^(-1) of emulsification process the stabile primary emulsion were formed.Also,no carrier is needed to facilitate the phenol extraction.In experimental conditions of500 r·min^(-1) of agitation speed,3%Span 80,pH 8 of external phase,5 min of contact time,0.1 mol·L^(-1) NaOH as stripping agent and 1:10 of treat ratio,the ELM process was very promising for removing the phenol from the wastewater.The extraction performance at about 83%of phenol was removed for simulated wastewater and an enrichment of phenol in recovery phase as phenolate compound was around 11 times.展开更多
The increasing pressure from consumers and policy makers to reduce the use of synthetic polymers,whose production contributes to the depletion of non-renewable resources and are usually non-biodegradable,has prompted ...The increasing pressure from consumers and policy makers to reduce the use of synthetic polymers,whose production contributes to the depletion of non-renewable resources and are usually non-biodegradable,has prompted the efforts to find suitable bio-based sources for the production of polymers.Vegetable oils have been a frequently spotted in this search because they are versatile,highly available and a low cost liquid biosource,which can be used in the synthesis of a wide plethora of different polymers and reactive monomers.Following the same idea of reducing the environmental stress,the traditional polyurethanes that are soluble in organic solvents have been targeted for replacement,particularly in applications such as adhesives and coatings,in which the solvent is released to the atmosphere increasing the air pollution.Instead,waterborne polyurethanes(WBPU),which are polyurethane dispersions(PUD)prepared in aqueous media,release benign water to the atmosphere during use as supported or self-standing films for different applications.In this brief review,the contributions to the development of WBPUs based on vegetable oils are discussed,focusing mainly on the contributions of the last decade.The synthesis of ionic and nonionic PUDs,their characterization and the properties of the resulting dried materials,as well as derived composite materials are considered.展开更多
Traditional oil-based drilling muds(OBMs) have a relatively high solid content, which is detrimental to penetration rate increase and reservoir protection. Aimed at solving this problem, an organoclay-free OBM system ...Traditional oil-based drilling muds(OBMs) have a relatively high solid content, which is detrimental to penetration rate increase and reservoir protection. Aimed at solving this problem, an organoclay-free OBM system was studied, the synthesis methods and functioning mechanism of key additives were introduced, and performance evaluation of the system was performed. The rheology modifier was prepared by reacting a dimer fatty acid with diethanolamine, the primary emulsifier was made by oxidation and addition reaction of fatty acids, the secondary emulsifier was made by amidation of a fatty acid, and finally the fluid loss additive of water-soluble acrylic resin was synthesized by introducing acrylic acid into styrene/butyl acrylate polymerization. The rheology modifier could enhance the attraction between droplets, particles in the emulsion via intermolecular hydrogen bonding and improve the shear stress by forming a three-dimensional network structure in the emulsion. Lab experimental results show that the organoclay-free OBM could tolerate temperatures up to 220 ?C and HTHP filtration is less than 5 m L. Compared with the traditional OBMs, the organoclay-free OBM has low plastic viscosity, high shear stress, high ratio of dynamic shear force to plastic viscosity and high permeability recovery, which are beneficial to penetration rate increase, hole cleaning and reservoir protection.展开更多
When drilling deep wells and ultra-deep wells, the downhole high temperature and high pressure environment will affect the emulsion stability of oil-based drilling fluids. Moreover, neither the demulsification voltage...When drilling deep wells and ultra-deep wells, the downhole high temperature and high pressure environment will affect the emulsion stability of oil-based drilling fluids. Moreover, neither the demulsification voltage method nor the centrifugal method currently used to evaluate the stability of oil-based drilling fluids can reflect the emulsification stability of drilling fluids under high temperature and high pressure on site. Therefore, a high-temperature and high-pressure oil-based drilling fluid emulsion stability evaluation instrument is studied, which is mainly composed of a high-temperature autoclave body, a test electrode, a temperature control system, a pressure control system, and a test system. The stability test results of the instrument show that the instrument can achieve stable testing and the test data has high reliability. This instrument is used to analyze the factors affecting the emulsion stability of oil-based drilling fluids. The experimental results show that under the same conditions, the higher the stirring speed, the better the emulsion stability of the drilling fluid;the longer the stirring time, the better the emulsion stability of the drilling fluid;the greater the oil-water ratio, the better the emulsion stability of the drilling fluid. And the test results of the emulsification stability of oil-based drilling fluids at high temperature and high pressure show that under the same pressure, as the temperature rises, the emulsion stability of oil-based drilling fluids is significantly reduced;at the same temperature, the With the increase in pressure, the emulsion stability of oil-based drilling fluids is in a downward trend, but the decline is not large. Relatively speaking, the influence of temperature on the emulsion stability of oil-based drilling fluids is greater than that of pressure.展开更多
As the oil and gas industries continue to increase their activity in deep water, gas hydrate hazards will become more serious and challenging, both at present and in the future. Accurate predictions of the hydrate-fre...As the oil and gas industries continue to increase their activity in deep water, gas hydrate hazards will become more serious and challenging, both at present and in the future. Accurate predictions of the hydrate-free zone and the suitable addition of salts and/or alcohols in preparing drilling fluids are particularly important both in preventing hydrate problems and decreasing the cost of drilling operations. In this paper, we compared several empirical correlations commonly used to estimate the hydrate inhibition effect of aqueous organic and electrolyte solutions using experiments with ethylene glycol (EG) as a hydrate inhibitor. The results show that the Najibi et al. correlation (for single and mixed thermodynamic inhibitors) and the Ostergaard et al. empirical correlation (for single thermodynamic inhibitors) are suitable for estimating the hydrate safety margin of oil-based drilling fluids (OBDFs) in the presence of thermodynamic hydrate inhibitors. According to the two correlations, the OBDF, composed of 1.6 L vaporizing oil, 2% emulsifying agent, 1% organobentonite, 0.5% SP-1, 1% LP-1, 10% water and 40% EG, can be safely used at a water depth of up to 1900 m. However, for more accurate predictions for drilling fluids, the effects of the solid phase, especially bentonite, on hydrate inhibition need to be considered and included in the application of these two empirical correlations.展开更多
To find out the relationship between the oil-based mud,the formation fluid and the extracted gas,we use a thermodynamic approach based on static headspace gas chromatography technique to calculate the partition coeffi...To find out the relationship between the oil-based mud,the formation fluid and the extracted gas,we use a thermodynamic approach based on static headspace gas chromatography technique to calculate the partition coefficients of 47 kinds of light hydrocarbons compounds between nC5 and nC8 in two kinds of oil-based mud-air systems,and reconstruct the original formation fluid composition under thermodynamic equilibrium.The oil-based drilling mud has little effect on the formation fluid compositions in the range of nC5-nC8(less than 1%for low-toxicity oil-based mud and less than 10%for oil-based mud).For most light hydrocarbon compositions,the partition coefficients obtained by vapor phase calibration and the direct quantitative methods have errors of less than 10%,and the partition coefficients obtained by direct quantitative method are more accurate.The reconstructed compositions of the two kinds of crude oil have match degrees of 91%and 89%with their real compositions,proving the feasibility and accuracy of reconstructing the composition of original formation fluid by using partition coefficients of light hydrocarbon compositions between nC5 and nC8.展开更多
In this paper,based on Fluent software,a five-nozzle gasifier reactor was established to simulate the gasification process of oil-based drill cuttings coal-water slurry.The influence of concentration and oxygen/carbon...In this paper,based on Fluent software,a five-nozzle gasifier reactor was established to simulate the gasification process of oil-based drill cuttings coal-water slurry.The influence of concentration and oxygen/carbon atomic ratio on the gasification process of oil-based drill cuttings coal-water slurry was investigated.The results show that when the oxygen flow is constant,the outlet temperature of gasifier decreases,the content of effective gas increases,and the carbon conversion rate decreases with the increase of concentration;When the ratio of oxygen to carbon atoms is constant,the effective gas content rises and the temperature rises with the increase of the concentration,and the carbon conversion rate reaches the maximum value when the concentration of oil-based drill cuttings coal-water slurry is 65%;When the concentration is constant,the effective gas content decreases and the outlet temperature rises with the increase of the oxygen/carbon atom ratio,and the carbon conversion rate reaches 99.80%when the oxygen/carbon atom ratio is 1.03.It shows that this method can effectively decompose the organic matter in oilbased drill cuttings and realize the efficient and cooperative treatment of oil-based drill cuttings.展开更多
In order to explore the damage mechanisms and improve the method to evaluate and optimize the performance of formation damage control of oil-based drill-in fluids, this paper took an ultra-deep fractured tight gas res...In order to explore the damage mechanisms and improve the method to evaluate and optimize the performance of formation damage control of oil-based drill-in fluids, this paper took an ultra-deep fractured tight gas reservoir in piedmont configuration, located in the Cretaceous Bashijiqike Fm of the Tarim Basin, as an example. First, evaluation experiments were conducted on the filtrate invasion, the dynamic damage of oil-based drill-in fluids and the loading capacity of filter cakes. Meanwhile, the evaluating methods were optimized for the formation damage control effect of oil-based drill-in fluids in laboratory: pre-processing drill-in fluids before grading analysis;using the dynamic damage method to simulate the damage process for evaluating the percentage of regained permeability;and evaluating the loading capacity of filter cakes. The experimental results show that (1) oil phase trapping damage and solid phase invasion are the main formation damage types;(2) the damage degree of filtrate is the strongest on the matrix;and (3) the dynamic damage degree of oil-based drill-in fluids reaches medium strong to strong on fractures and filter cakes show a good sealing capacity for the fractures less than 100 μm. In conclusion, the filter cakes' loading capacity should be first guaranteed, and both percentage of regained permeability and liquid trapping damage degree should be both considered in the oil-based drill-in fluids prepared for those ultra-deep fractured tight sandstone gas reservoirs.展开更多
Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachm...Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachment and complex fabrication process introduce surface defects,compromising device stability and efficiency.In this work,we propose a solution-phase ligand exchange(SPLE)method utilizing inorganic ligands to develop stable p-type lead sulfide(PbS)CQD inks for the first time.Various amounts of tin(Ⅱ)iodide(SnI_(2))were mixed with lead halide(PbX_(2);X=I,Br)in the ligand solution.By precisely controlling the SnI_(2)concentration,we regulate the transition of PbS QDs from n-type to p-type.PbS CQDSCs were fabricated using two different HTL approaches:one with 1,2-ethanedithiol(EDT)-passivated QDs via the LbL method(control)and another with inorganic ligand-passivated QD ink(target).The target devices achieved a higher power conversion efficiency(PCE)of 10.93%,compared to 9.83%for the control devices.This improvement is attributed to reduced interfacial defects and enhanced carrier mobility.The proposed technique offers an efficient pathway for producing stable p-type PbS CQD inks using inorganic ligands,paving the way for high-performance and flexible CQD-based optoelectronic devices.展开更多
As a novel 2D material,Ti_(3)C_(2)T_(x)-MXene has become a major area of interest in the field of microwave absorption(MA).However,the MA effect of common Ti_(3)C_(2)T_(x)-MXene is not prominent and often requires com...As a novel 2D material,Ti_(3)C_(2)T_(x)-MXene has become a major area of interest in the field of microwave absorption(MA).However,the MA effect of common Ti_(3)C_(2)T_(x)-MXene is not prominent and often requires complex processes or combinations of other ma-terials to achieve enhanced performance.In this context,a kind of gradient woodpile structure using common Ti_(3)C_(2)T_(x)-MXene as MA ma-terial was designed and manufactured through direct ink writing(DIW)3D printing.The minimum reflection loss(RL_(min))of the Ti_(3)C_(2)T_(x)-MXene-based gradient woodpile structures with a thickness of less than 3 mm can reach-70 dB,showing considerable improve-ment compared with that of a completely filled structure.In addition,the effective absorption bandwidth(EAB)reaches 7.73 GHz.This study demonstrates that a Ti_(3)C_(2)T_(x)-MXene material with excellent MA performance and tunable frequency band can be successfully fab-ricated with a macroscopic structural design and through DIW 3D printing without complex material hybridization and modification,of-fering broad application prospects by reducing electromagnetic wave radiation and interference.展开更多
This study examines the development of painting techniques of Chinese ink wash landscape paintings,pays attention to its unique brush and ink language and features of the representation of elements,and deeply analyzes...This study examines the development of painting techniques of Chinese ink wash landscape paintings,pays attention to its unique brush and ink language and features of the representation of elements,and deeply analyzes the artistic characteristics of digital ink wash texture materials.The research focuses on key aspects such as the ink brushstrokes with the combination of emptiness and reality,the profound and serene ink wash space,and the extremely ingenious position layout.It proposes a construction path of digital ink wash texture materials based on the Blender material node system.This method makes use of the flexibility of the Blender material node system to successfully simulate highly realistic digital ink wash textures.It can not only construct static ink wash textures but also realize the dynamic transformation of static ink wash works through animation nodes and procedural control,thereby enhancing the artistic expression of digital ink wash works.The proposal and implementation of this method expand the application scope of the Blender material node system,help deeply explore the potential of digital ink wash art,and open up a brand new research path for constructing digital ink wash textures.展开更多
Compared to subtractive manufacturing and casting,3D printing(additive manufacturing)offers advantages,such as the rapid production of complex structures,reduced material waste,and environmental friendliness.Direct in...Compared to subtractive manufacturing and casting,3D printing(additive manufacturing)offers advantages,such as the rapid production of complex structures,reduced material waste,and environmental friendliness.Direct ink writing(DIW)is one of the most popular 3D printing techniques owing to its ability to print multiple materials simultaneously and its high compatibility with printing inks.However,DIW presents significant challenges,particularly in the printing of high-performance polymers.The main challenges are as follows:1.The rigid structures and reaction kinetics of high-performance polymers make developing new inks difficult.2.The limited types of available high-performance polymers underscore the need for new DIW-suitable materials.3.Layer-by-layer stacking weakens interlayer bonding,affecting the mechanical properties of the printed product.4.The accuracy and speed of DIW printing are insufficient for large-scale manufacturing.After introducing the topic,the requirements for DIW printing inks are first reviewed,emphasizing the importance of thixotropic agents.Then,research progress regarding DIW printing of high-performance polymers is comprehensively reviewed according to the requirements of different polymer inks.Additionally,the applications of these materials across various fields are summarized.Finally,the challenges in DIW printing of high-performance polymers,along with corresponding solutions and future development prospects,are discussed in detail.展开更多
基金the National Natural Science Foundation of China(42074134,42474152,42374150)CNPC Innovation Found(2024DQ02-0152).
文摘The oil-based mud(OBM) borehole measurement environment presents significant limitations on the application of existing electrical logging instruments in high-resistance formations. In this paper, we propose a novel logging method for detection of high-resistance formations in OBM using highfrequency electrodes. The method addresses the issue of shallow depth of investigation(DOI) in existing electrical logging instruments, while simultaneously ensuring the vertical resolution. Based on the principle of current continuity, the total impedance of the loop is obtained by equating the measurement loop to the series form of a capacitively coupled circuit. and its validity is verified in a homogeneous formation model and a radial two-layer formation model with a mud standoff. Then, the instrument operating frequency and electrode system parameters were preferentially determined by numerical simulation, and the effect of mud gap on impedance measurement was investigated. Subsequently, the DOI of the instrument was investigated utilizing the pseudo-geometric factor defined by the real part of impedance. It was determined that the detection depth of the instrument is 8.74 cm, while the effective vertical resolution was not less than 2 cm. Finally, a focused high-frequency electrode-type instrument was designed by introducing a pair of focused electrodes, which effectively enhanced the DOI of the instrument and was successfully deployed in the Oklahoma formation model. The simulation results demonstrate that the novel method can achieve a detection depth of 17.40 cm in highly-resistive formations drilling with OBM, which is approximately twice the depth of detection of the existing oil-based mud microimager instruments. Furthermore, its effective vertical resolution remains at or above 2 cm,which is comparable to the resolution of the existing OBM electrical logging instrument.
基金supported by the National Natural Science Foundation of China(No.51874036)the Natural Science Foundation of Ningxia(No.2024AAC02034)。
文摘Two-dimensional(2D) nanomaterials have always been regarded as having great development potential in the field of oil-based lubrication due to their designable structures,functional groups,and abundant active sites.However,understanding the structure-performance relationship between the chemical structure of 2D nanomaterials and their lubrication performance from a comprehensive perspective is crucial for guiding their future development.This review provides a timely and comprehensive overview of the applications of 2D nanomaterials in oil-based lubrication.First,the bottlenecks and mechanisms of action of 2D nanomaterials are outlined,including adsorption protective films,charge adsorption effects,tribochemical reaction films,interlayer slip,and synergistic effects.On this basis,the review summarizes recent structural regulation strategies for 2D nanomaterials,including doping engineering,surface modification,structural optimization,and interfacial mixing engineering.Then,the focus was on analyzing the structure-performance relationship between the chemical structure of 2D nanomaterials and their lubrication performance.The effects of thickness,number of layers,sheet diameter,interlayer spacing,Moiré patterns,wettability,functional groups,concentration,as well as interfacial compatibility and dispersion behavior of 2D nanomaterials were systematically investigated in oil-based lubrication,with the intrinsic correlations resolved through computational simulations.Finally,the review offers a preliminary summary of the significant challenges and future directions for 2D nanomaterials in oil-based lubrication.This review aims to provide valuable insights and development strategies for the rational design of high-performance oil-based lubrication materials.
文摘BACKGROUND Oil-based iodinated contrast media have excellent contrast properties and are widely used for hysterosalpingographic evaluation of female infertility.On abdominal radiography and computed tomography(CT)scans,their radiodensity is similar to that of metallic objects,which can sometimes lead to diagnostic confusion in the postoperative settings.In this case,retained oil-based contrast medium was observed on an abdominal radiograph following a cesarean section,making it difficult to differentiate from an intraperitoneal foreign body from surgery.The patient was a 37-year-old pregnant woman who was referred to our hospital at 32 weeks and 1 day of pregnancy due to complete placenta previa for mana-gement of pregnancy and delivery.An elective cesarean section was performed at 37 weeks and 3 days.A plain abdominal radiograph taken immediately after surgery revealed a near-round,hyperdense,mass-like shadow with a regular margin in the pelvic cavity.An intraperitoneal foreign body was suspected;therefore,an abdominal CT scan was performed.The foreign body was located on the left side of the pouch of Douglas and had a CT value of 7000 Hounsfield units,similar to that of metals.The CT value strongly suggested the presence of an artificial object.However,further inquiries with the patient and her previous physician revealed a history of hysterosalpingography.Accordingly,retained oil-based iodinated contrast medium was suspected,and observation of the object’s course was adopted.CONCLUSION When intraperitoneal foreign bodies are suspected on postoperative radiographs,the possibility of oil-based iodinated contrast medium retention should be considered.
基金supported by Project 863 (No. 2006AA09Z316)NSFC (No. 50704028 and 40974071)
文摘One of the main challenges in deep-water drilling is gas-hydrate plugs,which make the drilling unsafe.Some oil-based drilling fluids(OBDF) that would be used for deep-water drilling in the South China Sea were tested to investigate the characteristics of gas-hydrate formation,agglomeration and inhibition by an experimental system under the temperature of 4 ?C and pressure of 20 MPa,which would be similar to the case of 2000 m water depth.The results validate the hydrate shell formation model and show that the water cut can greatly influence hydrate formation and agglomeration behaviors in the OBDF.The oleophobic effect enhanced by hydrate shell formation which weakens or destroys the interfacial films effect and the hydrophilic effect are the dominant agglomeration mechanism of hydrate particles.The formation of gas hydrates in OBDF is easier and quicker than in water-based drilling fluids in deep-water conditions of low temperature and high pressure because the former is a W/O dispersive emulsion which means much more gas-water interfaces and nucleation sites than the later.Higher ethylene glycol concentrations can inhibit the formation of gas hydrates and to some extent also act as an anti-agglomerant to inhibit hydrates agglomeration in the OBDF.
基金Supported by the National Natural Science Foundation of China(21466016,21577053)the Natural Science Foundation of Yunnan Province(2016FB024).
文摘A general and versatile strategy to prepare melamine-formaldehyde(MF)microcapsules encapsulating oil-based fragrances by combining solvent evaporation and in situ polymerization was proposed in this work.The oil-based fragrance was pre-encapsulated by an inner polyacrylate membrane via solvent evaporation,followed by in situ polymerization of MF precondensates as an outer shell.The polyacrylate membrane is used as an intermediate bridging layer to stabilize the oil-based fragrance,and to provide driving forces for in situ polymerization of MF precondensates through electrostatic attractions between carboxyl groups and ammonium ions.It was demonstrated that MF microcapsules containing clove oil were prepared successfully.The amount and the composition of the intermediate polyacrylate bridging layer were critical.Smooth and sphere-shaped MF-clove oil microcapsules were prepared when the weight ratio of polyacrylate to clove oil was over 60 wt%and the concentration of acrylic acid(AA)increased to 10 wt%in polyacrylate.In addition,MF microcapsules containing sunflower oil and hexyl salicylate were prepared by using this method.The work suggests that this new approach can be potentially used to encapsulate various core materials,tuning the shell properties of microcapsules such as thickness,mechanical strength and release properties.
基金Project(50574061) supported by the National Natural Science Foundation of ChinaProject(IRT0411) supported by the Changjiang Scholars and Innovative Research Team,Ministry of Education
文摘The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at pressures up to 138 MPa and temperatures up to 204 ℃ using the RheoChan 7400 Rheometer.The experimental results show that the apparent viscosity,plastic viscosity and yield point decrease with the increase of temperature,and increase with the increase of pressure.The effect of pressure on the apparent viscosity,plastic viscosity and yield point is considerable at ambient temperature.However,this effect gradually reduces with the increase of temperature.The major factor influencing the rheological properties of oil-based drilling fluids is temperature instead of pressure in the deep sections of oil wells.On the basis of numerous experiments,the model for predict the apparent viscosity,plastic viscosity and yield point of oil-based drilling fluids at high temperature and pressure was established using the method of regressive analysis.It is confirmed that the calculated data are in good agreement with the measured data,and the correlation coefficients are more than 0.98.The model is convenient for use and suitable for the application in drilling operations.
基金Funded by National Natural Science Foundation of China(No.51475454)National Natural Science Foundation of JiangsuProvince(No.BK20151144)+1 种基金Fundamental Research Funds forthe Central Universities(No.2014QNA38)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘In order to study the squeeze-strengthening effect of silicone oil-based magnetorheological fluid (MRF), theoretical basis of disc squeezing brake was presented and a squeezing braking characteristics test-bed for MRF was designed. Moreover, relevant experiments were carded out and the relationship between squeezing pressure and braking torque was proposed. Experiments results showed that the yield stress of MRF improved linearly with the increasing of external squeezing pressure and the braking torque increased three times when external squeezing pressure achieved 2 MPa.
基金Supported by the Ministry of Higher Education(MOHE)Universiti Teknologi Malaysia(RU Research GrantGUP:Q.J130000.2546.12H50)
文摘Phenol is considered as pollutant due to its toxicity and carcinogenic effect.Thus,variety of innovative methods for separation and recovery of phenolic compounds is developed in order to remove the unwanted phenol from wastewater and obtain valuable phenolic compound.One of potential method is extraction using green based liquid organic solvent.Therefore,the feasibility of using palm oil was investigated.In this research,palm oil based organic phase was used as diluents to treat a simulated wastewater containing 300×10^(-6) of phenol solution using emulsion liquid membrane process(ELM).The stability of water-in-oil(W/O) emulsion on diluent composition and the parameters affecting the phenol removal efficiency and stability of the emulsion;such as emulsification speed,emulsification time,agitation speed,surfactant concentration,pH of external phase,contact time,stripping agent concentration and treat ratio were carried out.The results of ELM study showed that at ratio7 to 3 of palm oil to kerosene,5 min and 1300 r·min^(-1) of emulsification process the stabile primary emulsion were formed.Also,no carrier is needed to facilitate the phenol extraction.In experimental conditions of500 r·min^(-1) of agitation speed,3%Span 80,pH 8 of external phase,5 min of contact time,0.1 mol·L^(-1) NaOH as stripping agent and 1:10 of treat ratio,the ELM process was very promising for removing the phenol from the wastewater.The extraction performance at about 83%of phenol was removed for simulated wastewater and an enrichment of phenol in recovery phase as phenolate compound was around 11 times.
基金the Consejo Nacional de Investigaciones Científicas y Técnicas(CONICET,Argentina)(PIP 20170100677)the Fondo para la Investigación Científica y Tecnológica(FONCYT)(PICT-2017-1318)the Universidad Nacional de Mar del Plata(UNMdP,15/G557,ING561/19)and to the Comisión de Investigaciones Científicas de la Provincia de Buenos Aires(CIC)and the Universidad Tecnológica Nacional(UTN)for their financial support.
文摘The increasing pressure from consumers and policy makers to reduce the use of synthetic polymers,whose production contributes to the depletion of non-renewable resources and are usually non-biodegradable,has prompted the efforts to find suitable bio-based sources for the production of polymers.Vegetable oils have been a frequently spotted in this search because they are versatile,highly available and a low cost liquid biosource,which can be used in the synthesis of a wide plethora of different polymers and reactive monomers.Following the same idea of reducing the environmental stress,the traditional polyurethanes that are soluble in organic solvents have been targeted for replacement,particularly in applications such as adhesives and coatings,in which the solvent is released to the atmosphere increasing the air pollution.Instead,waterborne polyurethanes(WBPU),which are polyurethane dispersions(PUD)prepared in aqueous media,release benign water to the atmosphere during use as supported or self-standing films for different applications.In this brief review,the contributions to the development of WBPUs based on vegetable oils are discussed,focusing mainly on the contributions of the last decade.The synthesis of ionic and nonionic PUDs,their characterization and the properties of the resulting dried materials,as well as derived composite materials are considered.
基金Supported by the Basic Research Funds Reserved to State-run Universities(18CX02171A,18CX02033A)
文摘Traditional oil-based drilling muds(OBMs) have a relatively high solid content, which is detrimental to penetration rate increase and reservoir protection. Aimed at solving this problem, an organoclay-free OBM system was studied, the synthesis methods and functioning mechanism of key additives were introduced, and performance evaluation of the system was performed. The rheology modifier was prepared by reacting a dimer fatty acid with diethanolamine, the primary emulsifier was made by oxidation and addition reaction of fatty acids, the secondary emulsifier was made by amidation of a fatty acid, and finally the fluid loss additive of water-soluble acrylic resin was synthesized by introducing acrylic acid into styrene/butyl acrylate polymerization. The rheology modifier could enhance the attraction between droplets, particles in the emulsion via intermolecular hydrogen bonding and improve the shear stress by forming a three-dimensional network structure in the emulsion. Lab experimental results show that the organoclay-free OBM could tolerate temperatures up to 220 ?C and HTHP filtration is less than 5 m L. Compared with the traditional OBMs, the organoclay-free OBM has low plastic viscosity, high shear stress, high ratio of dynamic shear force to plastic viscosity and high permeability recovery, which are beneficial to penetration rate increase, hole cleaning and reservoir protection.
文摘When drilling deep wells and ultra-deep wells, the downhole high temperature and high pressure environment will affect the emulsion stability of oil-based drilling fluids. Moreover, neither the demulsification voltage method nor the centrifugal method currently used to evaluate the stability of oil-based drilling fluids can reflect the emulsification stability of drilling fluids under high temperature and high pressure on site. Therefore, a high-temperature and high-pressure oil-based drilling fluid emulsion stability evaluation instrument is studied, which is mainly composed of a high-temperature autoclave body, a test electrode, a temperature control system, a pressure control system, and a test system. The stability test results of the instrument show that the instrument can achieve stable testing and the test data has high reliability. This instrument is used to analyze the factors affecting the emulsion stability of oil-based drilling fluids. The experimental results show that under the same conditions, the higher the stirring speed, the better the emulsion stability of the drilling fluid;the longer the stirring time, the better the emulsion stability of the drilling fluid;the greater the oil-water ratio, the better the emulsion stability of the drilling fluid. And the test results of the emulsification stability of oil-based drilling fluids at high temperature and high pressure show that under the same pressure, as the temperature rises, the emulsion stability of oil-based drilling fluids is significantly reduced;at the same temperature, the With the increase in pressure, the emulsion stability of oil-based drilling fluids is in a downward trend, but the decline is not large. Relatively speaking, the influence of temperature on the emulsion stability of oil-based drilling fluids is greater than that of pressure.
基金supported by the National Natural Science Foundation (No. 50704028, 50904053)the Project 863 (No.2006AA09Z316)+1 种基金the Fundamental Research Funds for the Central Universities (No. CUGL100410)supported by the Opening Project of National Laboratory on Scientific Drilling, China University of Geosciences at Beijing (No. NLSD200901)
文摘As the oil and gas industries continue to increase their activity in deep water, gas hydrate hazards will become more serious and challenging, both at present and in the future. Accurate predictions of the hydrate-free zone and the suitable addition of salts and/or alcohols in preparing drilling fluids are particularly important both in preventing hydrate problems and decreasing the cost of drilling operations. In this paper, we compared several empirical correlations commonly used to estimate the hydrate inhibition effect of aqueous organic and electrolyte solutions using experiments with ethylene glycol (EG) as a hydrate inhibitor. The results show that the Najibi et al. correlation (for single and mixed thermodynamic inhibitors) and the Ostergaard et al. empirical correlation (for single thermodynamic inhibitors) are suitable for estimating the hydrate safety margin of oil-based drilling fluids (OBDFs) in the presence of thermodynamic hydrate inhibitors. According to the two correlations, the OBDF, composed of 1.6 L vaporizing oil, 2% emulsifying agent, 1% organobentonite, 0.5% SP-1, 1% LP-1, 10% water and 40% EG, can be safely used at a water depth of up to 1900 m. However, for more accurate predictions for drilling fluids, the effects of the solid phase, especially bentonite, on hydrate inhibition need to be considered and included in the application of these two empirical correlations.
文摘To find out the relationship between the oil-based mud,the formation fluid and the extracted gas,we use a thermodynamic approach based on static headspace gas chromatography technique to calculate the partition coefficients of 47 kinds of light hydrocarbons compounds between nC5 and nC8 in two kinds of oil-based mud-air systems,and reconstruct the original formation fluid composition under thermodynamic equilibrium.The oil-based drilling mud has little effect on the formation fluid compositions in the range of nC5-nC8(less than 1%for low-toxicity oil-based mud and less than 10%for oil-based mud).For most light hydrocarbon compositions,the partition coefficients obtained by vapor phase calibration and the direct quantitative methods have errors of less than 10%,and the partition coefficients obtained by direct quantitative method are more accurate.The reconstructed compositions of the two kinds of crude oil have match degrees of 91%and 89%with their real compositions,proving the feasibility and accuracy of reconstructing the composition of original formation fluid by using partition coefficients of light hydrocarbon compositions between nC5 and nC8.
基金This research was funded by the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(KYCX21_2815).
文摘In this paper,based on Fluent software,a five-nozzle gasifier reactor was established to simulate the gasification process of oil-based drill cuttings coal-water slurry.The influence of concentration and oxygen/carbon atomic ratio on the gasification process of oil-based drill cuttings coal-water slurry was investigated.The results show that when the oxygen flow is constant,the outlet temperature of gasifier decreases,the content of effective gas increases,and the carbon conversion rate decreases with the increase of concentration;When the ratio of oxygen to carbon atoms is constant,the effective gas content rises and the temperature rises with the increase of the concentration,and the carbon conversion rate reaches the maximum value when the concentration of oil-based drill cuttings coal-water slurry is 65%;When the concentration is constant,the effective gas content decreases and the outlet temperature rises with the increase of the oxygen/carbon atom ratio,and the carbon conversion rate reaches 99.80%when the oxygen/carbon atom ratio is 1.03.It shows that this method can effectively decompose the organic matter in oilbased drill cuttings and realize the efficient and cooperative treatment of oil-based drill cuttings.
基金Project supported by the National Natural Science Foundation of China “Research on the transmission mechanism of the oxidative fracturing, permeability-increasing and accelerating gas in the organic-rich shale” (No.: 51674209)“Damage prediction and control for the lost circulation of the working fluid in the fractured reservoir based on the percolation and solid–liquid two-phase flow theories” (No.: 51604236).
文摘In order to explore the damage mechanisms and improve the method to evaluate and optimize the performance of formation damage control of oil-based drill-in fluids, this paper took an ultra-deep fractured tight gas reservoir in piedmont configuration, located in the Cretaceous Bashijiqike Fm of the Tarim Basin, as an example. First, evaluation experiments were conducted on the filtrate invasion, the dynamic damage of oil-based drill-in fluids and the loading capacity of filter cakes. Meanwhile, the evaluating methods were optimized for the formation damage control effect of oil-based drill-in fluids in laboratory: pre-processing drill-in fluids before grading analysis;using the dynamic damage method to simulate the damage process for evaluating the percentage of regained permeability;and evaluating the loading capacity of filter cakes. The experimental results show that (1) oil phase trapping damage and solid phase invasion are the main formation damage types;(2) the damage degree of filtrate is the strongest on the matrix;and (3) the dynamic damage degree of oil-based drill-in fluids reaches medium strong to strong on fractures and filter cakes show a good sealing capacity for the fractures less than 100 μm. In conclusion, the filter cakes' loading capacity should be first guaranteed, and both percentage of regained permeability and liquid trapping damage degree should be both considered in the oil-based drill-in fluids prepared for those ultra-deep fractured tight sandstone gas reservoirs.
基金supported by MEXT KAKENHI Grant(24K01295,26286013).
文摘Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachment and complex fabrication process introduce surface defects,compromising device stability and efficiency.In this work,we propose a solution-phase ligand exchange(SPLE)method utilizing inorganic ligands to develop stable p-type lead sulfide(PbS)CQD inks for the first time.Various amounts of tin(Ⅱ)iodide(SnI_(2))were mixed with lead halide(PbX_(2);X=I,Br)in the ligand solution.By precisely controlling the SnI_(2)concentration,we regulate the transition of PbS QDs from n-type to p-type.PbS CQDSCs were fabricated using two different HTL approaches:one with 1,2-ethanedithiol(EDT)-passivated QDs via the LbL method(control)and another with inorganic ligand-passivated QD ink(target).The target devices achieved a higher power conversion efficiency(PCE)of 10.93%,compared to 9.83%for the control devices.This improvement is attributed to reduced interfacial defects and enhanced carrier mobility.The proposed technique offers an efficient pathway for producing stable p-type PbS CQD inks using inorganic ligands,paving the way for high-performance and flexible CQD-based optoelectronic devices.
基金support from the National Key Research and Development Program of China(No.2021YFB3701503)the Key Research and Development Program of Ningbo,China(No.2023Z107).
文摘As a novel 2D material,Ti_(3)C_(2)T_(x)-MXene has become a major area of interest in the field of microwave absorption(MA).However,the MA effect of common Ti_(3)C_(2)T_(x)-MXene is not prominent and often requires complex processes or combinations of other ma-terials to achieve enhanced performance.In this context,a kind of gradient woodpile structure using common Ti_(3)C_(2)T_(x)-MXene as MA ma-terial was designed and manufactured through direct ink writing(DIW)3D printing.The minimum reflection loss(RL_(min))of the Ti_(3)C_(2)T_(x)-MXene-based gradient woodpile structures with a thickness of less than 3 mm can reach-70 dB,showing considerable improve-ment compared with that of a completely filled structure.In addition,the effective absorption bandwidth(EAB)reaches 7.73 GHz.This study demonstrates that a Ti_(3)C_(2)T_(x)-MXene material with excellent MA performance and tunable frequency band can be successfully fab-ricated with a macroscopic structural design and through DIW 3D printing without complex material hybridization and modification,of-fering broad application prospects by reducing electromagnetic wave radiation and interference.
基金Research results of the General Scientific Research Project of Zhejiang Education Department in 2024,“Research on the Digitalization of Song Yun Ink Painting-Taking the Ten Scenes of West Lake as an Example”(Project No.:Y202455200).
文摘This study examines the development of painting techniques of Chinese ink wash landscape paintings,pays attention to its unique brush and ink language and features of the representation of elements,and deeply analyzes the artistic characteristics of digital ink wash texture materials.The research focuses on key aspects such as the ink brushstrokes with the combination of emptiness and reality,the profound and serene ink wash space,and the extremely ingenious position layout.It proposes a construction path of digital ink wash texture materials based on the Blender material node system.This method makes use of the flexibility of the Blender material node system to successfully simulate highly realistic digital ink wash textures.It can not only construct static ink wash textures but also realize the dynamic transformation of static ink wash works through animation nodes and procedural control,thereby enhancing the artistic expression of digital ink wash works.The proposal and implementation of this method expand the application scope of the Blender material node system,help deeply explore the potential of digital ink wash art,and open up a brand new research path for constructing digital ink wash textures.
基金supported by National Key Research and Development Program of China(Grant No.2022YFB3809000)Major Science and Technology Project of Gansu Province(Grant No.23ZDGA011)+1 种基金National Natural Science Foundation of China(Grant No.22275199,52105224)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB04701022021).
文摘Compared to subtractive manufacturing and casting,3D printing(additive manufacturing)offers advantages,such as the rapid production of complex structures,reduced material waste,and environmental friendliness.Direct ink writing(DIW)is one of the most popular 3D printing techniques owing to its ability to print multiple materials simultaneously and its high compatibility with printing inks.However,DIW presents significant challenges,particularly in the printing of high-performance polymers.The main challenges are as follows:1.The rigid structures and reaction kinetics of high-performance polymers make developing new inks difficult.2.The limited types of available high-performance polymers underscore the need for new DIW-suitable materials.3.Layer-by-layer stacking weakens interlayer bonding,affecting the mechanical properties of the printed product.4.The accuracy and speed of DIW printing are insufficient for large-scale manufacturing.After introducing the topic,the requirements for DIW printing inks are first reviewed,emphasizing the importance of thixotropic agents.Then,research progress regarding DIW printing of high-performance polymers is comprehensively reviewed according to the requirements of different polymer inks.Additionally,the applications of these materials across various fields are summarized.Finally,the challenges in DIW printing of high-performance polymers,along with corresponding solutions and future development prospects,are discussed in detail.