The biodegradable polymer demonstrates significant potential for addressing the critical environmental challenges associated with oil spills;however, the cellular film structure and hydrophobic characteristics of the ...The biodegradable polymer demonstrates significant potential for addressing the critical environmental challenges associated with oil spills;however, the cellular film structure and hydrophobic characteristics of the polymer restrict their efficacy. In this study, a biodegradable thin membrane composed of a blend of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(caprolactone) (PCL) was fabricated utilizing the electrospinning technique. The membrane exhibited an adsorption capacity for cooking oil of 10.8 g/g, and Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the anticipated chemical structures, revealing no evidence of chemical interactions between PHBV and PCL. This research presents an environmentally friendly and straightforward approach for fabricating biodegradable membrane structure with exceptional oil-water separation capabilities.展开更多
Produced water from an oil extraction site in South Kuwait was sampled after primary oil – water separation had been carried out. The produced water was filtered through a mixture of activated charcoal and esterified...Produced water from an oil extraction site in South Kuwait was sampled after primary oil – water separation had been carried out. The produced water was filtered through a mixture of activated charcoal and esterified cellulosic material gained from spent coffee grounds as a tertiary adsorption treatment. The earth-alkaline metal ions and heavy metals were separated from the de-oiled produced water by addition of either sodium or potassium hydroxide in the presence of carbon dioxide or by direct addition of solid sodium carbonate. The resulting filtrate gave salt of industrial purity upon selective crystallization on evaporation.展开更多
Oil-water separation for produced water (PW) originating from an oil extraction site in South Kuwait was carried out using bleached, esterified cellulosic material from used coffee grounds. Thereafter, earth-alkaline ...Oil-water separation for produced water (PW) originating from an oil extraction site in South Kuwait was carried out using bleached, esterified cellulosic material from used coffee grounds. Thereafter, earth-alkaline metal ions, specifically calcium ions, of the de-oiled PW were removed by precipitation with sodium carbonate to give access to pure sodium chloride as industrial salt from the remaining PW. While the purity of the precipitated calcium carbonate (CaCO3) depends on the precipitation conditions, CaCO3 of up to 95.48% purity can be obtained, which makes it a salable product. The precipitation of CaCO3 decreases the amount of calcium ions in PW from 11,300 ppm to 84 ppm.展开更多
Crude oil spills have inflicted extensive disruption upon the Niger Delta ecosystem, resulting in crop loss and severe environmental damage. Such spills exacerbate heavy metal concentration within soil due to the pres...Crude oil spills have inflicted extensive disruption upon the Niger Delta ecosystem, resulting in crop loss and severe environmental damage. Such spills exacerbate heavy metal concentration within soil due to the presence of metallic ions. The Okpare-Olomu community has borne the brunt of crude oil pollution from illicit bunkering, sabotage, and equipment malfunction. This study targets an evaluation of ecological hazards linked to heavy metals (HMs) in crude oil impacted agriculturally soils within Okpare-Olomu in Ughelli South LGA of Delta State. In this study, 24 topsoil samples were obtained from areas affected by crude oil pollution;the heavy metal content was evaluated through atomic absorption spectrometry. The concentration ranges for HMs (mg/kg) in soil were: 24.1 - 23,174 (Cu);0.54 - 37.1 (Cd);9.05 - 54 (Cr);12 - 174 (Ni);18.5 - 8611 (Pb);and 148 - 9078 (Zn) at a soil depth of 0 - 15 cm. Notably, metal concentrations were recorded to be above permissible World Health Organization limits. Predominantly, Zn and Pb recorded higher heavy metal concentration when compared to other heavy metals analysed, notably at sampling points PT7 through PT24. Zinc and Pb contamination exhibited highly significant contamination factors, and contamination severity was evidenced across all sample points, signifying a grave risk level. Pollution load indices indicated pervasive extreme pollution levels. Geoaccumulation indices signaled moderate to strong pollution, mainly by Pb and Zn. Ecological risk assessments revealed variable levels of heavy metal contamination, from low to very high, with potential ecological risk reflecting markedly elevated levels. This study underscores the imperative for soil remediation to rectify ecological imbalances in agriculturally affected soil constituents.展开更多
To reduce the viscosity of highly-viscous oil of the Tahe oilfield (Xinjiang,China),an oilsoluble polybasic copolymer viscosity reducer for heavy oil was synthesized using the orthogonal method.The optimum reaction ...To reduce the viscosity of highly-viscous oil of the Tahe oilfield (Xinjiang,China),an oilsoluble polybasic copolymer viscosity reducer for heavy oil was synthesized using the orthogonal method.The optimum reaction conditions are obtained as follows:under the protection of nitrogen,a reaction time of 9 h,monomer mole ratio of reaction materials of 3:2:2 (The monomers are 2-propenoic acid,docosyl ester,maleic anhydride and styrene,respectively),initiator amount of 0.8% (mass percent of the sum of all the monomers) and reaction temperature of 80 oC.This synthesized viscosity reducer is more effective than commercial viscosity reducers.The rate of viscosity reduction reached 95.5% at 50 oC.Infrared spectra (IR) and interfacial tensions of heavy oil with and without viscosity reducer were investigated to understand the viscosity reduction mechanism.When viscosity reducer is added,the molecules of the viscosity reducer are inserted amongst the molecules of crude oil,altering the original intermolecular structure of crude oil and weakening its ability to form hydrogen bonds with hydroxyl or carboxyl groups,so the viscosity of crude oil is reduced.Field tests of the newly developed oil-soluble viscosity reducer was carried out in the Tahe Oilfield,and the results showed that 44.5% less light oil was needed to dilute the heavy oil to achieve the needed viscosity.展开更多
Oil and organic solvent contamination, derived from oil spills and organic solvent leakage, has been recognized as one of the major environmental issues imposing a serious threat to both human and ecosystem health. Am...Oil and organic solvent contamination, derived from oil spills and organic solvent leakage, has been recognized as one of the major environmental issues imposing a serious threat to both human and ecosystem health. Among the various presented technologies applied for oil/water separation, oil absorption process has been explored widely and offers satisfactory results especially with surface modified oil-absorbing material and/or hybrid absorbents. In this review, we summarize the recent research activities involved in the designing strategies of oil-absorbing absorbents and their application in oil absorption. Then, an extensive list of various oil-absorbing materials from literature, including polymer materials, porous inorganic materials and biomass materials, has been compiled and the oil adsorption capacities toward various types of oils and organic solvents as available in the literature are presented along with highlighting and discussing the various factors involved in the designing of oil-absorbing absorbents tested so far for oil/water separation. Finally, some future trends and perspectives in oil-absorbing material are outlined.展开更多
The lower Cambrian Niutitang Formation hydrocarbon source rocks at the Dingshan- Lintanchang structure in the southeast Sichuan Basin were of medium-good quality with two excellent hydrocarbon-generating centers devel...The lower Cambrian Niutitang Formation hydrocarbon source rocks at the Dingshan- Lintanchang structure in the southeast Sichuan Basin were of medium-good quality with two excellent hydrocarbon-generating centers developed in the periphery areas, with a possibility of forming a medium to large-sized oil-gas field. Good reservoir rocks were the upper Sinian (Dengying Formation) dolomites. The mudstone in the lower Cambrian Niutitang Formation with a good sealing capacity was the cap rock. The widely occurring bitumen in the Dengying Formation indicates that a paleo oil pool was once formed in the study area. The first stage of paleo oil pool formation was maturation of the lower Cambrian source rocks during the late Ordovician. Hydrocarbon generation from the lower Cambrian source rocks stopped due to the Devonian-Carboniferous uplifting. The lower Cambrian source rocks then restarted generation of large quantities of hydrocarbons after deposition of the middle Permian sediments. This was the second stage of the paleo oil pool formation. The oil in the paleo oil pool began to crack during the late Triassic and a paleo gas pool was formed. This paleo gas pool was destroyed during the Yanshan-Himalayan folding, uplifting and denudation. Bitumen can be widely seen in the Dengying Formation in wells and outcrops in the Sichuan Basin and its periphery areas. This provides strong evidence that the Dengying Formation in the Sichuan Basin and its periphery areas was once an ultra-large structural-lithologic oil-gas field, which was damaged during the Yanshan-Himalayan period.展开更多
Fracture systems in nature are complicated. Normally vertical fractures develop in an isotropic background. However, the presence of horizontal fine layering or horizontal fractures in reservoirs makes the vertical fr...Fracture systems in nature are complicated. Normally vertical fractures develop in an isotropic background. However, the presence of horizontal fine layering or horizontal fractures in reservoirs makes the vertical fractures develop in a VTI(a transversely isotropic media with a vertical symmetry axis) background. In this case, reservoirs can be described better by using an orthorhombic medium instead of a traditional HTI(a transversely isotropic media with a horizontal symmetry axis) medium. In this paper, we focus on the fracture prediction study within an orthorhombic medium for oil-bearing reservoirs. Firstly, we simplify the reflection coefficient approximation in an orthorhombic medium. Secondly, the impact of horizontal fracturing on the reflection coefficient approximation is analyzed theoretically. Then based on that approximation, we compare and analyze the relative impact of vertical fracturing, horizontal fracturing and fluid indicative factor on traditional ellipse fitting results and the scaled B attributes. We find that scaled B attributes are more sensitive to vertical fractures, so scaled B attributes are proposed to predict vertical fractures. Finally, a test is developed to predict the fracture development intensity of an oil-bearing reservoir. The fracture development observed in cores is used to validate the study method. The findings of both theoretical analyses and practical application reveal that compared with traditional methods, this new approach has improved the prediction of fracture development intensity in oil-bearing reservoirs.展开更多
Polylactic acid(PLA) is one of the most suitable candidates for environmental pollution treatment because of its biodegradability which will not cause secondary pollution to the environment after application.However,t...Polylactic acid(PLA) is one of the most suitable candidates for environmental pollution treatment because of its biodegradability which will not cause secondary pollution to the environment after application.However,there is still a lack of a green and facile way to prepare PLA oil-water separation materials.In this work,a water-assisted thermally induced phase separation method for the preparation of superhydrophobic PLA oil-water separation material with honeycomb-like structures is reported.The PLA material shows great ability in application and could adsorb 27.3 times oil to its own weight.In addition,it could also be applicated as a filter with excellent efficiency(50.9 m^3 m^(-2) h^(-1)).展开更多
The concentration of hydrogen sulfide gas (H2S) varies greatly in the oil-bearing basins of China, from zero to 90%. At present, oil and gas reservoirs with high H2S concentration have been discovered in three basin...The concentration of hydrogen sulfide gas (H2S) varies greatly in the oil-bearing basins of China, from zero to 90%. At present, oil and gas reservoirs with high H2S concentration have been discovered in three basins, viz. the Bohai Bay Basin, Sichuan Basin and the Tarim Basin, whereas natural gas with low H2S concentration has been found in the Ordos Basin, the Songliao Basin and the Junggar Basin. Studies suggest that in China H2S origin types are very complex. In the carbonate reservoir of the Sichuan Basin, the Ordos Basin and the Tarim Basin, as well as the carbonatedominated reservoir in the Luojia area of the Jiyang depression in the Bohai Bay Basin, Wumaying areas of the Huanghua depression, and Zhaolanzhuang areas of the Jizhong depression, the H2S is of Thermochemical Sulfate Reduction (TSR) origin. The H2S is of Bacterial Sulphate Reduction (BSR) origin deduced from the waterflooding operation in the Changheng Oilfield (placanticline oil fields) in the Songliao Basin. H2S originates from thermal decomposition of sulfur-bearing crude oil in the heavy oil area in the Junggar Basin and in the Liaohe heavy oil steam pilot area in the western depression of the Bohai Bay Basin. The origin types are most complex, including TSR and thermal decomposition of sulfcompounds among other combinations of causes. Various methods have been tried to identify the origin mechanism and to predict the distribution of H2S. The origin identification methods for H2S mainly comprise sulfur and carbon isotopes, reservoir petrology, particular biomarkers, and petroleum geology integrated technologies; using a combination of these applications can allow the accurate identification of the origins of H2S. The prediction technologies for primary and secondary origin of H2S have been set up separately.展开更多
The electromagnetic separation method is a new approach to treat ship-based marine oily wastewater,in which oil droplets are dispersed in seawater(oil-seawater mixed flow).In order to clarify the separation process an...The electromagnetic separation method is a new approach to treat ship-based marine oily wastewater,in which oil droplets are dispersed in seawater(oil-seawater mixed flow).In order to clarify the separation process and determine the separation characteristics,the flow field and volume fraction of the oil droplets of the oil-seawater mixed flow under an applied electromagnetic field with different operating conditions were investigated by 2D numerical simulations with the Eulerian model.The results show that:(1)the downward Lorentz force causes seawater to flow downwards and the oil droplets to move upwards due to the electromagnetic separation force in the effective section of the separation channel;(2)the volume fraction of the oil droplets at the top of the outlet section increases with the current density,magnetic field,and the diameter of the oil droplet and decreases with the inlet velocity of the oily seawater.The results provide useful guidance for the design of electromagnetic separation devices of the oil-seawater mixed flow.展开更多
Based on the research and exploration of lithostratigraphic reservoir in the Jizhong depression of the Bohai Bay basin and Erlian basin, the hydrocarbon distribution in a continental oil-rich sag has "complementa...Based on the research and exploration of lithostratigraphic reservoir in the Jizhong depression of the Bohai Bay basin and Erlian basin, the hydrocarbon distribution in a continental oil-rich sag has "complementarity" feature, viz. the hydrocarbon resources configuration and plane distribution of the structural reservoir and lithostratigraphic reservoir have the "complementarity". This distribution feature is controlled by many factors such as the macroscopical geological setting, reservoir-forming condition, and the reservoir-forming mechanism of structural reservoir and lithostratigraphic reservoir. More research shows that the "complementarity" of hydrocarbon distribution is prevalent in every kind of continental basin. This "rule" helps to establish a new exploration theory, a scientific exploration program, and make proper exploration deployments in hydrocarbon exploration. Therefore, it is significant for the exploration work in continental petroliferous basins of China.展开更多
The oleanane parameter, i.e., OP (oleananes/(oleananes+C30hopanes)) in the two sedimentary columns of the Beibuwan Basin, South China Sea, can be used to delimit the top of oil generation window, with Ro (/%) o...The oleanane parameter, i.e., OP (oleananes/(oleananes+C30hopanes)) in the two sedimentary columns of the Beibuwan Basin, South China Sea, can be used to delimit the top of oil generation window, with Ro (/%) of 0.53 in Well M1 and 0.55 in Wells H1/Hd1/Hd2, respectively. Comparing with vitrinite reflectance (Ro/%), the OP features a dynamic range and can indicate the oil generation window more precisely. By using OP and other geochemical indices, the oil-source correlation is also conducted. It suggests that the oils in wells M1 and M2 are derived from the source rocks in situ. The mudstone in Huachang uplift is not the main source rocks for oils in this area, The OP is also a useful oil-source correlation parameter in some Tertiary lacustrine basins.展开更多
The effects of water content, shear rate, temperature, and solid particle concentration on viscosity reduction (VR) caused by forming stable emulsions were investigated using Omani heavy crude oil. The viscosity of ...The effects of water content, shear rate, temperature, and solid particle concentration on viscosity reduction (VR) caused by forming stable emulsions were investigated using Omani heavy crude oil. The viscosity of the crude oil was initially measured with respect to shear rates at different temperatures from 20 to 70℃. The crude oil exhibited a shear thinning behavior at all the temperatures. The strongest shear thinning was observed at 20℃. A non-ionic water soluble surfactant (Triton X-100) was used to form and stabilize crude oil emulsions. The emulsification process has significantly reduced the crude oil viscosity. The degree of VR was found to increase with an increase in water content and reach its maximum value at 50 % water content. The phase inversion from oil- oil emulsion occurred at 30 in-water emulsion to water-in- % water content. The results indicated that the VR was inversely proportional to temperature and concentration of silica nanoparticles. For water-in-oil emulsions, VR increased with shear rate and eventually reached a plateau at a shear rate of around 350 s^-1. This was attributed to the thinning behavior of the continuous phase. The VR of oil-in-water emulsions remained almost constant as the shear rate increased due to the Newtonian behavior of water, the continuous phase.展开更多
As an oil-decomposable mixture of two bacteria strains(Bacillus sp. and Pseudomonas sp.), Y3 was isolated after 50 d domestication under the condition that oil was used as the limited carbon source. The decomposing ra...As an oil-decomposable mixture of two bacteria strains(Bacillus sp. and Pseudomonas sp.), Y3 was isolated after 50 d domestication under the condition that oil was used as the limited carbon source. The decomposing rate by Y3 was higher than that by each separate individual strain, indicating a synergistic effect of the two bacteria. Under the conditions that T=25—40℃,pH=6—8, HRT(Hydraulic retention time)=36 h and the oil concentration at 0.1%, Y3 yielded the highest decomposing rate of 95.7 %. Y3 was also applied in an organic waste treatment machine and a certain rate of activated bacteria was put into the stuffing. A series of tests including humidity, pH, temperature, C/N rate and oil percentage of the stuffing were carried out to check the efficacy of oil-decomposition. Results showed that the oil content of the stuffing with inoculums was only half of that of the control. Furthermore, the bacteria were also beneficial to maintain the stability of the machine operating. Therefore, the bacteria mixture as well as the machines in this study could be very useful for waste treatment.展开更多
One of the main challenges in deep-water drilling is gas-hydrate plugs,which make the drilling unsafe.Some oil-based drilling fluids(OBDF) that would be used for deep-water drilling in the South China Sea were teste...One of the main challenges in deep-water drilling is gas-hydrate plugs,which make the drilling unsafe.Some oil-based drilling fluids(OBDF) that would be used for deep-water drilling in the South China Sea were tested to investigate the characteristics of gas-hydrate formation,agglomeration and inhibition by an experimental system under the temperature of 4 ?C and pressure of 20 MPa,which would be similar to the case of 2000 m water depth.The results validate the hydrate shell formation model and show that the water cut can greatly influence hydrate formation and agglomeration behaviors in the OBDF.The oleophobic effect enhanced by hydrate shell formation which weakens or destroys the interfacial films effect and the hydrophilic effect are the dominant agglomeration mechanism of hydrate particles.The formation of gas hydrates in OBDF is easier and quicker than in water-based drilling fluids in deep-water conditions of low temperature and high pressure because the former is a W/O dispersive emulsion which means much more gas-water interfaces and nucleation sites than the later.Higher ethylene glycol concentrations can inhibit the formation of gas hydrates and to some extent also act as an anti-agglomerant to inhibit hydrates agglomeration in the OBDF.展开更多
The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inh...The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inhibitor SL-2, scale inhibitor HEDP, germicide 1227, and flocculant polyaluminium chloride PAC) on the stability of oilfield produced water. The influence of these treatment agents on oil-water interfacial properties and the mechanism of these agents acting on the oilfield produced water were studied by measuring the interfacial shear viscosity, interfacial tension and zeta electric potential. The results indicated that the scale inhibitor HEDP could increase the oil-water interfacial film strength, and it could also increase the absolute value of the zeta potential of oil droplets. HEDP played an important role in the stability of the emulsion. Polyaluminum chloride (PAC) reduced the stability of the emulsion by considerably decreasing the absolute value of the zeta potential of oil droplets. Corrosion inhibitor SL-2 and germicide 1227 could decrease the oil-water interfacial tension, whereas they had little influence on oil-water interfacial shear viscosity and oil-water interfacial electricity properties.展开更多
文摘The biodegradable polymer demonstrates significant potential for addressing the critical environmental challenges associated with oil spills;however, the cellular film structure and hydrophobic characteristics of the polymer restrict their efficacy. In this study, a biodegradable thin membrane composed of a blend of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(caprolactone) (PCL) was fabricated utilizing the electrospinning technique. The membrane exhibited an adsorption capacity for cooking oil of 10.8 g/g, and Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the anticipated chemical structures, revealing no evidence of chemical interactions between PHBV and PCL. This research presents an environmentally friendly and straightforward approach for fabricating biodegradable membrane structure with exceptional oil-water separation capabilities.
文摘Produced water from an oil extraction site in South Kuwait was sampled after primary oil – water separation had been carried out. The produced water was filtered through a mixture of activated charcoal and esterified cellulosic material gained from spent coffee grounds as a tertiary adsorption treatment. The earth-alkaline metal ions and heavy metals were separated from the de-oiled produced water by addition of either sodium or potassium hydroxide in the presence of carbon dioxide or by direct addition of solid sodium carbonate. The resulting filtrate gave salt of industrial purity upon selective crystallization on evaporation.
文摘Oil-water separation for produced water (PW) originating from an oil extraction site in South Kuwait was carried out using bleached, esterified cellulosic material from used coffee grounds. Thereafter, earth-alkaline metal ions, specifically calcium ions, of the de-oiled PW were removed by precipitation with sodium carbonate to give access to pure sodium chloride as industrial salt from the remaining PW. While the purity of the precipitated calcium carbonate (CaCO3) depends on the precipitation conditions, CaCO3 of up to 95.48% purity can be obtained, which makes it a salable product. The precipitation of CaCO3 decreases the amount of calcium ions in PW from 11,300 ppm to 84 ppm.
文摘Crude oil spills have inflicted extensive disruption upon the Niger Delta ecosystem, resulting in crop loss and severe environmental damage. Such spills exacerbate heavy metal concentration within soil due to the presence of metallic ions. The Okpare-Olomu community has borne the brunt of crude oil pollution from illicit bunkering, sabotage, and equipment malfunction. This study targets an evaluation of ecological hazards linked to heavy metals (HMs) in crude oil impacted agriculturally soils within Okpare-Olomu in Ughelli South LGA of Delta State. In this study, 24 topsoil samples were obtained from areas affected by crude oil pollution;the heavy metal content was evaluated through atomic absorption spectrometry. The concentration ranges for HMs (mg/kg) in soil were: 24.1 - 23,174 (Cu);0.54 - 37.1 (Cd);9.05 - 54 (Cr);12 - 174 (Ni);18.5 - 8611 (Pb);and 148 - 9078 (Zn) at a soil depth of 0 - 15 cm. Notably, metal concentrations were recorded to be above permissible World Health Organization limits. Predominantly, Zn and Pb recorded higher heavy metal concentration when compared to other heavy metals analysed, notably at sampling points PT7 through PT24. Zinc and Pb contamination exhibited highly significant contamination factors, and contamination severity was evidenced across all sample points, signifying a grave risk level. Pollution load indices indicated pervasive extreme pollution levels. Geoaccumulation indices signaled moderate to strong pollution, mainly by Pb and Zn. Ecological risk assessments revealed variable levels of heavy metal contamination, from low to very high, with potential ecological risk reflecting markedly elevated levels. This study underscores the imperative for soil remediation to rectify ecological imbalances in agriculturally affected soil constituents.
文摘To reduce the viscosity of highly-viscous oil of the Tahe oilfield (Xinjiang,China),an oilsoluble polybasic copolymer viscosity reducer for heavy oil was synthesized using the orthogonal method.The optimum reaction conditions are obtained as follows:under the protection of nitrogen,a reaction time of 9 h,monomer mole ratio of reaction materials of 3:2:2 (The monomers are 2-propenoic acid,docosyl ester,maleic anhydride and styrene,respectively),initiator amount of 0.8% (mass percent of the sum of all the monomers) and reaction temperature of 80 oC.This synthesized viscosity reducer is more effective than commercial viscosity reducers.The rate of viscosity reduction reached 95.5% at 50 oC.Infrared spectra (IR) and interfacial tensions of heavy oil with and without viscosity reducer were investigated to understand the viscosity reduction mechanism.When viscosity reducer is added,the molecules of the viscosity reducer are inserted amongst the molecules of crude oil,altering the original intermolecular structure of crude oil and weakening its ability to form hydrogen bonds with hydroxyl or carboxyl groups,so the viscosity of crude oil is reduced.Field tests of the newly developed oil-soluble viscosity reducer was carried out in the Tahe Oilfield,and the results showed that 44.5% less light oil was needed to dilute the heavy oil to achieve the needed viscosity.
基金Supported by the National Natural Science Foundation of China(21706100 and U1507115)Natural Science Foundation of Jiangsu Province(BK20160500,BK20161362and BK20160491)+4 种基金the China Postdoctoral Science Foundation(2016M600373,2018T110452 and 2017M621649)China Postdoctoral Science Foundation of Jiangsu Province(1601016A,1701067C and 1701073C)Scientific Research Foundation for Advanced Talents,Jiangsu University(15JDG142)High-Level Personnel Training Project of Jiangsu Province(BRA2016142)Key Research and Development Program of Jiangxi Province(20171BBH80008)
文摘Oil and organic solvent contamination, derived from oil spills and organic solvent leakage, has been recognized as one of the major environmental issues imposing a serious threat to both human and ecosystem health. Among the various presented technologies applied for oil/water separation, oil absorption process has been explored widely and offers satisfactory results especially with surface modified oil-absorbing material and/or hybrid absorbents. In this review, we summarize the recent research activities involved in the designing strategies of oil-absorbing absorbents and their application in oil absorption. Then, an extensive list of various oil-absorbing materials from literature, including polymer materials, porous inorganic materials and biomass materials, has been compiled and the oil adsorption capacities toward various types of oils and organic solvents as available in the literature are presented along with highlighting and discussing the various factors involved in the designing of oil-absorbing absorbents tested so far for oil/water separation. Finally, some future trends and perspectives in oil-absorbing material are outlined.
基金supported by the National Basic Research Program of China (No. 2005CB422106)
文摘The lower Cambrian Niutitang Formation hydrocarbon source rocks at the Dingshan- Lintanchang structure in the southeast Sichuan Basin were of medium-good quality with two excellent hydrocarbon-generating centers developed in the periphery areas, with a possibility of forming a medium to large-sized oil-gas field. Good reservoir rocks were the upper Sinian (Dengying Formation) dolomites. The mudstone in the lower Cambrian Niutitang Formation with a good sealing capacity was the cap rock. The widely occurring bitumen in the Dengying Formation indicates that a paleo oil pool was once formed in the study area. The first stage of paleo oil pool formation was maturation of the lower Cambrian source rocks during the late Ordovician. Hydrocarbon generation from the lower Cambrian source rocks stopped due to the Devonian-Carboniferous uplifting. The lower Cambrian source rocks then restarted generation of large quantities of hydrocarbons after deposition of the middle Permian sediments. This was the second stage of the paleo oil pool formation. The oil in the paleo oil pool began to crack during the late Triassic and a paleo gas pool was formed. This paleo gas pool was destroyed during the Yanshan-Himalayan folding, uplifting and denudation. Bitumen can be widely seen in the Dengying Formation in wells and outcrops in the Sichuan Basin and its periphery areas. This provides strong evidence that the Dengying Formation in the Sichuan Basin and its periphery areas was once an ultra-large structural-lithologic oil-gas field, which was damaged during the Yanshan-Himalayan period.
基金financially supported by 973 Program (No. 2014CB239104)NSFC and Sinopec Joint Key Project (U1663207)National Key Science and Technology Project (2017ZX05049002)
文摘Fracture systems in nature are complicated. Normally vertical fractures develop in an isotropic background. However, the presence of horizontal fine layering or horizontal fractures in reservoirs makes the vertical fractures develop in a VTI(a transversely isotropic media with a vertical symmetry axis) background. In this case, reservoirs can be described better by using an orthorhombic medium instead of a traditional HTI(a transversely isotropic media with a horizontal symmetry axis) medium. In this paper, we focus on the fracture prediction study within an orthorhombic medium for oil-bearing reservoirs. Firstly, we simplify the reflection coefficient approximation in an orthorhombic medium. Secondly, the impact of horizontal fracturing on the reflection coefficient approximation is analyzed theoretically. Then based on that approximation, we compare and analyze the relative impact of vertical fracturing, horizontal fracturing and fluid indicative factor on traditional ellipse fitting results and the scaled B attributes. We find that scaled B attributes are more sensitive to vertical fractures, so scaled B attributes are proposed to predict vertical fractures. Finally, a test is developed to predict the fracture development intensity of an oil-bearing reservoir. The fracture development observed in cores is used to validate the study method. The findings of both theoretical analyses and practical application reveal that compared with traditional methods, this new approach has improved the prediction of fracture development intensity in oil-bearing reservoirs.
基金National Natural Science Foundation of China(Nos.51803190,11432003,11572290)National Key Research and Development Program of China(No.2016YFB0101602)+2 种基金China Postdoctoral Science Foundation(Nos.2018M642779,2019M652573,2019T120643)International Postdoctoral Exchange Fellowship Program,University Key Research Project of Henan Province(No.18A430031)Guangdong Province Pearl River Scholar Funded Scheme(2016)for financial support。
文摘Polylactic acid(PLA) is one of the most suitable candidates for environmental pollution treatment because of its biodegradability which will not cause secondary pollution to the environment after application.However,there is still a lack of a green and facile way to prepare PLA oil-water separation materials.In this work,a water-assisted thermally induced phase separation method for the preparation of superhydrophobic PLA oil-water separation material with honeycomb-like structures is reported.The PLA material shows great ability in application and could adsorb 27.3 times oil to its own weight.In addition,it could also be applicated as a filter with excellent efficiency(50.9 m^3 m^(-2) h^(-1)).
基金supported by the National Natural Science Foundation of China (Grant Nos 4060201640773032)the National Basic Research Program of China (contract No.2007CB209500)
文摘The concentration of hydrogen sulfide gas (H2S) varies greatly in the oil-bearing basins of China, from zero to 90%. At present, oil and gas reservoirs with high H2S concentration have been discovered in three basins, viz. the Bohai Bay Basin, Sichuan Basin and the Tarim Basin, whereas natural gas with low H2S concentration has been found in the Ordos Basin, the Songliao Basin and the Junggar Basin. Studies suggest that in China H2S origin types are very complex. In the carbonate reservoir of the Sichuan Basin, the Ordos Basin and the Tarim Basin, as well as the carbonatedominated reservoir in the Luojia area of the Jiyang depression in the Bohai Bay Basin, Wumaying areas of the Huanghua depression, and Zhaolanzhuang areas of the Jizhong depression, the H2S is of Thermochemical Sulfate Reduction (TSR) origin. The H2S is of Bacterial Sulphate Reduction (BSR) origin deduced from the waterflooding operation in the Changheng Oilfield (placanticline oil fields) in the Songliao Basin. H2S originates from thermal decomposition of sulfur-bearing crude oil in the heavy oil area in the Junggar Basin and in the Liaohe heavy oil steam pilot area in the western depression of the Bohai Bay Basin. The origin types are most complex, including TSR and thermal decomposition of sulfcompounds among other combinations of causes. Various methods have been tried to identify the origin mechanism and to predict the distribution of H2S. The origin identification methods for H2S mainly comprise sulfur and carbon isotopes, reservoir petrology, particular biomarkers, and petroleum geology integrated technologies; using a combination of these applications can allow the accurate identification of the origins of H2S. The prediction technologies for primary and secondary origin of H2S have been set up separately.
基金The Tianjin Science and Technology Plan Project under contract No.15YFYSGX00010the Tianjin Bureau of Marine Science and Technology Plan Project under contract No.KJXH2015-05
文摘The electromagnetic separation method is a new approach to treat ship-based marine oily wastewater,in which oil droplets are dispersed in seawater(oil-seawater mixed flow).In order to clarify the separation process and determine the separation characteristics,the flow field and volume fraction of the oil droplets of the oil-seawater mixed flow under an applied electromagnetic field with different operating conditions were investigated by 2D numerical simulations with the Eulerian model.The results show that:(1)the downward Lorentz force causes seawater to flow downwards and the oil droplets to move upwards due to the electromagnetic separation force in the effective section of the separation channel;(2)the volume fraction of the oil droplets at the top of the outlet section increases with the current density,magnetic field,and the diameter of the oil droplet and decreases with the inlet velocity of the oily seawater.The results provide useful guidance for the design of electromagnetic separation devices of the oil-seawater mixed flow.
文摘Based on the research and exploration of lithostratigraphic reservoir in the Jizhong depression of the Bohai Bay basin and Erlian basin, the hydrocarbon distribution in a continental oil-rich sag has "complementarity" feature, viz. the hydrocarbon resources configuration and plane distribution of the structural reservoir and lithostratigraphic reservoir have the "complementarity". This distribution feature is controlled by many factors such as the macroscopical geological setting, reservoir-forming condition, and the reservoir-forming mechanism of structural reservoir and lithostratigraphic reservoir. More research shows that the "complementarity" of hydrocarbon distribution is prevalent in every kind of continental basin. This "rule" helps to establish a new exploration theory, a scientific exploration program, and make proper exploration deployments in hydrocarbon exploration. Therefore, it is significant for the exploration work in continental petroliferous basins of China.
基金supported by the Natural Science Foundation of China(Grant No.40672093)CNPC Innovation Fund(07El001)the ESS-China Hydrocarbon Geosciences Collaboration Project under Natural Resources Canada's International Opportunities Program.
文摘The oleanane parameter, i.e., OP (oleananes/(oleananes+C30hopanes)) in the two sedimentary columns of the Beibuwan Basin, South China Sea, can be used to delimit the top of oil generation window, with Ro (/%) of 0.53 in Well M1 and 0.55 in Wells H1/Hd1/Hd2, respectively. Comparing with vitrinite reflectance (Ro/%), the OP features a dynamic range and can indicate the oil generation window more precisely. By using OP and other geochemical indices, the oil-source correlation is also conducted. It suggests that the oils in wells M1 and M2 are derived from the source rocks in situ. The mudstone in Huachang uplift is not the main source rocks for oils in this area, The OP is also a useful oil-source correlation parameter in some Tertiary lacustrine basins.
文摘The effects of water content, shear rate, temperature, and solid particle concentration on viscosity reduction (VR) caused by forming stable emulsions were investigated using Omani heavy crude oil. The viscosity of the crude oil was initially measured with respect to shear rates at different temperatures from 20 to 70℃. The crude oil exhibited a shear thinning behavior at all the temperatures. The strongest shear thinning was observed at 20℃. A non-ionic water soluble surfactant (Triton X-100) was used to form and stabilize crude oil emulsions. The emulsification process has significantly reduced the crude oil viscosity. The degree of VR was found to increase with an increase in water content and reach its maximum value at 50 % water content. The phase inversion from oil- oil emulsion occurred at 30 in-water emulsion to water-in- % water content. The results indicated that the VR was inversely proportional to temperature and concentration of silica nanoparticles. For water-in-oil emulsions, VR increased with shear rate and eventually reached a plateau at a shear rate of around 350 s^-1. This was attributed to the thinning behavior of the continuous phase. The VR of oil-in-water emulsions remained almost constant as the shear rate increased due to the Newtonian behavior of water, the continuous phase.
文摘As an oil-decomposable mixture of two bacteria strains(Bacillus sp. and Pseudomonas sp.), Y3 was isolated after 50 d domestication under the condition that oil was used as the limited carbon source. The decomposing rate by Y3 was higher than that by each separate individual strain, indicating a synergistic effect of the two bacteria. Under the conditions that T=25—40℃,pH=6—8, HRT(Hydraulic retention time)=36 h and the oil concentration at 0.1%, Y3 yielded the highest decomposing rate of 95.7 %. Y3 was also applied in an organic waste treatment machine and a certain rate of activated bacteria was put into the stuffing. A series of tests including humidity, pH, temperature, C/N rate and oil percentage of the stuffing were carried out to check the efficacy of oil-decomposition. Results showed that the oil content of the stuffing with inoculums was only half of that of the control. Furthermore, the bacteria were also beneficial to maintain the stability of the machine operating. Therefore, the bacteria mixture as well as the machines in this study could be very useful for waste treatment.
基金supported by Project 863 (No. 2006AA09Z316)NSFC (No. 50704028 and 40974071)
文摘One of the main challenges in deep-water drilling is gas-hydrate plugs,which make the drilling unsafe.Some oil-based drilling fluids(OBDF) that would be used for deep-water drilling in the South China Sea were tested to investigate the characteristics of gas-hydrate formation,agglomeration and inhibition by an experimental system under the temperature of 4 ?C and pressure of 20 MPa,which would be similar to the case of 2000 m water depth.The results validate the hydrate shell formation model and show that the water cut can greatly influence hydrate formation and agglomeration behaviors in the OBDF.The oleophobic effect enhanced by hydrate shell formation which weakens or destroys the interfacial films effect and the hydrophilic effect are the dominant agglomeration mechanism of hydrate particles.The formation of gas hydrates in OBDF is easier and quicker than in water-based drilling fluids in deep-water conditions of low temperature and high pressure because the former is a W/O dispersive emulsion which means much more gas-water interfaces and nucleation sites than the later.Higher ethylene glycol concentrations can inhibit the formation of gas hydrates and to some extent also act as an anti-agglomerant to inhibit hydrates agglomeration in the OBDF.
文摘The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inhibitor SL-2, scale inhibitor HEDP, germicide 1227, and flocculant polyaluminium chloride PAC) on the stability of oilfield produced water. The influence of these treatment agents on oil-water interfacial properties and the mechanism of these agents acting on the oilfield produced water were studied by measuring the interfacial shear viscosity, interfacial tension and zeta electric potential. The results indicated that the scale inhibitor HEDP could increase the oil-water interfacial film strength, and it could also increase the absolute value of the zeta potential of oil droplets. HEDP played an important role in the stability of the emulsion. Polyaluminum chloride (PAC) reduced the stability of the emulsion by considerably decreasing the absolute value of the zeta potential of oil droplets. Corrosion inhibitor SL-2 and germicide 1227 could decrease the oil-water interfacial tension, whereas they had little influence on oil-water interfacial shear viscosity and oil-water interfacial electricity properties.