Ubiquitous contamination of the soil environment with volatile organic compounds(VOCs)has raised considerable concerns.However,there is still limited comprehensive surveying of soil VOCs on a national scale.Herein,65 ...Ubiquitous contamination of the soil environment with volatile organic compounds(VOCs)has raised considerable concerns.However,there is still limited comprehensive surveying of soil VOCs on a national scale.Herein,65 species of VOCswere simultaneously determined in surface soil samples collected from 63 chemical industrial parks(CIPs)across China.The results showed that the total VOC concentrations ranged from 7.15 to 1842 ng/g with a mean concentration of 326 ng/g(median:179 ng/g).Benzene homologs and halogenated hydrocarbons were identified as the dominant contaminant groups.Positive correlations between many VOC species indicated that these compounds probably originated from similar sources.Spatially,the hotspots of VOC pollution were located in eastern and southern China.Soils with higher clay content and a higher fraction of total organic carbon(TOC)content were significantly associated with higher soil VOC concentrations.Precipitation reduces the levels of highly water-soluble substances in surface soils.Both positive matrix factorization(PMF)and principal component analysis-multiple linear regression(PCA-MLR)identified a high proportion of industrial sources(PMF:59.2%and PCA-MLR:66.5%)and traffic emission sources(PMF:32.3%and PCA-MLR:33.5%).PMF,which had a higher R^(2) value(0.7892)than PCA-MLR(0.7683),was the preferred model for quantitative source analysis of soil VOCs.The health risk assessment indicated that the non-carcinogenic and carcinogenic risks of VOCs were at acceptable levels.Overall,this study provides valuable data on the occurrence of VOCs in soil from Chinese CIPs,which is essential for a comprehensive understanding of their environmental behavior.展开更多
As an important component of light hydrocarbon compounds,alkylbenzene compounds lack indicators to indicate the source of organic matter of light oils and condensates.Forty-one oil samples from the Tarim Basin and Bei...As an important component of light hydrocarbon compounds,alkylbenzene compounds lack indicators to indicate the source of organic matter of light oils and condensates.Forty-one oil samples from the Tarim Basin and Beibuwan Basin were analyzed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry(GC×GC-TOFMS).The concentration distributions of thirteen light hydrocarbon compounds with organic matter source and sedimentary environment indication were studied.There is no significant difference in the concentrations of 1-methylpropylbenzene(MPB)in all studied oils.However,the concentrations of 2-MPB in the Tarim swamp oils are higher than that in the Beibuwan lacustrine oils and Tarim marine oils.Based on the significant concentration difference of 1-and 2-MPB in all studied oils,1-/2-MPB(MPBr)was proposed as an indicator to identify the source of organic matter in crude oils.The MPBr values greater than 1.5 indicate that the crude oil mainly comes from lower aquatic organisms,bacteria,and algae.The MPBr values greater than 1.0 and less than 1.5 indicate that crude oil was derived from the combined contributions of lower aquatic organisms,bacteria and algae,and terrestrial higher plants.The MPBr values less than 1.0 suggest that the crude oil was mainly derived from terrigenous higher plants.The MPBr values in crude oils basically are not or slightly affected by depositional environment and secondary alteration.The MPBr values can be used to infer the organic matter origin in sediments,especially for the lack of biomarkers of light oils and condensates.展开更多
The importance of organic geochemistry and basin modeling is widely recognized and used to understand the source rock potential and hydrocarbon generation history of the Mangahewa Formation,and thereby given the found...The importance of organic geochemistry and basin modeling is widely recognized and used to understand the source rock potential and hydrocarbon generation history of the Mangahewa Formation,and thereby given the foundational role in the petroleum exploration.This study utilized the total organic carbon(TOC)content and hydrogen index(HI)to investigate the dominant kerogen type and hydrogen richness for the significance of petroleum generative potential.The Mangahewa coals and carbonaceous shales exhibit an excellent source rocks,with high total organic content(TOC)of more than 22%.The coals and carbonaceous shales were also characterised by Type Ⅱ‒Ⅲ kerogen with Type Ⅲ kerogen,promising oiland gas-prones.The Mangahewa Formation reached the main oil generation,with vitrinite reflectances between 0.53%and 1.01%.Vitrinite reflectance was also used in developing themal models and reveal the transformation(TR)of 10‒50%kerogen to oil during the Late Miocene.The models also showed that the Mangahewa source rock has a significant oil generation and little expulsion competency,with a TR of up to 54%.These findings support the substantial oil-generating potential in the Taranaki Basin's southern graben and can be used as a guide when developing strategies for an oil exploration program.展开更多
Microwave digestion-inductively coupled plasma mass spectrometry(ICP-MS)was used to analyze the sources of lead in farmland soil and rice in the Jiulongjiang River Basin.The results suggested that the source of lead i...Microwave digestion-inductively coupled plasma mass spectrometry(ICP-MS)was used to analyze the sources of lead in farmland soil and rice in the Jiulongjiang River Basin.The results suggested that the source of lead in rice was differ from that in soil.There were four main sources of lead in farmland soil:natural source,agricultural source,industrial source and fossil fuel source,among which natural source,agricultural source and industrial source contributed more.There were four main sources of lead in rice:natural,agricultural,industrial and fossil fuel sources,and more importantly,fossil fuel sources.The comparison of lead isotope composition with potential sources(^(206)Pb/^(207)Pb,^(208)Pb/^(206)Pb,^(208)Pb/^(207)Pb)can provide a scientific basis for the identification and treatment of heavy metal lead pollution sources in farmland soil and rice in the Jiulong River Basin.展开更多
Light hydrocarbons(LHs)are key components of petroleum,and the carbon isotopes composition(δ^(13)C)of individual LHs contains a wealth of geochemical information.Forty-four oil samples from five different basins were...Light hydrocarbons(LHs)are key components of petroleum,and the carbon isotopes composition(δ^(13)C)of individual LHs contains a wealth of geochemical information.Forty-four oil samples from five different basins were analyzed using gas chromatography(GC),gas chromatography-mass spectrometry(GC–MS),and gas chromatography-isotope ratio mass spectrometry(GC-IRMS).Theδ^(13)C values of forty-three LHs were recognized and determined by comparing the GC and GC-IRMS methods.The results revealed significant differences inδ^(13)C distribution characteristics among different LH compounds.Theδ^(13)C variation of individual LHs in iso-paraffins showed the widest range,followed by cycloalkanes and aromatics,whereas theδ^(13)C variation in n-paraffins showed the narrowest range.Theδ^(13)C values of most individual LHs are primarily affected by the source facies and thermal evolution.Among them,c-1,3-dimethylcyclohexane(c-1,3DMCH)is mainly sourced from higher plants but may also form through abiotic mechanisms such as catalysis or cyclization.Theδ^(13)C values of c-1,3DMCH(δ^(13)Cc-1,3DMCH)primarily exhibit parental genetic characteristics,enabling effective distinction of oil from different source facies.Specifically,theδ^(13)Cc-1,3DMCH in marine oils,lacustrine oils,terrigenous oils,and coal-formed oils are<–22‰,from–22‰to−20.2‰,from−20.2‰to−18.4‰,and>−18.4‰,respectively.Moreover,maturity is the primary controlling factor forδ^(13)C values of 3MC7(δ^(13)C3MC7,3MC7:3-methylheptane),while the source facies serve as a secondary influence.The plot ofδ^(13)Cc-1,3DMCH andδ^(13)C3MC7 was introduced to classify source facies.Asδ^(13)Cc-1,3DMCH andδ^(13)C3MC7 increase,the source facies transits from marine to lacustrine,then terrigenous,and finally coal facies.Additionally,increasingδ^(13)C3MC7 indicates a relative increase in maturity.Therefore,theδ^(13)Cc-1,3DMCH vs.δ^(13)C3MC7 plot serves as an effective tool for distinguishing source facies and assessing relative maturity.展开更多
To satisfy the increasing global energy demand,while searching for new energy sources,it’s important to take a closer look at the resources already at our disposal and optimize their use.This comprehensive review exp...To satisfy the increasing global energy demand,while searching for new energy sources,it’s important to take a closer look at the resources already at our disposal and optimize their use.This comprehensive review explores the evolving landscape of unconventional oil resources,focusing on the environmental and economic implica-tions of bitumen partial upgrading technologies,particularly within the Canadian context.With over 55%of the world’s oil reserves comprising of unconventional oil,which includes extra-heavy oil and oil sand bitumen,there is a growing trend to shift from traditional oil sources to these abundant yet under-utilized reserves.This review delves into the challenges and advancements in bitumen partial upgrading,highlighting the latest technologies in thermal cracking,hydrocracking,catalytic cracking,and innovative methods like surfactant integration,cavi-tation,microwave,and plasma-assisted upgrading.It also discusses the environmental implications and eco-nomic feasibility of these technologies,emphasizing the necessity for sustainable and cost-effective solutions at petroleum field sites.Furthermore,the report introduces the transformative concept of Bitumen Beyond Com-bustion(BBC),which explores the non-combustion uses of bitumen and its asphaltene fraction in manufacturing high-value carbon-based products.These novel approaches align with global sustainability goals,offering the potential for significant reductions in greenhouse gas emissions and new routes to diversify the economic ap-plications of bitumen.The review then concludes with an assessment of current challenges and future research directions,advocating for a balanced approach that harmonizes technological innovation,environmental stewardship,and economic viability in the field of bitumen upgrading.展开更多
Heavy metal(loid)(HM)pollution in agricultural soils has become an environmental concern in antimony(Sb)mining areas.However,priority pollution sources identification and deep understanding of environmental risks of H...Heavy metal(loid)(HM)pollution in agricultural soils has become an environmental concern in antimony(Sb)mining areas.However,priority pollution sources identification and deep understanding of environmental risks of HMs face great challenges due to multiple and complex pollution sources coexist.Herein,an integrated approach was conducted to distinguish pollution sources and assess human health risk(HHR)and ecological risk(ER)in a typical Sb mining watershed in Southern China.This approach combines absolute principal component score-multiple linear regression(APCS-MLR)and positivematrix factorization(PMF)models with ER and HHR assessments.Four pollution sources were distinguished for both models,and APCS-MLR model was more accurate and plausible.Predominant HM concentration source was natural source(39.1%),followed by industrial and agricultural activities(23.0%),unknown sources(21.5%)and Sb mining and smelting activities(16.4%).Although natural source contributed the most to HM concentrations,it did not pose a significant ER.Industrial and agricultural activities predominantly contributed to ER,and attention should be paid to Cd and Sb.Sb mining and smelting activities were primary anthropogenic sources of HHR,particularly Sb and As contaminations.Considering ER and HHR assessments,Sb mining and smelting,and industrial and agricultural activities are critical sources,causing serious ecological and health threats.This study showed the advantages of multiple receptor model application in obtaining reliable source identification and providing better source-oriented risk assessments.HM pollution management,such as regulating mining and smelting and implementing soil remediation in polluted agricultural soils,is strongly recommended for protecting ecosystems and humans.展开更多
Soils in typical coal industrial areas are often enriched with heavy metals.In the Ningdong industrial park of Northwest China,rapid economic development and pollutant emissions have endangered the surrounding soil en...Soils in typical coal industrial areas are often enriched with heavy metals.In the Ningdong industrial park of Northwest China,rapid economic development and pollutant emissions have endangered the surrounding soil environment.Understanding the spatial distribution,hazards,and sources of heavy metals is crucial to mitigate their contamination in soil.The intense industrial activities in the region lead to complex and diverse origins of heavy metals,making single-source apportionment methods inadequate.In this study,we methodically collected 95 soil samples from a coal-electricity production base in the Ningdong industrial park,and determined the concentrations of Cu,Pb,Cd,Cr,As and Hg.It is found that the concentrations of Cu,Pb,Cd,Cr,As and Hg are 1.29 to 18.45 times higher than the background values.Comprehensive pollution indices indicated that 89.47%of the samples were severely polluted,with Cd and Hg posing the highest ecological risks.Positive Matrix Factorisation and Absolute Principal Component Score-Multiple Linear Regression models identified industrial sources,coal processing,traffic-coal combustion,and mining as primary contributors.Both models yielded similar results,with industrial and coal-related activities being dominant.Heavy metal concentrations were significantly higher in the northwestern and southeastern areas compared to the central region,closely associated with industrial and mining activities.These findings highlight the importance of targeted prevention and management strategies for heavy metal contamination in industrial parks.展开更多
In common practice in the oil fields,the injection of water and gas into reservoirs is a crucial technique to increase production.The control of the waterflooding front in oil/gas exploitation is a matter of great con...In common practice in the oil fields,the injection of water and gas into reservoirs is a crucial technique to increase production.The control of the waterflooding front in oil/gas exploitation is a matter of great concern to reservoir engineers.Monitoring the waterflooding front in oil/gas wells plays a very important role in adjusting the well network and later in production,taking advantage of the remaining oil po-tential and ultimately achieving great success in improving the recovery rate.For a long time,micro-seismic monitoring,numerical simulation,four-dimensional seismic and other methods have been widely used in waterflooding front monitoring.However,reconciling their reliability and cost poses a significant challenge.In order to achieve real-time,reliable and cost-effective monitoring,we propose an innovative method for waterflooding front monitoring through the similarity analysis of passive source time-lapse seismic images.Typically,passive source seismic data collected from oil fields have extremely low signal-to-noise ratio(SNR),which poses a serious problem for obtaining structural images.The proposed method aims to visualize and analyze underground changes by highlighting time-lapse images and provide a strategy for underground monitoring using long-term passive source data under low SNR conditions.First,we verify the feasibility of the proposed method by designing a theoretical model.Then,we conduct an analysis of the correlation coefficient(similarity)on the passive source time-lapse seismic imaging results to enhance the image differences and identify the simulated waterflooding fronts.Finally,the proposed method is applied to the actual waterflooding front monitoring tasks in Shengli Oilfield,China.The research findings indicate that the monitoring results are consistent with the actual devel-opment conditions,which in turn demonstrates that the proposed method has great potential for practical application and is very suitable for monitoring common development tasks in oil fields.展开更多
To clarify the mechanism of differential enrichment of intrasource shale oil,taking the third of seventh member of the Triassic Yanchang Formation(Chang 7_(3)submember for short)in the Ordos Basin,NW China as an examp...To clarify the mechanism of differential enrichment of intrasource shale oil,taking the third of seventh member of the Triassic Yanchang Formation(Chang 7_(3)submember for short)in the Ordos Basin,NW China as an example,we integrated high-resolution scanning electron microscopy(SEM),optical microscopy,laser Raman spectroscopy,rock pyrolysis,and organic solvent extraction experiments to identify solid bitumen of varying origins,obtain direct evidence of intrasource micro-migration of shale oil,and establish the coupling between the shale nano/micro-fabric and the oil generation,migration and accumulation.The Chang 7_(3)shale with rich alginite in laminae has the highest hydrocarbon generation potential but a low thermal transformation ratio.Frequent alternations of micron-scale argillaceous-felsic laminae enhance the hydrocarbon expulsion efficiency,yielding consistent aromaticity between in-situ and migrated solid bitumen.Mudstone laminae rich in terrestrial organic matter(OM)and clay minerals exhibit lower hydrocarbon generation threshold but stronger hydrocarbon retention capacity,with a certain amount of light oil/bitumen preserved to differentiate the chemical structure of in-situ versus migrated bitumen.Tuffaceous and sandy laminae contain abundant felsic minerals and migrated bitumen.Tuffaceous laminae develop high-angle microfractures under shale overpressure,facilitating oil charging into rigid mineral intergranular pores of sandy laminae.Fractionation during micro-migration progressively decreases the aromatization of solid bitumen from shale,through tuffaceous and mudstone,to sandy laminae,while increasing light hydrocarbon components and enhancing OM-hosted pore development.The intrasource micro-migration and enrichment of the Chang 7_(3)shale oil result from synergistic organic-inorganic diagenesis,with crude oil component fractionation being a key mechanism for forming sweet spots in laminated shale oil reservoirs.展开更多
By conducting organic geochemical analysis of the samples taken from the drilled wells in Baiyun Sag of Pearl River Mouth Basin,China,the development characteristics of hydrocarbon source rocks in the sag are clarifie...By conducting organic geochemical analysis of the samples taken from the drilled wells in Baiyun Sag of Pearl River Mouth Basin,China,the development characteristics of hydrocarbon source rocks in the sag are clarified.Reconstruct the current geothermal field of the sag and restore the tectonic-thermal evolution process to predict the type,scale,and distribution of resources in Baiyun Sag through thermal pressure simulation experiments and numerical simulation.The Baiyun Sag is characterized by the development of Paleogene shallow lacustrine source rocks,which are deposited in a slightly oxidizing environment.The source rocks are mainly composed of terrestrial higher plants,with algae making a certain contribution,and are oil and gas source rocks.Current geothermal field of the sag was reconstructed,in which the range of geothermal gradients is(3.5–5.2)℃/100 m,showing an overall increasing trend from northwest to southeast,with significant differences in geothermal gradients across different sub-sags.Baiyun Sag has undergone two distinct periods of extensional process,the Eocene and Miocene,since the Cenozoic era.These two periods of heating and warming events have been identified,accelerating the maturation and evolution of source rocks.The main body of ancient basal heat flow value reached its highest at 13.82 Ma.The basin modelling results show that the maturity of source rocks is significantly higher in Baiyun main sub-sag than that in other sub-sags.The Eocene Wenchang Formation is currently in the stage of high maturity to over maturity,while the Eocene Enping Formation has reached the stage of maturity to high maturity.The rock thermal simulation experiment shows that the shallow lacustrine mudstone of the Wenchang Formation has a good potential of generating gas from kerogen cracking with high gas yield and long period of gas window.Shallow lacustrine mudstone of the Enping Formation has a good ability to generate light oil,and has ability to generate kerogen cracking gas in the late stage.The gas yield of shallow lacustrine mudstone of the Enping Formation is less than that of shallow lacustrine mudstone of the Wenchang Formation and the delta coal-bearing mudstone of the Enping Formation.The numerical simulation results indicate that the source rocks of Baiyun main sub-sag generate hydrocarbons earlier and have significantly higher hydrocarbon generation intensity than other sub-sags,with an average of about 1200×10^(4)t/km^(2).Oil and gas resources were mainly distributed in Baiyun main sub-sag and the main source rocks are distributed in the 3^(rd)and 4^(th)members of Wenchang Formation.Four favorable zones are selected for the division and evaluation of migration and aggregation units:No.(1)Panyu 30 nose-shaped structural belt,No.(3)Liuhua 29 nose-shaped uplift belt and Liwan 3 nose-shaped uplift belt,No.(2)gentle slope belt of Baiyun east sag,and No.(8)Baiyun 1 low-uplift.展开更多
Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information ...Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need.展开更多
0 INTRODUCTION.According to the China Earthquake Networks Center,an M6.8 earthquake struck Dingri County,Xizang Autonomous Region,China,on 7 January 2025 at 9:05 a.m.local time.The epicenter is located at 28.5°N,...0 INTRODUCTION.According to the China Earthquake Networks Center,an M6.8 earthquake struck Dingri County,Xizang Autonomous Region,China,on 7 January 2025 at 9:05 a.m.local time.The epicenter is located at 28.5°N,87.45°E,with a depth of~10 km.展开更多
Initial success has been achieved in Hong Kong in controlling primary air pollutants,but ambient ozone levels kept increasing during the past three decades.Volatile organic compounds(VOCs)are important for mitigating ...Initial success has been achieved in Hong Kong in controlling primary air pollutants,but ambient ozone levels kept increasing during the past three decades.Volatile organic compounds(VOCs)are important for mitigating ozone pollution as its major precursors.This study analyzed VOC characteristics of roadside,suburban,and rural sites in Hong Kong to investigate their compositions,concentrations,and source contributions.Herewe showthat the TVOC concentrations were 23.05±13.24,12.68±15.36,and 5.16±5.48 ppbv for roadside,suburban,and rural sites between May 2015 to June 2019,respectively.By using Positive Matrix Factorization(PMF)model,six sources were identified at the roadside site over five years:Liquefied petroleum gas(LPG)usage(33%–46%),gasoline evaporation(8%–31%),aged air mass(11%–28%),gasoline exhaust(5%–16%),diesel exhaust(2%–16%)and fuel filling(75–9%).Similarly,six sources were distinguished at the suburban site,including LPG usage(30%–33%),solvent usage(20%–26%),diesel exhaust(14%–26%),gasoline evaporation(8%–16%),aged air mass(4%–11%),and biogenic emissions(2%–5%).At the rural site,four sources were identified,including aged airmass(33%–51%),solvent usage(25%–30%),vehicular emissions(11%–28%),and biogenic emissions(6%–12%).The analysis further revealed that fuel filling and LPG usage were the primary contributors to OFP and OH reactivity at the roadside site,while solvent usage and biogenic emissions accounted for almost half of OFP and OH reactivity at the suburban and rural sites,respectively.These findings highlight the importance of identifying and characterizing VOC sources at different sites to help policymakers develop targeted measures for pollution mitigation in specific areas.展开更多
Phthalate esters(PAEs),recognized as endocrine disruptors,are released into the environment during usage,thereby exerting adverse ecological effects.This study investigates the occurrence,sources,and risk assessment o...Phthalate esters(PAEs),recognized as endocrine disruptors,are released into the environment during usage,thereby exerting adverse ecological effects.This study investigates the occurrence,sources,and risk assessment of PAEs in surface water obtained from 36 sampling points within the Yellow River and Yangtze River basins.The total concentration of PAEs in the Yellow River spans from124.5 to 836.5 ng/L,with Dimethyl phthalate(DMP)(75.4±102.7 ng/L)and Diisobutyl phthalate(DiBP)(263.4±103.1 ng/L)emerging as the predominant types.Concentrations exhibit a pattern of upstream(512.9±202.1 ng/L)>midstream(344.5±135.3 ng/L)>downstream(177.8±46.7 ng/L).In the Yangtze River,the total concentration ranges from 81.9 to 441.6 ng/L,with DMP(46.1±23.4 ng/L),Diethyl phthalate(DEP)(93.3±45.2 ng/L),and DiBP(174.2±67.6 ng/L)as the primary components.Concentration levels follow a midstream(324.8±107.3 ng/L)>upstream(200.8±51.8 ng/L)>downstream(165.8±71.6 ng/L)pattern.Attention should be directed towards the moderate ecological risks of DiBP in the upstream of HH,and both the upstream and midstream of CJ need consideration for the moderate ecological risks associated with Di-n-octyl phthalate(DNOP).Conversely,in other regions,the associated risk with PAEs is either low or negligible.The main source of PAEs in Yellow River is attributed to the release of construction land,while in the Yangtze River Basin,it stems from the accumulation of pollutants in lakes and forests discharged into the river.These findings are instrumental for pinpointing sources of PAEs pollution and formulating control strategies in the Yellow and Yangtze Rivers,providing valuable insights for global PAEs research in other major rivers.展开更多
Nitrogen removal from domestic sewage is usually limited by insufficient carbon source and electron donor.An economical solid carbon source was developed by composition of polyvinyl alcohol,sodium alginate,and corncob...Nitrogen removal from domestic sewage is usually limited by insufficient carbon source and electron donor.An economical solid carbon source was developed by composition of polyvinyl alcohol,sodium alginate,and corncob,which was utilized as external carbon source in the anaerobic anoxic oxic(AAO)-biofilter for the treatment of low carbon-to-nitrogen ratio domestic sewage,and the nitrogen removal was remarkably improved from 63.2%to 96.5%.Furthermore,the effluent chemical oxygen demand maintained at 35 mg/L or even lower,and the total nitrogenwas reduced to less than 2mg/L.Metagenomic analysis demonstrated that the microbial communities responsible for potential denitrification and organic matter degradation in both AAO and the biofilter reactors were mainly composed of Proteobacteria and Bacteroides,respectively.The solid carbon source addition resulted in relatively high abundance of functional enzymes responsible for NO_(3)^(−)-N to NO_(2)^(−)-N con-version in both AAO and the biofilter reactors,thus enabled stable reaction.The carbon source addition during glycolysis primarily led to the increase of genes associated with the metabolic conversion of fructose 1.6P2 to glycerol-3P The reactor maintained high abun-dance of genes related to the tricarboxylic acid cycle,and then guaranteed efficient carbon metabolism.The results indicate that the composite carbon source is feasible for denitri-fication enhancement of AAO-biofilter,which contribute to the theoretical foundation for practical nitrogen removal application.展开更多
Lake Baiyangdian is one of China’s largest macrophyte-derived lakes,facing severe challenges related to water quality maintenance and eutrophication prevention.Dissolved organic matter(DOM)was a huge carbon pool and ...Lake Baiyangdian is one of China’s largest macrophyte-derived lakes,facing severe challenges related to water quality maintenance and eutrophication prevention.Dissolved organic matter(DOM)was a huge carbon pool and its abundance,property,and transformation played important roles in the biogeochemical cycle and energy flow in lake ecosystems.In this study,Lake Baiyangdian was divided into four distinct areas:Unartificial Area(UA),Village Area(VA),Tourism Area(TA),and Breeding Area(BA).We examined the diversity of DOM properties and sources across these functional areas.Our findings reveal that DOM in this lake is predominantly composed of protein-like substances,as determined by excitation-emission matrix and parallel factor analysis(EEM-PARAFAC).Notably,the exogenous tyrosine-like component C1 showed a stronger presence in VA and BA compared to UA and TA.Ultrahigh-resolution mass spectrometry(FT-ICR MS)unveiled a similar DOM molecular composition pattern across different functional areas due to the high relative abundances of lignan compounds,suggesting that macrophytes significantly influence the material structure of DOM.DOM properties exhibited specific associations with water quality indicators in various functional areas,as indicated by the Mantel test.The connections between DOM properties and NO_(3)-N andNH3-Nwere more pronounced in VA and BA than in UA and TA.Our results underscore the viability of using DOM as an indicator for more precise and scientific water quality management.展开更多
The toxicity of PM_(2.5)does not necessarily change synchronously with its mass concentration.In this study,the chemical composition(carbonaceous species,water-soluble ions,and metals)and oxidative potential(dithiothr...The toxicity of PM_(2.5)does not necessarily change synchronously with its mass concentration.In this study,the chemical composition(carbonaceous species,water-soluble ions,and metals)and oxidative potential(dithiothreitol assay,DTT)of PM_(2.5)were investigated in 2017/2018 and 2022 in Xiamen,China.The decrease rate of volume-normalized DTT(DTTv)(38%)was lower than that of PM_(2.5)(55%)between the two sampling periods.However,the mass-normalized DTT(DTTm)increased by 44%.Clear seasonal patterns with higher levels in winter were found for PM_(2.5),most chemical constituents and DTTv but not for DTTm.The large decrease in DTT activity(84%−92%)after the addition of EDTA suggested that watersoluble metals were the main contributors to DTT in Xiamen.The increased gap between the reconstructed and measured DTTv and the stronger correlations between the reconstructed/measured DTT ratio and carbonaceous species in 2022were observed.The decrease rates of the hazard index(32.5%)and lifetime cancer risk(9.1%)differed from those of PM_(2.5)and DTTv due to their different main contributors.The PMF-MLR model showed that the contributions(nmol/(min·m^(3)))of vehicle emission,coal+biomass burning,ship emission and secondary aerosol to DTTv in 2022 decreased by 63.0%,65.2%,66.5%,and 22.2%,respectively,compared to those in 2017/2018,which was consistent with the emission reduction of vehicle exhaust and coal consumption,the adoption of low-sulfur fuel oil used on board ships and the reduced production of WSOC.However,the contributions of dust+sea salt and industrial emission increased.展开更多
Halocarbons play a vital role in ozone depletion and global warming,and are regulated by the Montreal Protocol(MP)and its amendments.China has been identified as an important contributor to the halocarbon emissions,bu...Halocarbons play a vital role in ozone depletion and global warming,and are regulated by the Montreal Protocol(MP)and its amendments.China has been identified as an important contributor to the halocarbon emissions,but the regional sources of halocarbons in China are not yet well comprehended.To investigate the characteristics,emissions,and source profiles,this study conducted a field campaign in Xiamen,a coastal city in southeastern China.Higher enhancements were found in the unregulated halocarbons(CH_(3)Cl,CH_(2)Cl_(2),CHCl_(3))than in the MP eliminated species(CCl_(4),CH_(3)Br)and theMP controlled species(HCFCs,HFCs).Many of the measured halocarbons varied seasonally and regionally,depending on the anthropogenic sources and atmospheric transport.Backward trajectory analysis showed that the air masses from inland were polluted over Shandong,Hebei,and northern Fujian in the cold season,while the air masses fromthe sea in the warm season were clean.Different air masses in two seasons were associated with the halocarbon patterns in the study area.Industrial activities,especially solvent usage,were the primary sources of halocarbons.The emission hot spots in Fujian Province were concentrated in Sanming,Fuzhou,and Xiamen,and the unregulated halocarbons made the largest contribution.This study provides an insight for a deep understanding of the characteristics and potential sources of halocarbons,and for strengthened management of halocarbons in China.展开更多
基金supported by the Medical and Health Projects in Zhejiang Province(No.2022PY049)the Basic Scientific Research Project of Hangzhou Medical College(No.YS2021006)Key Discipline of Zhejiang Province in Public Health and Preventive Medicine(First Class,Category A),Hangzhou Medical College.
文摘Ubiquitous contamination of the soil environment with volatile organic compounds(VOCs)has raised considerable concerns.However,there is still limited comprehensive surveying of soil VOCs on a national scale.Herein,65 species of VOCswere simultaneously determined in surface soil samples collected from 63 chemical industrial parks(CIPs)across China.The results showed that the total VOC concentrations ranged from 7.15 to 1842 ng/g with a mean concentration of 326 ng/g(median:179 ng/g).Benzene homologs and halogenated hydrocarbons were identified as the dominant contaminant groups.Positive correlations between many VOC species indicated that these compounds probably originated from similar sources.Spatially,the hotspots of VOC pollution were located in eastern and southern China.Soils with higher clay content and a higher fraction of total organic carbon(TOC)content were significantly associated with higher soil VOC concentrations.Precipitation reduces the levels of highly water-soluble substances in surface soils.Both positive matrix factorization(PMF)and principal component analysis-multiple linear regression(PCA-MLR)identified a high proportion of industrial sources(PMF:59.2%and PCA-MLR:66.5%)and traffic emission sources(PMF:32.3%and PCA-MLR:33.5%).PMF,which had a higher R^(2) value(0.7892)than PCA-MLR(0.7683),was the preferred model for quantitative source analysis of soil VOCs.The health risk assessment indicated that the non-carcinogenic and carcinogenic risks of VOCs were at acceptable levels.Overall,this study provides valuable data on the occurrence of VOCs in soil from Chinese CIPs,which is essential for a comprehensive understanding of their environmental behavior.
基金supported by Doctor's Scientific Research Initiation Project of Yan'an University(YAU202213093)National Nature Science Foundation of China(Grant No.41503029).
文摘As an important component of light hydrocarbon compounds,alkylbenzene compounds lack indicators to indicate the source of organic matter of light oils and condensates.Forty-one oil samples from the Tarim Basin and Beibuwan Basin were analyzed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry(GC×GC-TOFMS).The concentration distributions of thirteen light hydrocarbon compounds with organic matter source and sedimentary environment indication were studied.There is no significant difference in the concentrations of 1-methylpropylbenzene(MPB)in all studied oils.However,the concentrations of 2-MPB in the Tarim swamp oils are higher than that in the Beibuwan lacustrine oils and Tarim marine oils.Based on the significant concentration difference of 1-and 2-MPB in all studied oils,1-/2-MPB(MPBr)was proposed as an indicator to identify the source of organic matter in crude oils.The MPBr values greater than 1.5 indicate that the crude oil mainly comes from lower aquatic organisms,bacteria,and algae.The MPBr values greater than 1.0 and less than 1.5 indicate that crude oil was derived from the combined contributions of lower aquatic organisms,bacteria and algae,and terrestrial higher plants.The MPBr values less than 1.0 suggest that the crude oil was mainly derived from terrigenous higher plants.The MPBr values in crude oils basically are not or slightly affected by depositional environment and secondary alteration.The MPBr values can be used to infer the organic matter origin in sediments,especially for the lack of biomarkers of light oils and condensates.
基金Supporting Project number(RSP2025R92)at King Saud University,Riyadh,Saudi Arabia,for their support.
文摘The importance of organic geochemistry and basin modeling is widely recognized and used to understand the source rock potential and hydrocarbon generation history of the Mangahewa Formation,and thereby given the foundational role in the petroleum exploration.This study utilized the total organic carbon(TOC)content and hydrogen index(HI)to investigate the dominant kerogen type and hydrogen richness for the significance of petroleum generative potential.The Mangahewa coals and carbonaceous shales exhibit an excellent source rocks,with high total organic content(TOC)of more than 22%.The coals and carbonaceous shales were also characterised by Type Ⅱ‒Ⅲ kerogen with Type Ⅲ kerogen,promising oiland gas-prones.The Mangahewa Formation reached the main oil generation,with vitrinite reflectances between 0.53%and 1.01%.Vitrinite reflectance was also used in developing themal models and reveal the transformation(TR)of 10‒50%kerogen to oil during the Late Miocene.The models also showed that the Mangahewa source rock has a significant oil generation and little expulsion competency,with a TR of up to 54%.These findings support the substantial oil-generating potential in the Taranaki Basin's southern graben and can be used as a guide when developing strategies for an oil exploration program.
基金Supported by Natural Science Foundation of Fujian Province(2023J011667)Natural Science Foundation of Xiamen(3502Z202374084).
文摘Microwave digestion-inductively coupled plasma mass spectrometry(ICP-MS)was used to analyze the sources of lead in farmland soil and rice in the Jiulongjiang River Basin.The results suggested that the source of lead in rice was differ from that in soil.There were four main sources of lead in farmland soil:natural source,agricultural source,industrial source and fossil fuel source,among which natural source,agricultural source and industrial source contributed more.There were four main sources of lead in rice:natural,agricultural,industrial and fossil fuel sources,and more importantly,fossil fuel sources.The comparison of lead isotope composition with potential sources(^(206)Pb/^(207)Pb,^(208)Pb/^(206)Pb,^(208)Pb/^(207)Pb)can provide a scientific basis for the identification and treatment of heavy metal lead pollution sources in farmland soil and rice in the Jiulong River Basin.
基金funded by the National Natural Science Foundation of China(Grant No.42173054).
文摘Light hydrocarbons(LHs)are key components of petroleum,and the carbon isotopes composition(δ^(13)C)of individual LHs contains a wealth of geochemical information.Forty-four oil samples from five different basins were analyzed using gas chromatography(GC),gas chromatography-mass spectrometry(GC–MS),and gas chromatography-isotope ratio mass spectrometry(GC-IRMS).Theδ^(13)C values of forty-three LHs were recognized and determined by comparing the GC and GC-IRMS methods.The results revealed significant differences inδ^(13)C distribution characteristics among different LH compounds.Theδ^(13)C variation of individual LHs in iso-paraffins showed the widest range,followed by cycloalkanes and aromatics,whereas theδ^(13)C variation in n-paraffins showed the narrowest range.Theδ^(13)C values of most individual LHs are primarily affected by the source facies and thermal evolution.Among them,c-1,3-dimethylcyclohexane(c-1,3DMCH)is mainly sourced from higher plants but may also form through abiotic mechanisms such as catalysis or cyclization.Theδ^(13)C values of c-1,3DMCH(δ^(13)Cc-1,3DMCH)primarily exhibit parental genetic characteristics,enabling effective distinction of oil from different source facies.Specifically,theδ^(13)Cc-1,3DMCH in marine oils,lacustrine oils,terrigenous oils,and coal-formed oils are<–22‰,from–22‰to−20.2‰,from−20.2‰to−18.4‰,and>−18.4‰,respectively.Moreover,maturity is the primary controlling factor forδ^(13)C values of 3MC7(δ^(13)C3MC7,3MC7:3-methylheptane),while the source facies serve as a secondary influence.The plot ofδ^(13)Cc-1,3DMCH andδ^(13)C3MC7 was introduced to classify source facies.Asδ^(13)Cc-1,3DMCH andδ^(13)C3MC7 increase,the source facies transits from marine to lacustrine,then terrigenous,and finally coal facies.Additionally,increasingδ^(13)C3MC7 indicates a relative increase in maturity.Therefore,theδ^(13)Cc-1,3DMCH vs.δ^(13)C3MC7 plot serves as an effective tool for distinguishing source facies and assessing relative maturity.
文摘To satisfy the increasing global energy demand,while searching for new energy sources,it’s important to take a closer look at the resources already at our disposal and optimize their use.This comprehensive review explores the evolving landscape of unconventional oil resources,focusing on the environmental and economic implica-tions of bitumen partial upgrading technologies,particularly within the Canadian context.With over 55%of the world’s oil reserves comprising of unconventional oil,which includes extra-heavy oil and oil sand bitumen,there is a growing trend to shift from traditional oil sources to these abundant yet under-utilized reserves.This review delves into the challenges and advancements in bitumen partial upgrading,highlighting the latest technologies in thermal cracking,hydrocracking,catalytic cracking,and innovative methods like surfactant integration,cavi-tation,microwave,and plasma-assisted upgrading.It also discusses the environmental implications and eco-nomic feasibility of these technologies,emphasizing the necessity for sustainable and cost-effective solutions at petroleum field sites.Furthermore,the report introduces the transformative concept of Bitumen Beyond Com-bustion(BBC),which explores the non-combustion uses of bitumen and its asphaltene fraction in manufacturing high-value carbon-based products.These novel approaches align with global sustainability goals,offering the potential for significant reductions in greenhouse gas emissions and new routes to diversify the economic ap-plications of bitumen.The review then concludes with an assessment of current challenges and future research directions,advocating for a balanced approach that harmonizes technological innovation,environmental stewardship,and economic viability in the field of bitumen upgrading.
基金supported by the National Natural Science Foundation of China(No.42107394)the Major Project of the National Natural Science Foundation of China(No.71991483)the Central Public-interest Scientific Institution Basal Research Fund(No.BSRF202309).
文摘Heavy metal(loid)(HM)pollution in agricultural soils has become an environmental concern in antimony(Sb)mining areas.However,priority pollution sources identification and deep understanding of environmental risks of HMs face great challenges due to multiple and complex pollution sources coexist.Herein,an integrated approach was conducted to distinguish pollution sources and assess human health risk(HHR)and ecological risk(ER)in a typical Sb mining watershed in Southern China.This approach combines absolute principal component score-multiple linear regression(APCS-MLR)and positivematrix factorization(PMF)models with ER and HHR assessments.Four pollution sources were distinguished for both models,and APCS-MLR model was more accurate and plausible.Predominant HM concentration source was natural source(39.1%),followed by industrial and agricultural activities(23.0%),unknown sources(21.5%)and Sb mining and smelting activities(16.4%).Although natural source contributed the most to HM concentrations,it did not pose a significant ER.Industrial and agricultural activities predominantly contributed to ER,and attention should be paid to Cd and Sb.Sb mining and smelting activities were primary anthropogenic sources of HHR,particularly Sb and As contaminations.Considering ER and HHR assessments,Sb mining and smelting,and industrial and agricultural activities are critical sources,causing serious ecological and health threats.This study showed the advantages of multiple receptor model application in obtaining reliable source identification and providing better source-oriented risk assessments.HM pollution management,such as regulating mining and smelting and implementing soil remediation in polluted agricultural soils,is strongly recommended for protecting ecosystems and humans.
基金funded by the National Natural Science Foundation of China(NSFC)(32360321)the Ningxia Key Research and Development Project(2024BEG02007)the Natural Science Foundation of Ningxia Hui Autonomous Region Project(2023AAC03046,2023AAC02018).
文摘Soils in typical coal industrial areas are often enriched with heavy metals.In the Ningdong industrial park of Northwest China,rapid economic development and pollutant emissions have endangered the surrounding soil environment.Understanding the spatial distribution,hazards,and sources of heavy metals is crucial to mitigate their contamination in soil.The intense industrial activities in the region lead to complex and diverse origins of heavy metals,making single-source apportionment methods inadequate.In this study,we methodically collected 95 soil samples from a coal-electricity production base in the Ningdong industrial park,and determined the concentrations of Cu,Pb,Cd,Cr,As and Hg.It is found that the concentrations of Cu,Pb,Cd,Cr,As and Hg are 1.29 to 18.45 times higher than the background values.Comprehensive pollution indices indicated that 89.47%of the samples were severely polluted,with Cd and Hg posing the highest ecological risks.Positive Matrix Factorisation and Absolute Principal Component Score-Multiple Linear Regression models identified industrial sources,coal processing,traffic-coal combustion,and mining as primary contributors.Both models yielded similar results,with industrial and coal-related activities being dominant.Heavy metal concentrations were significantly higher in the northwestern and southeastern areas compared to the central region,closely associated with industrial and mining activities.These findings highlight the importance of targeted prevention and management strategies for heavy metal contamination in industrial parks.
基金supported by the CNPC-SWPU Innovation Alliance Technology Cooperation Project(2020CX020000)the National Natural Science Foundation of China(42022028)+1 种基金the Natural Science Foundation of Sichuan Province(24NSFSC0808)the China Scholarship Council(202306440144)。
文摘In common practice in the oil fields,the injection of water and gas into reservoirs is a crucial technique to increase production.The control of the waterflooding front in oil/gas exploitation is a matter of great concern to reservoir engineers.Monitoring the waterflooding front in oil/gas wells plays a very important role in adjusting the well network and later in production,taking advantage of the remaining oil po-tential and ultimately achieving great success in improving the recovery rate.For a long time,micro-seismic monitoring,numerical simulation,four-dimensional seismic and other methods have been widely used in waterflooding front monitoring.However,reconciling their reliability and cost poses a significant challenge.In order to achieve real-time,reliable and cost-effective monitoring,we propose an innovative method for waterflooding front monitoring through the similarity analysis of passive source time-lapse seismic images.Typically,passive source seismic data collected from oil fields have extremely low signal-to-noise ratio(SNR),which poses a serious problem for obtaining structural images.The proposed method aims to visualize and analyze underground changes by highlighting time-lapse images and provide a strategy for underground monitoring using long-term passive source data under low SNR conditions.First,we verify the feasibility of the proposed method by designing a theoretical model.Then,we conduct an analysis of the correlation coefficient(similarity)on the passive source time-lapse seismic imaging results to enhance the image differences and identify the simulated waterflooding fronts.Finally,the proposed method is applied to the actual waterflooding front monitoring tasks in Shengli Oilfield,China.The research findings indicate that the monitoring results are consistent with the actual devel-opment conditions,which in turn demonstrates that the proposed method has great potential for practical application and is very suitable for monitoring common development tasks in oil fields.
基金Supported by the National Science and Technology Major Project(2024ZD1404901,2017ZX05035)Strategic Priority Research Program(Category B)of the Chinese Academy of Sciences(XDB10050100).
文摘To clarify the mechanism of differential enrichment of intrasource shale oil,taking the third of seventh member of the Triassic Yanchang Formation(Chang 7_(3)submember for short)in the Ordos Basin,NW China as an example,we integrated high-resolution scanning electron microscopy(SEM),optical microscopy,laser Raman spectroscopy,rock pyrolysis,and organic solvent extraction experiments to identify solid bitumen of varying origins,obtain direct evidence of intrasource micro-migration of shale oil,and establish the coupling between the shale nano/micro-fabric and the oil generation,migration and accumulation.The Chang 7_(3)shale with rich alginite in laminae has the highest hydrocarbon generation potential but a low thermal transformation ratio.Frequent alternations of micron-scale argillaceous-felsic laminae enhance the hydrocarbon expulsion efficiency,yielding consistent aromaticity between in-situ and migrated solid bitumen.Mudstone laminae rich in terrestrial organic matter(OM)and clay minerals exhibit lower hydrocarbon generation threshold but stronger hydrocarbon retention capacity,with a certain amount of light oil/bitumen preserved to differentiate the chemical structure of in-situ versus migrated bitumen.Tuffaceous and sandy laminae contain abundant felsic minerals and migrated bitumen.Tuffaceous laminae develop high-angle microfractures under shale overpressure,facilitating oil charging into rigid mineral intergranular pores of sandy laminae.Fractionation during micro-migration progressively decreases the aromatization of solid bitumen from shale,through tuffaceous and mudstone,to sandy laminae,while increasing light hydrocarbon components and enhancing OM-hosted pore development.The intrasource micro-migration and enrichment of the Chang 7_(3)shale oil result from synergistic organic-inorganic diagenesis,with crude oil component fractionation being a key mechanism for forming sweet spots in laminated shale oil reservoirs.
基金Supported by the National Oil and Gas Resource Evaluation Project for the 14th Five Year Plan of the Ministry of Natural Resources(QGYQZYPJ2022-3)China National Offshore Oil Corporation"14th Five Year Plan"Major Science and Technology Project(KJGG2022-0103-03)。
文摘By conducting organic geochemical analysis of the samples taken from the drilled wells in Baiyun Sag of Pearl River Mouth Basin,China,the development characteristics of hydrocarbon source rocks in the sag are clarified.Reconstruct the current geothermal field of the sag and restore the tectonic-thermal evolution process to predict the type,scale,and distribution of resources in Baiyun Sag through thermal pressure simulation experiments and numerical simulation.The Baiyun Sag is characterized by the development of Paleogene shallow lacustrine source rocks,which are deposited in a slightly oxidizing environment.The source rocks are mainly composed of terrestrial higher plants,with algae making a certain contribution,and are oil and gas source rocks.Current geothermal field of the sag was reconstructed,in which the range of geothermal gradients is(3.5–5.2)℃/100 m,showing an overall increasing trend from northwest to southeast,with significant differences in geothermal gradients across different sub-sags.Baiyun Sag has undergone two distinct periods of extensional process,the Eocene and Miocene,since the Cenozoic era.These two periods of heating and warming events have been identified,accelerating the maturation and evolution of source rocks.The main body of ancient basal heat flow value reached its highest at 13.82 Ma.The basin modelling results show that the maturity of source rocks is significantly higher in Baiyun main sub-sag than that in other sub-sags.The Eocene Wenchang Formation is currently in the stage of high maturity to over maturity,while the Eocene Enping Formation has reached the stage of maturity to high maturity.The rock thermal simulation experiment shows that the shallow lacustrine mudstone of the Wenchang Formation has a good potential of generating gas from kerogen cracking with high gas yield and long period of gas window.Shallow lacustrine mudstone of the Enping Formation has a good ability to generate light oil,and has ability to generate kerogen cracking gas in the late stage.The gas yield of shallow lacustrine mudstone of the Enping Formation is less than that of shallow lacustrine mudstone of the Wenchang Formation and the delta coal-bearing mudstone of the Enping Formation.The numerical simulation results indicate that the source rocks of Baiyun main sub-sag generate hydrocarbons earlier and have significantly higher hydrocarbon generation intensity than other sub-sags,with an average of about 1200×10^(4)t/km^(2).Oil and gas resources were mainly distributed in Baiyun main sub-sag and the main source rocks are distributed in the 3^(rd)and 4^(th)members of Wenchang Formation.Four favorable zones are selected for the division and evaluation of migration and aggregation units:No.(1)Panyu 30 nose-shaped structural belt,No.(3)Liuhua 29 nose-shaped uplift belt and Liwan 3 nose-shaped uplift belt,No.(2)gentle slope belt of Baiyun east sag,and No.(8)Baiyun 1 low-uplift.
基金supported in part by the National Key Research and Development Program of China under Grant No.2024YFE0200600the Zhejiang Provincial Natural Science Foundation of China under Grant No.LR23F010005the Huawei Cooperation Project under Grant No.TC20240829036。
文摘Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need.
基金funded by the National Key R&D Program of China(No.2020YFC150071)partly supported by the Shaanxi Province Geoscience Big Data and Geohazard Prevention Innovation Team(2022)and the Research Funds for the Interdisciplinary Projects,CHU(No.300104240914)。
文摘0 INTRODUCTION.According to the China Earthquake Networks Center,an M6.8 earthquake struck Dingri County,Xizang Autonomous Region,China,on 7 January 2025 at 9:05 a.m.local time.The epicenter is located at 28.5°N,87.45°E,with a depth of~10 km.
基金supported by Hong Kong Environment Protection Department(Quotation Ref.18-06532)Hong Kong Innovation and Technology Fund(ITS/193/20FP)Hong Kong Research Grants Council(No.26304921).
文摘Initial success has been achieved in Hong Kong in controlling primary air pollutants,but ambient ozone levels kept increasing during the past three decades.Volatile organic compounds(VOCs)are important for mitigating ozone pollution as its major precursors.This study analyzed VOC characteristics of roadside,suburban,and rural sites in Hong Kong to investigate their compositions,concentrations,and source contributions.Herewe showthat the TVOC concentrations were 23.05±13.24,12.68±15.36,and 5.16±5.48 ppbv for roadside,suburban,and rural sites between May 2015 to June 2019,respectively.By using Positive Matrix Factorization(PMF)model,six sources were identified at the roadside site over five years:Liquefied petroleum gas(LPG)usage(33%–46%),gasoline evaporation(8%–31%),aged air mass(11%–28%),gasoline exhaust(5%–16%),diesel exhaust(2%–16%)and fuel filling(75–9%).Similarly,six sources were distinguished at the suburban site,including LPG usage(30%–33%),solvent usage(20%–26%),diesel exhaust(14%–26%),gasoline evaporation(8%–16%),aged air mass(4%–11%),and biogenic emissions(2%–5%).At the rural site,four sources were identified,including aged airmass(33%–51%),solvent usage(25%–30%),vehicular emissions(11%–28%),and biogenic emissions(6%–12%).The analysis further revealed that fuel filling and LPG usage were the primary contributors to OFP and OH reactivity at the roadside site,while solvent usage and biogenic emissions accounted for almost half of OFP and OH reactivity at the suburban and rural sites,respectively.These findings highlight the importance of identifying and characterizing VOC sources at different sites to help policymakers develop targeted measures for pollution mitigation in specific areas.
基金supported by the Ministry of Science and Technology of China(Nos.2021YFC3200904 and 2022YFC3203705)the National Natural Science Foundation of China(Nos.52270012 and 52070184).
文摘Phthalate esters(PAEs),recognized as endocrine disruptors,are released into the environment during usage,thereby exerting adverse ecological effects.This study investigates the occurrence,sources,and risk assessment of PAEs in surface water obtained from 36 sampling points within the Yellow River and Yangtze River basins.The total concentration of PAEs in the Yellow River spans from124.5 to 836.5 ng/L,with Dimethyl phthalate(DMP)(75.4±102.7 ng/L)and Diisobutyl phthalate(DiBP)(263.4±103.1 ng/L)emerging as the predominant types.Concentrations exhibit a pattern of upstream(512.9±202.1 ng/L)>midstream(344.5±135.3 ng/L)>downstream(177.8±46.7 ng/L).In the Yangtze River,the total concentration ranges from 81.9 to 441.6 ng/L,with DMP(46.1±23.4 ng/L),Diethyl phthalate(DEP)(93.3±45.2 ng/L),and DiBP(174.2±67.6 ng/L)as the primary components.Concentration levels follow a midstream(324.8±107.3 ng/L)>upstream(200.8±51.8 ng/L)>downstream(165.8±71.6 ng/L)pattern.Attention should be directed towards the moderate ecological risks of DiBP in the upstream of HH,and both the upstream and midstream of CJ need consideration for the moderate ecological risks associated with Di-n-octyl phthalate(DNOP).Conversely,in other regions,the associated risk with PAEs is either low or negligible.The main source of PAEs in Yellow River is attributed to the release of construction land,while in the Yangtze River Basin,it stems from the accumulation of pollutants in lakes and forests discharged into the river.These findings are instrumental for pinpointing sources of PAEs pollution and formulating control strategies in the Yellow and Yangtze Rivers,providing valuable insights for global PAEs research in other major rivers.
基金supported by the Special Funds for Chengde national innovation demonstration area construction of science and technology special project sustainable development agenda(No.202104F001)the National Basic Research Program of China(No.2019YFC0408602).
文摘Nitrogen removal from domestic sewage is usually limited by insufficient carbon source and electron donor.An economical solid carbon source was developed by composition of polyvinyl alcohol,sodium alginate,and corncob,which was utilized as external carbon source in the anaerobic anoxic oxic(AAO)-biofilter for the treatment of low carbon-to-nitrogen ratio domestic sewage,and the nitrogen removal was remarkably improved from 63.2%to 96.5%.Furthermore,the effluent chemical oxygen demand maintained at 35 mg/L or even lower,and the total nitrogenwas reduced to less than 2mg/L.Metagenomic analysis demonstrated that the microbial communities responsible for potential denitrification and organic matter degradation in both AAO and the biofilter reactors were mainly composed of Proteobacteria and Bacteroides,respectively.The solid carbon source addition resulted in relatively high abundance of functional enzymes responsible for NO_(3)^(−)-N to NO_(2)^(−)-N con-version in both AAO and the biofilter reactors,thus enabled stable reaction.The carbon source addition during glycolysis primarily led to the increase of genes associated with the metabolic conversion of fructose 1.6P2 to glycerol-3P The reactor maintained high abun-dance of genes related to the tricarboxylic acid cycle,and then guaranteed efficient carbon metabolism.The results indicate that the composite carbon source is feasible for denitri-fication enhancement of AAO-biofilter,which contribute to the theoretical foundation for practical nitrogen removal application.
基金supported by the National Key Research and Development Program of China(No.2022YFC3204000).
文摘Lake Baiyangdian is one of China’s largest macrophyte-derived lakes,facing severe challenges related to water quality maintenance and eutrophication prevention.Dissolved organic matter(DOM)was a huge carbon pool and its abundance,property,and transformation played important roles in the biogeochemical cycle and energy flow in lake ecosystems.In this study,Lake Baiyangdian was divided into four distinct areas:Unartificial Area(UA),Village Area(VA),Tourism Area(TA),and Breeding Area(BA).We examined the diversity of DOM properties and sources across these functional areas.Our findings reveal that DOM in this lake is predominantly composed of protein-like substances,as determined by excitation-emission matrix and parallel factor analysis(EEM-PARAFAC).Notably,the exogenous tyrosine-like component C1 showed a stronger presence in VA and BA compared to UA and TA.Ultrahigh-resolution mass spectrometry(FT-ICR MS)unveiled a similar DOM molecular composition pattern across different functional areas due to the high relative abundances of lignan compounds,suggesting that macrophytes significantly influence the material structure of DOM.DOM properties exhibited specific associations with water quality indicators in various functional areas,as indicated by the Mantel test.The connections between DOM properties and NO_(3)-N andNH3-Nwere more pronounced in VA and BA than in UA and TA.Our results underscore the viability of using DOM as an indicator for more precise and scientific water quality management.
基金supported by the Science and Technology Program of Fujian Province,China(No.2023R1014002)the National Natural Science Foundation of China(No.41471390).
文摘The toxicity of PM_(2.5)does not necessarily change synchronously with its mass concentration.In this study,the chemical composition(carbonaceous species,water-soluble ions,and metals)and oxidative potential(dithiothreitol assay,DTT)of PM_(2.5)were investigated in 2017/2018 and 2022 in Xiamen,China.The decrease rate of volume-normalized DTT(DTTv)(38%)was lower than that of PM_(2.5)(55%)between the two sampling periods.However,the mass-normalized DTT(DTTm)increased by 44%.Clear seasonal patterns with higher levels in winter were found for PM_(2.5),most chemical constituents and DTTv but not for DTTm.The large decrease in DTT activity(84%−92%)after the addition of EDTA suggested that watersoluble metals were the main contributors to DTT in Xiamen.The increased gap between the reconstructed and measured DTTv and the stronger correlations between the reconstructed/measured DTT ratio and carbonaceous species in 2022were observed.The decrease rates of the hazard index(32.5%)and lifetime cancer risk(9.1%)differed from those of PM_(2.5)and DTTv due to their different main contributors.The PMF-MLR model showed that the contributions(nmol/(min·m^(3)))of vehicle emission,coal+biomass burning,ship emission and secondary aerosol to DTTv in 2022 decreased by 63.0%,65.2%,66.5%,and 22.2%,respectively,compared to those in 2017/2018,which was consistent with the emission reduction of vehicle exhaust and coal consumption,the adoption of low-sulfur fuel oil used on board ships and the reduced production of WSOC.However,the contributions of dust+sea salt and industrial emission increased.
基金supported by the National Natural Science Foundation of China(Nos.42030707,72394404)the International Partnership Program of the Chinese Academy of Sciences(No.121311KYSB20190029)the Fundamental Research Fund for the Central Universities(Nos.20720210083,20720210082).
文摘Halocarbons play a vital role in ozone depletion and global warming,and are regulated by the Montreal Protocol(MP)and its amendments.China has been identified as an important contributor to the halocarbon emissions,but the regional sources of halocarbons in China are not yet well comprehended.To investigate the characteristics,emissions,and source profiles,this study conducted a field campaign in Xiamen,a coastal city in southeastern China.Higher enhancements were found in the unregulated halocarbons(CH_(3)Cl,CH_(2)Cl_(2),CHCl_(3))than in the MP eliminated species(CCl_(4),CH_(3)Br)and theMP controlled species(HCFCs,HFCs).Many of the measured halocarbons varied seasonally and regionally,depending on the anthropogenic sources and atmospheric transport.Backward trajectory analysis showed that the air masses from inland were polluted over Shandong,Hebei,and northern Fujian in the cold season,while the air masses fromthe sea in the warm season were clean.Different air masses in two seasons were associated with the halocarbon patterns in the study area.Industrial activities,especially solvent usage,were the primary sources of halocarbons.The emission hot spots in Fujian Province were concentrated in Sanming,Fuzhou,and Xiamen,and the unregulated halocarbons made the largest contribution.This study provides an insight for a deep understanding of the characteristics and potential sources of halocarbons,and for strengthened management of halocarbons in China.