Heavy oil,constituting a significant portion of global oil reserves,presents unique challenges in extraction and processing due to its high viscosity,largely influenced by asphaltenes and their heteroatom content.This...Heavy oil,constituting a significant portion of global oil reserves,presents unique challenges in extraction and processing due to its high viscosity,largely influenced by asphaltenes and their heteroatom content.This study employs molecular dynamics(MD)simulations to investigate the selfaggregation and adsorption mechanisms of heteroatom/non-heteroatom asphaltenes,comparing linear and island structural configurations.Key findings reveal that linear heteroatom asphaltenes form dense,multi-layered aggregates,while island heteroatom asphaltenes exhibit stronger aggregation energy.On solid surfaces,linear asphaltenes display multi-layered adsorption,whereas island asphaltenes adopt a dispersed structure with higher adsorption energy,making them more resistant to removal.Compared to non-heteroatom asphaltenes,heteroatom asphaltenes significantly enhance the aggregation energy of the asphaltene itself and the interaction energy with light oil components,reducing the diffusion capacity of oil droplets and increasing viscosity.Although the viscosity of island heteroatom asphaltene oil drops is the largest,the role of heteroatom in linear asphaltene is more obvious,and linear heteroatom asphaltene and non-heteroatom show great differences in properties.Additionally,heteroatom-containing oil droplets exhibit stronger interactions with solid surfaces,driven by the influence of heteroatom asphaltenes on lighter oil components.These insights provide a deeper understanding of heavy oil viscosity mechanisms,offering a foundation for developing targeted viscosity-reduction strategies and optimizing heavy oil recovery and processing techniques.展开更多
An effective parameter in the miscible-CO_2 enhanced oil recovery procedure is the minimum miscibility pressure(MMP)defined as the lowest pressure that the oil in place and the injected gas into reservoir achieve misc...An effective parameter in the miscible-CO_2 enhanced oil recovery procedure is the minimum miscibility pressure(MMP)defined as the lowest pressure that the oil in place and the injected gas into reservoir achieve miscibility at a given temperature. Flue gases released from power plants can provide an available source of CO_2,which would otherwise be emitted to the atmosphere, for injection into a reservoir. However, the costs related to gas extraction from flue gases is potentially high. Hence, greater understanding the role of impurities in miscibility characteristics between CO_2 and reservoir fluids helps to establish which impurities are tolerable and which are not. In this study, we simulate the effects of the impurities nitrogen(N_2), methane(C_1), ethane(C_2) and propane(C_3) on CO_2 MMP. The simulation results reveal that,as an impurity, nitrogen increases CO_2–oil MMP more so than methane. On the other hand, increasing the propane(C_3)content can lead to a significant decrease in CO_2 MMP, whereas varying the concentrations of ethane(C_2) does not have a significant effect on the minimum miscibility pressure of reservoir crude oil and CO_2 gas. The novel relationships established are particularly valuable in circumstances where MMP experimental data are not available.展开更多
The diffusion coefficient of natural gas in foamy oil is one of the key parameters to evaluate the feasibility of gas injection for enhanced oil recovery in foamy oil reservoirs. In this paper, a PVT cell was used to ...The diffusion coefficient of natural gas in foamy oil is one of the key parameters to evaluate the feasibility of gas injection for enhanced oil recovery in foamy oil reservoirs. In this paper, a PVT cell was used to measure diffusion coefficients of natural gas in Venezuela foamy oil at high pressures, and a new method for deter- mining the diffusion coefficient in the foamy oil was de- veloped on the basis of experimental data. The effects of pressure and the types of the liquid phase on the diffusion coefficient of the natural gas were discussed. The results indicate that the diffusion coefficients of natural gas in foamy oil, saturated oil, and dead oil increase linearly with increasing pressure. The diffusion coefficient of natural gas in the foamy oil at 20 MPa was 2.93 times larger than that at 8.65 MPa. The diffusion coefficient of the natural gas in dead oil was 3.02 and 4.02 times than that of the natural gas in saturated oil and foamy oil when the pressure was 20 MPa. However, the gas content of foamy oil was 16.9 times higher than that of dead oil when the dissolution time and pressure were 20 MPa and 35.22 h, respectively.展开更多
An accurate and reliable estimation of minimum miscibility pressure(MMP) of CO2-oil system is a critical task for the design and implementation of CO2 miscible displacement process.In this study,an improved CO2-oil MM...An accurate and reliable estimation of minimum miscibility pressure(MMP) of CO2-oil system is a critical task for the design and implementation of CO2 miscible displacement process.In this study,an improved CO2-oil MMP correlation was developed to predict the MMP values for both pure and impure CO2 injection cases based on ten influential factors,i.e.reservoir temperature(TR),molecular weight of C7+oil components(MWC7+),mole fraction of volatile oil components(xvol),mole fraction of C2-C4 oil components(xC2-C4),mole fraction of C5-C6 oil components(xCs-5-C6),and the gas stream mole fractions of CO2(yCO2),H2S(yH2S),C1(yC1),hydrocarbons(yHC)and N2(yN2).The accuracy of the improved correlation was evaluated against experimental data reported in literature concurrently with those estimated by several renowned correlations.It was found that the improved correlation provided higher prediction accuracy and consistency with literature experimental data than other literature correlations.In addition,the predictive capability of the improved correlation was further validated by predicting an experimentally measured CO2-Oil MMP data,and it showed an accurate result with the absolute deviation of 4.15%.Besides,the differential analysis of the improved correlation was analyzed to estimate the impact of parameters uncertainty in the original MMP data on the calculated results.Also,sensitivity analysis was performed to analyze the influence of each parameter on MMP qualitatively and quantitatively.The results revealed that the increase of xC2-C4,xC5-C6 and yH2 S lead to the decrease of MMP,while the increase of TR,MWC7+,xvol,yCO2,YC1,yHC and yN2 tend to increase the MMP.Overall,the relevance of each parameter with MMP follows the order of TR> xC5-C6> MWC7+> xvol> yH2 S> yHC> yCO2>yC1>yN2>xC2-C4.展开更多
Given that a large amount of crude oil remains on the surface of rocks and is difficult to produce after conventional waterflooding,a new superwetting oil displacement system incorporating the synergy between a hydrox...Given that a large amount of crude oil remains on the surface of rocks and is difficult to produce after conventional waterflooding,a new superwetting oil displacement system incorporating the synergy between a hydroxyl anion compound(1OH-1C)and an extended surfactant(S-C_(13)PO_(13)S)was designed.The interfacial tension,contact angle and emulsification performance of the system were measured.The oil displacement effects and improved oil recovery(IOR)mechanisms of 1OH-1C,S-C_(13)PO_(13)S and their compound system were investigated by microscopic visualization oil displacement experiments and core displacement experiments.The results show that 1OH-1C creates a superwetting interface and electrostatic separation pressure on the solid surface,which destroys the strong interactions between crude oil and quartz to peel off the oil film.S-C_(13)PO_(13)S has low interfacial tension,which can promote the flow of remaining oil and emulsify it into oil-in-water emulsions.The compound system of 1OH-1C and S-C_(13)PO_(13)S has both superwettability and low IFT,which can effectively improve oil recovery through a synergistic effect.The oil displacement experiment of low-permeability natural core shows that the compound solution can increase the oil recovery by 16.4 percentage points after waterflooding.This new high-efficiency system is promising for greatly improving oil recovery in low-permeability reservoirs.展开更多
In deep oil reservoir development,enhanced oil recovery(EOR)techniques encounter significant challenges under high-temperature and high-salinity conditions.Traditional profile-control agents often fail to maintain sta...In deep oil reservoir development,enhanced oil recovery(EOR)techniques encounter significant challenges under high-temperature and high-salinity conditions.Traditional profile-control agents often fail to maintain stable blocking under extreme conditions and exhibit poor resistance to high temperature and high salinity.This study develops a functionalized nanographite system(the MEGO system)with superior high-temperature dispersibility and thermosalinity-responsive capability through polyether amine(PEA)grafting and noncovalent interactions with disodium naphthalene sulfonate(DNS)molecules.The grafted PEA and DNS provide steric hindrance and electrostatic repulsion,enhancing thermal and salinity resistance.After ten days of aggregation,the MEGO system forms stable particle aggregates(55.51-61.80 lm)that are suitable for deep reservoir migration and profile control.Both experiments and simulations reveal that particle size variations are synergistically controlled by temperature and salt ions(Na^(+),Ca^(2+),and Mg^(2+)).Compared with monovalent ions,divalent ions promote nanographite aggregation more strongly through double-layer compression and bridging effects.In core displacement experiments,the MEGO system demonstrated superior performance in reservoirs with permeabilities ranging from 21.6 to 103 mD.The aggregates formed within the pore throats significantly enhanced flow resistance,expanded the sweep volume,and increased the overall oil recovery to 56.01%.This research indicates that the MEGO system holds excellent potential for EOR in deep oil reservoirs.展开更多
Semen Platycladi(SP)is the dried ripe kernel of Platycladus orientalis(L.)Franco,has been used for insomnia treatment for bimillennium in China,which mechanism is not fully understood.The aim of this study was to expl...Semen Platycladi(SP)is the dried ripe kernel of Platycladus orientalis(L.)Franco,has been used for insomnia treatment for bimillennium in China,which mechanism is not fully understood.The aim of this study was to explore the sleep-promoting mechanism of essential oil and saponins from SP.As 2 main bioactive constituents of SP,essential oil(SPO)and saponin(SPS)were extracted,then was given to p-chlorophenylalanine(PCPA)-induced insomnia mice by intragastric administration.Then,the behavioral tests,neurotransmitter receptors,cytokines and hormone in brain were investigated.Behavior test showed that SPO and SPS exhibited sleep-enhancing effect through suppressing depression,shortening the onset time while prolonging the sleep duration in insomnia mice.Also SPO and SPS up-regulated serotonin(5-HT)receptors in serotonergic neurons,increased glutamic acid decarboxylase(GAD)content in GABAergic neurons,and stimulatedγ-aminobutyric acid(GABA)receptors expression to enhance the synaptic inhibition.Moreover,they could down-regulated the cytokines and rebalanced hormone expressions.Although both SPO and SPS exerted sleep-promoting,they had different focusing targets.SPS had stronger effect on neurotransmitter receptors regulation while SPO had better hormone rebalanced ability.Briefly,SPO and SPS exerted sedative-hypnotic effect in insomnia mice through modulating multi-targets in serotonergic and GABAergic system.展开更多
Data center cooling systems are substantial energy consumers,and managing the heat generated by electronic devices is becoming more complex as chip power levels continue to rise.The single-phase immersion cooling(SPIC...Data center cooling systems are substantial energy consumers,and managing the heat generated by electronic devices is becoming more complex as chip power levels continue to rise.The single-phase immersion cooling(SPIC)server with oil coolant is numerically investigated using the validated Re-Normalization Group(RNG)k-εmodel.For the investigated scenarios where coolant velocity at the tank inlet is 0.004 m/s and the total power is 740 W,the heat transfer between the heat sinks and the coolant is dominated by natural convection,although forced convection mediates the overall heat transfer inside the tank.The maximum velocity of coolant through the heat sink is 0.035 m/s and the average heat transfer coefficient is up to 75.8 W/(m2·K).The geometry of the heat sink is important for the cooling performance.Increasing both the fin thickness and number enhances the natural convection effect of the heat sink,but also increases the flow resistance.The heat sink with a fin thickness of 3 mm performs the best,reducing the average graphics processing unit(GPU)temperature from 71.3℃ to 68.6℃.A heat sink with an optimal fin number of 16 reduces the average GPU temperature to 67.7℃.As for the effect of fin height,increasing it from 15 to 30 mm results in increases in the heat transfer area and flow rate by about 72%and 32%,respectively,which reduces the average GPU temperature to 65.2℃.Therefore,the importance of fin parameters ranks in the following order:fin height,number,and thickness.This study highlights the potential application of oil coolants in SPIC systems and offers theoretical guidance for the efficient design of natural convection cooling solutions.展开更多
BACKGROUND Silicone oil(SiO)migration to the central nervous system(CNS)is a rare complication of SiO tamponade after vitreo-retinal surgeries,it could masquerade hemorrhage on computed tomography neuro-imaging.Only l...BACKGROUND Silicone oil(SiO)migration to the central nervous system(CNS)is a rare complication of SiO tamponade after vitreo-retinal surgeries,it could masquerade hemorrhage on computed tomography neuro-imaging.Only limited cases were reported in the literature,certain intra-operative and post-operative ocular risk factors might contribute to the different extend of SiO migration in the CNS.AIM To study the risk factors for cerebral ventricular migration(CVM)on top of visual pathway migration(VPM).METHODS Conforming to the preferred reporting items for systematic reviews and metaanalyses guidelines,literature searches on PubMed,MEDLINE,EMBASE were performed on June 1,2024.Publications on SiO migration to CNS were included in this review.Non-English articles,and studies without neuro-imaging of the CNS were excluded.Patient demographics,SiO filled eyes'ocular characteristics and vitrectomy surgical details were extracted from included studies in this review.VPM and CVM were assigned as group 1 and group 2 respectively.Fisher's exact tests,Mann-Whitney U tests and binary logistic regression were performed.RESULTS Total 68 articles were obtained after searches,48 publications were included for analysis.Total 54 SiO filled eyes were analyzed.Post-vitrectomy intraocular pressure(IOP)was found to be significant in both Mann-Whitney U test(P=0.047)and binary logistic regression(P=0.012).Diabetic was found to be significant in binary logistic regression(P=0.037),but at borderline risk for CVM in Fisher's exact test(P=0.05).Other significant factors include longer SiO tamponade time(P=0.002 in Fisher's exact test)and visual acuity(P=0.011 in binary logistic regression).Optic nerve atrophy or disc cupping(P=1.00,P=0.790)and congenital optic disc anomalies(P=0.424)were all with P>0.05.CONCLUSION SiO migration to CNS is rare with limited case reports only.Our analysis of the existing literature demonstrated higher post-vitrectomy IOP was associated with CVM,followed by patients’diabetic status,longer SiO tamponade time and visual acuity.Optic nerve atrophy,disc cupping and congenital optic disc anomalies were not associated.Modifiable risk factors of post-vitrectomy IOP and SiO tamponade time should be closely monitored by vitreoretinal surgeons.Lower IOP target post-vitrectomy and earlier SiO removal surgeries should be arranged.展开更多
This study aims to develop an accurate calculation model of transmission torque and load-bearing capacity for hydro-viscous clutches(HVC)used in high-power vehicles,which is important to investigate the step-less spee...This study aims to develop an accurate calculation model of transmission torque and load-bearing capacity for hydro-viscous clutches(HVC)used in high-power vehicles,which is important to investigate the step-less speed regulation characteristics in a fan drive system.However,most of the existing models ignore the distribution differences of groove area along the radial direction,which may lead to significant deviations in calculating the mechanical property of friction pairs related to operating conditions and the engagement process.To fill this gap,a new calculation model for bearing capacity and frictional torque of friction pairs with different oil grooves is proposed,in which the traditional fixed contact area ratio coefficient for oil groove measurement is replaced by a more precise discrete micro-ring area ratio(DMAR)integration method.Then,a 32-degree-of-freedoms dynamic model of HVC at a fan drive system is established for the prediction of dynamic responses during speed regulation.Results show that friction pairs with different oil grooves have a direct influence on frictional torque and bearing capacity through the change of DMAR along the radial direction.The friction pairs with different groove structures have oscillation phenomena at the engagement steady-state boundary.Furthermore,a step-less speed regulation experimental setup is established to verify the correctness of the proposed model.It is demonstrated that the axial engagement force and the speed regulation curve predicted by the proposed method are in good agreement with the experimental data.The results could effectively predict the engagement dynamic characteristics.The numerical relationship among the structure parameters,the mechanical properties of friction pairs,and the speed regulation characteristics of the system are established through the proposed model,which lays a theoretical foundation for the structure design of friction plates and optimization of step-less speed regulation performance.展开更多
The importance of organic geochemistry and basin modeling is widely recognized and used to understand the source rock potential and hydrocarbon generation history of the Mangahewa Formation,and thereby given the found...The importance of organic geochemistry and basin modeling is widely recognized and used to understand the source rock potential and hydrocarbon generation history of the Mangahewa Formation,and thereby given the foundational role in the petroleum exploration.This study utilized the total organic carbon(TOC)content and hydrogen index(HI)to investigate the dominant kerogen type and hydrogen richness for the significance of petroleum generative potential.The Mangahewa coals and carbonaceous shales exhibit an excellent source rocks,with high total organic content(TOC)of more than 22%.The coals and carbonaceous shales were also characterised by Type Ⅱ‒Ⅲ kerogen with Type Ⅲ kerogen,promising oiland gas-prones.The Mangahewa Formation reached the main oil generation,with vitrinite reflectances between 0.53%and 1.01%.Vitrinite reflectance was also used in developing themal models and reveal the transformation(TR)of 10‒50%kerogen to oil during the Late Miocene.The models also showed that the Mangahewa source rock has a significant oil generation and little expulsion competency,with a TR of up to 54%.These findings support the substantial oil-generating potential in the Taranaki Basin's southern graben and can be used as a guide when developing strategies for an oil exploration program.展开更多
An enhanced geothermal system(EGS)represents a promising approach to sustainable energy generation by harnessing subsurface heat from deep geological formations with low natural permeability.Sedimentary basins-such as...An enhanced geothermal system(EGS)represents a promising approach to sustainable energy generation by harnessing subsurface heat from deep geological formations with low natural permeability.Sedimentary basins-such as the Williston Basin in North Dakota-are considered viable candidates for EGS development due to their broad geographic extent and moderate geothermal potential.Notably,depleted or non-productive oil wells within these basins offer a cost-effective opportunity for EGS implementation as they can be repurposed,thereby significantly reducing the need for new drilling.This study evaluates the feasibility of EGS deployment in McKenzie County,North Dakota.Core samples from five partially abandoned or dry oil wells associated with production from the Red River Formation were obtained from the Core Library of the North Dakota Geological Survey.These samples,spanning the entire thickness of the formation,were sectioned and polished at defined depth intervals for detailed analyses and precise measurements of key reservoir properties critical to geothermal assessment.Several parameters were analyzed to assess the geothermal viability of these wells,including formation temperature,temperature gradient,porosity,thermal conductivity,energy storage potential,and estimated power output via the Organic Rankine Cycle(ORC).The results demonstrate significant depth-dependent variations in thermal and petrophysical properties.Specifically,the depth range of 4000-4500 m is identified as a promising target for EGS stimulation since it is characterized by elevated temperatures,high thermal conductivity,favorable temperature gradients,and sufficient porosity-all essential properties for enhancing permeability through hydraulic fracturing.Furthermore,the calculated energy content and potential ORC power output at these depths indicate that effective geothermal energy extraction is technically feasible.This suggests a compelling opportunity to repurpose existing fossil energy infrastructure-such as abandoned oil wells-for renewable geothermal applications.Overall,the findings of this study underscore the potential of sedimentary formations for EGS development and contribute to advancing low-carbon,diversified energy solutions in alignment with national decarbonization goals.展开更多
By investigating the performance characteristics of the bio-based surfactant 8901A,a composite decontamination and injection system was developed using 8901A as the primary agent,tailored for application in low-permea...By investigating the performance characteristics of the bio-based surfactant 8901A,a composite decontamination and injection system was developed using 8901A as the primary agent,tailored for application in low-permeability and heavy oil reservoirs under varying temperature conditions.The results demonstrate that this system effectively reduces oil–water interfacial tension,achieving an ultra-low interfacial tension state.The static oil washing efficiency of oil sands exceeds 85%,the average pressure reduction rate reaches 21.55%,and the oil recovery rate improves by 13.54%.These enhancements significantly increase the system’s ability to dissolve oilbased blockages,thereby lowering water injection pressure caused by organic fouling,increasing the injection volume of injection wells,and ultimately improving oil recovery efficiency.展开更多
The hybrid CO_(2) thermal technique has achieved considerable success globally in extracting residual heavy oil from reserves following a long-term steam stimulation process.Using microscopic visualization experiments...The hybrid CO_(2) thermal technique has achieved considerable success globally in extracting residual heavy oil from reserves following a long-term steam stimulation process.Using microscopic visualization experiments and molecular dynamics(MD)simulations,this study investigates the microscopic enhanced oil recovery(EOR)mechanisms underlying residual oil removal using hybrid CO_(2) thermal systems.Based on the experimental models for the occurrence of heavy oil,this study evaluates the performance of hybrid CO_(2) thermal systems under various conditions using MD simulations.The results demonstrate that introducing CO_(2) molecules into heavy oil can effectively penetrate and decompose dense aggregates that are originally formed on hydrophobic surfaces.A stable miscible hybrid CO_(2) thermal system,with a high effective distribution ratio of CO_(2),proficiently reduces the interaction energies between heavy oil and rock surfaces,as well as within heavy oil.A visualization analysis of the interactions reveals that strong van der Waals(vdW)attractions occur between CO_(2) and heavy oil molecules,effectively promoting the decomposition and swelling of heavy oil.This unlocks the residual oil on the hydrophobic surfaces.Considering the impacts of temperature and CO_(2) concentration,an optimal gas-to-steam injection ratio(here,the CO_(2):steam ratio)ranging between 1:6 and 1:9 is recommended.This study examines the microscopic mechanisms underlying the hybrid CO_(2) thermal technique at a molecular scale,providing a significant theoretical guide for its expanded application in EOR.展开更多
Path planning for recovery is studied on the engineering background of double unmanned surface vehicles(USVs)towing oil booms for oil spill recovery.Given the influence of obstacles on the sea,the improved artificial ...Path planning for recovery is studied on the engineering background of double unmanned surface vehicles(USVs)towing oil booms for oil spill recovery.Given the influence of obstacles on the sea,the improved artificial potential field(APF)method is used for path planning.For addressing the two problems of unreachable target and local minimum in the APF,three improved algorithms are proposed by combining the motion performance constraints of the double USV system.These algorithms are then combined as the final APF-123 algorithm for oil spill recovery.Multiple sets of simulation tests are designed according to the flaws of the APF and the process of oil spill recovery.Results show that the proposed algorithms can ensure the system’s safety in tracking oil spills in a complex environment,and the speed is increased by more than 40%compared with the APF method.展开更多
Environmental pollution,energy consumption,and greenhouse gas emissions are critical global issues.To address these challenges,optimizing skimmer coatings is a major step in commercializing cleaning oil stains.This re...Environmental pollution,energy consumption,and greenhouse gas emissions are critical global issues.To address these challenges,optimizing skimmer coatings is a major step in commercializing cleaning oil stains.This research presents a novel approach to creating and refining oil absorbent coatings,introducing a unique oil spill removal skimmer enhanced with a super hydrophobic polyaniline(PANI)nanofiber coating.The goal of this study was to improve oil absorption performance,increase the contact angle,lower drag,reduce energy consumption,achieve high desirability,and lower production costs.PANI treated with hydrochloric acid was a key focus as it resulted in higher porosity and smaller pore diameters,providing a larger surface area,which are crucial factors for boosting oil absorption and minimizing drag.To optimize optimal nanofiber morphology,PANI synthesized with methanesulfonic acid was first dedoped and then redoped with hydrochloric acid.After optimization,the most effective skimmer coating was achieved using a formulation consisting of 0.1%PANI,an ammonium persulfate/aniline ratio of 0.4,and an acid/aniline ratio of 9.689,along with redoped PANI nanofibers.The optimized skimmer exhibited a remarkable contact angle of 177.477°.The coating achieved drag reduction of 32%,oil absorption of 88.725%,a cost of$1.710,and a desirability rating of 78.5%.In this study,an optimized skimmer coat containing super hydrophobic coat-PANI nanofibers was fabricated.By enhancing contact angle and reducing drag,these coatings increased the skimmer performance by improving oil absorption and reducing fuel consumption.展开更多
Background:Diabetic foot,a severe complication of diabetes,is characterized by chronic refractory wounds.Sanhuang Oil,a topical herbal formula,demonstrates significant therapeutic effects including antibacterial,anti-...Background:Diabetic foot,a severe complication of diabetes,is characterized by chronic refractory wounds.Sanhuang Oil,a topical herbal formula,demonstrates significant therapeutic effects including antibacterial,anti-inflammatory,and immunomodulatory activities.However,its active constituents and mechanisms of action against diabetic foot remain to be elucidated.Methods:In this study,the chemical constituents of Sanhuang Oil were identified using UPLC-QE-Orbitrap-MS.Subsequently,the mechanism by which Sanhuang Oil promotes diabetic foot ulcer healing was predicted by integrating network pharmacology and molecular docking.Additionally,diabetic mouse model was established in ICR mice using a combination of a high-fat diet(HFD)and streptozotocin(STZ)chemical induction.A full-thickness skin defect was created on the dorsum of the mice.Wound healing and the healing rate were observed following Sanhuang Oil intervention.The mechanism underlying Sanhuang Oil’s promotion of diabetic ulcer healing was further investigated using transcriptomics and histopathological examination(H&E staining).Results:A total of 97 active ingredients were identified from Sanhuang Oil.Network pharmacology analysis predicted 543 common targets,and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis identified 203 relevant pathways.Molecular docking further confirmed high binding affinity(binding energy≤−5.0 kcal/mol)between specific active components in Sanhuang Oil(e.g.,coptisine,phellodendrine,baicalein)and key targets associated with diabetic foot ulcers(e.g.,EGFR,AKT1,STAT3).In vivo experimental results demonstrated that the wound healing rate was significantly higher in Sanhuang Oil-treated groups compared to the model group(P<0.001).HE staining revealed that the high-dose Sanhuang Oil group exhibited more pronounced epithelial tissue coverage over the wound,reduced inflammatory cell infiltration,and increased collagen deposition and fibroblast proliferation.transcriptomic analysis identified Pdk4,Ttn,Csrp3,Actn2,Myoz2,Tnnc2,Myod1,Myog,Myot,and Myf6 as key regulatory proteins involved in promoting wound healing.Conclusion:Sanhuang Oil promotes wound healing in diabetic ulcer mice,potentially by mitigating inflammation and regulating key targets such as Pdk4 to enhance fibroblast function.These findings provide novel insights into the multi-target,multi-pathway mechanism of Sanhuang Oil for treating diabetic foot ulcers.展开更多
Background:This study focused on developing and optimizing a self-microemulsifying drug delivery system(SMEDDS)to improve Lafutidine’s solubility and bioavailability,thereby enhancing its effectiveness in treating ga...Background:This study focused on developing and optimizing a self-microemulsifying drug delivery system(SMEDDS)to improve Lafutidine’s solubility and bioavailability,thereby enhancing its effectiveness in treating gastric ulcers.Traditional formulations are less effective due to their limited water solubility and bioavailability.Methods:The study used solubility tests,pseudo-ternary phase diagrams,and central composite design(CCD)to optimize.The formulation was optimized by varying the oil concentration(10–40%)and surfactant/cosurfactant ratio(0.33–3.00),and then tested for droplet size,drug content,emulsification,phase stability,and in vitro dissolution.Results:The study found that the optimized formulation contained 14%Capmul PG 8NF oil,62%Labrasol surfactant,and 24%Tween 80 cosurfactant.This combination generated an average droplet size of 111.02 nm and improved drug release properties.Furthermore,the formulation was stable without phase separation,with a drug content of 88.2–99.8%.Conclusion:SMEDDS significantly improves lafutidine delivery by increasing solubility and absorption,thereby overcoming oral administration challenges.The system quickly formed small droplets in water and released the drug in 15 min.Enhancing lafutidine’s bioavailability may improve its efficacy in treating gastric ulcers,resulting in better patient outcomes and potentially lower dosing frequency.展开更多
The relative permeability curve has been measured with simulation oil (refined oil) and gas (nitrogen or air) at room temperature and a lowpressure, both of which are very important parameters for depicting the flow ...The relative permeability curve has been measured with simulation oil (refined oil) and gas (nitrogen or air) at room temperature and a lowpressure, both of which are very important parameters for depicting the flow of fluid through porous media in a hydrocarbon reservoir. This basic measurement is often applied in exploitation evaluation, but the underground conditions with high temperature and pressure, and the phase equilibrium of oil and gas, are not taken into consideration when the relative permeability curve is tested. There is an important theoretical and practical sense in testing the diphase relative permeability curve of the equilibrium of oil and gas under the conditions of high temperature and pressure. The test method for the relative permeability curve is proposed in this paper. The relative permeability of the equilibrium of oil and gas and the standard one are tested in two fluids, and the differences between these two methods are stated. The research results can be applied to the simulation and prediction of CVD in long cores and then the phenomenon can better explain that the recovery of condensate gas rich in condensate oil is higher than that of CVD test in PVT. Meanwhile, the research shows that the relative permeability curve of equilibrium oil and gas is sensitive to the rate of exploitation, and the viewpoint proves that an improved gas recovery rate can properly increase the recovery of condensate oil.展开更多
Mid-high maturity shale oil is the most realistic field for the scale breakthrough of terrestrial shale oil production in China.Generally,three deficiencies hinder shale oil development in China:heavy oil density,smal...Mid-high maturity shale oil is the most realistic field for the scale breakthrough of terrestrial shale oil production in China.Generally,three deficiencies hinder shale oil development in China:heavy oil density,small sweet spot areas,and poor distribution continuity.Thus,identifying the“sweet spots”in shale oil reservoirs is critical for the efficient exploration and development of terrestrial shale oil.This study targets the siltstone type(Class-Ⅱshale oil)and pure shale type(Class-Ⅲshale oil)of the Chang 7 Member in the Ordos Basin,and identifies three stratigraphic units,namely the hydrocarbon accumulation unit,hydrocarbon generation unit,and hydrocarbon retention unit,which together constitute the in-source“shale oil system”.The hydrocarbon accumulation unit is mainly siltstone,where the hydrocarbons are migrated from shales.It has favorable porethroat network connectivity with a pore connectivity ratio of 32–57%,being the siltstone-type sweet spots.The hydrocarbon generation unit is mainly composed of high-TOC mudstone/shale and is the main contributor to in-source hydrocarbon generation and expulsion.This unit has high three-dimensional connectivity(28–30%),as shown by the pore-throat network model,associated with vertical paths for hydrocarbon expulsion.The hydrocarbon retention unit is mainly composed of low-TOC mudstone/shale retaining self-generated and migrated hydrocarbons.The pore connectivity rate is 17–42%,and the pore-throat network connectivity direction is uneven.Light and low-carbon-number hydrocarbons are preferentially trapped or even sealed in small pores of the retention unit,forming the typical mudstone/shale-type sweet spots.In the process called shale oil intrasource migration,the oil migrates in source rocks causing component fractionation,which allows more shale oil to enrich in the hydrocarbon accumulation and retention units to form sweet spots,compared with the hydrocarbon generation unit.The migration paths include the one from mudstone/shale to siltstone interlayers and that from the high-TOC mudstone/shale intervals to the low-TOC intervals.The in-source accumulation of shale oil shows the differentiated enrichment model featuring“high-TOC mudstone/shale generating hydrocarbons,low-TOC mudstone/shale retaining hydrocarbons,siltstone accumulating hydrocarbons and multiple intra-source migration paths”.In the Ordos Basin,the organic-lean(TOC 1–3%)mudstone/shale intervals appear to be the sweet spots of shale oil,where there are abundant medium-short-chain hydrocarbons retained with high flowability.After fracturing stimulation,their production conditions may be even superior to those of siltstones.This proposed idea changes the previous strategy to look for sweet spots in high-TOC intervals derived from the shale gas industry.展开更多
基金supported financially by the National Natural Science Foundation of China(No.52204069,No.22306171)the Natural Science Foundation of Zhejiang Province(No.LQ24B070005)the Jinhua Natural Science Foundation of China(2023-4-024)。
文摘Heavy oil,constituting a significant portion of global oil reserves,presents unique challenges in extraction and processing due to its high viscosity,largely influenced by asphaltenes and their heteroatom content.This study employs molecular dynamics(MD)simulations to investigate the selfaggregation and adsorption mechanisms of heteroatom/non-heteroatom asphaltenes,comparing linear and island structural configurations.Key findings reveal that linear heteroatom asphaltenes form dense,multi-layered aggregates,while island heteroatom asphaltenes exhibit stronger aggregation energy.On solid surfaces,linear asphaltenes display multi-layered adsorption,whereas island asphaltenes adopt a dispersed structure with higher adsorption energy,making them more resistant to removal.Compared to non-heteroatom asphaltenes,heteroatom asphaltenes significantly enhance the aggregation energy of the asphaltene itself and the interaction energy with light oil components,reducing the diffusion capacity of oil droplets and increasing viscosity.Although the viscosity of island heteroatom asphaltene oil drops is the largest,the role of heteroatom in linear asphaltene is more obvious,and linear heteroatom asphaltene and non-heteroatom show great differences in properties.Additionally,heteroatom-containing oil droplets exhibit stronger interactions with solid surfaces,driven by the influence of heteroatom asphaltenes on lighter oil components.These insights provide a deeper understanding of heavy oil viscosity mechanisms,offering a foundation for developing targeted viscosity-reduction strategies and optimizing heavy oil recovery and processing techniques.
文摘An effective parameter in the miscible-CO_2 enhanced oil recovery procedure is the minimum miscibility pressure(MMP)defined as the lowest pressure that the oil in place and the injected gas into reservoir achieve miscibility at a given temperature. Flue gases released from power plants can provide an available source of CO_2,which would otherwise be emitted to the atmosphere, for injection into a reservoir. However, the costs related to gas extraction from flue gases is potentially high. Hence, greater understanding the role of impurities in miscibility characteristics between CO_2 and reservoir fluids helps to establish which impurities are tolerable and which are not. In this study, we simulate the effects of the impurities nitrogen(N_2), methane(C_1), ethane(C_2) and propane(C_3) on CO_2 MMP. The simulation results reveal that,as an impurity, nitrogen increases CO_2–oil MMP more so than methane. On the other hand, increasing the propane(C_3)content can lead to a significant decrease in CO_2 MMP, whereas varying the concentrations of ethane(C_2) does not have a significant effect on the minimum miscibility pressure of reservoir crude oil and CO_2 gas. The novel relationships established are particularly valuable in circumstances where MMP experimental data are not available.
基金financial support from the Major Subject of National Science and Technology (2011ZX05032-001)the Fundamental Research Funds for the Central Universities(NO.11CX06022A)
文摘The diffusion coefficient of natural gas in foamy oil is one of the key parameters to evaluate the feasibility of gas injection for enhanced oil recovery in foamy oil reservoirs. In this paper, a PVT cell was used to measure diffusion coefficients of natural gas in Venezuela foamy oil at high pressures, and a new method for deter- mining the diffusion coefficient in the foamy oil was de- veloped on the basis of experimental data. The effects of pressure and the types of the liquid phase on the diffusion coefficient of the natural gas were discussed. The results indicate that the diffusion coefficients of natural gas in foamy oil, saturated oil, and dead oil increase linearly with increasing pressure. The diffusion coefficient of natural gas in the foamy oil at 20 MPa was 2.93 times larger than that at 8.65 MPa. The diffusion coefficient of the natural gas in dead oil was 3.02 and 4.02 times than that of the natural gas in saturated oil and foamy oil when the pressure was 20 MPa. However, the gas content of foamy oil was 16.9 times higher than that of dead oil when the dissolution time and pressure were 20 MPa and 35.22 h, respectively.
基金The financial supports from the Scientific research start-up funding of Zhoukou Normal University (ZKNUC2016022)National Natural Science Foundation of China (21536003, 21706057, and 21606078)the Natural Science Foundation of Guangxi Province (2016GXNSFAA380190) are gratefully acknowledged
文摘An accurate and reliable estimation of minimum miscibility pressure(MMP) of CO2-oil system is a critical task for the design and implementation of CO2 miscible displacement process.In this study,an improved CO2-oil MMP correlation was developed to predict the MMP values for both pure and impure CO2 injection cases based on ten influential factors,i.e.reservoir temperature(TR),molecular weight of C7+oil components(MWC7+),mole fraction of volatile oil components(xvol),mole fraction of C2-C4 oil components(xC2-C4),mole fraction of C5-C6 oil components(xCs-5-C6),and the gas stream mole fractions of CO2(yCO2),H2S(yH2S),C1(yC1),hydrocarbons(yHC)and N2(yN2).The accuracy of the improved correlation was evaluated against experimental data reported in literature concurrently with those estimated by several renowned correlations.It was found that the improved correlation provided higher prediction accuracy and consistency with literature experimental data than other literature correlations.In addition,the predictive capability of the improved correlation was further validated by predicting an experimentally measured CO2-Oil MMP data,and it showed an accurate result with the absolute deviation of 4.15%.Besides,the differential analysis of the improved correlation was analyzed to estimate the impact of parameters uncertainty in the original MMP data on the calculated results.Also,sensitivity analysis was performed to analyze the influence of each parameter on MMP qualitatively and quantitatively.The results revealed that the increase of xC2-C4,xC5-C6 and yH2 S lead to the decrease of MMP,while the increase of TR,MWC7+,xvol,yCO2,YC1,yHC and yN2 tend to increase the MMP.Overall,the relevance of each parameter with MMP follows the order of TR> xC5-C6> MWC7+> xvol> yH2 S> yHC> yCO2>yC1>yN2>xC2-C4.
基金Supported by the National Key R&D Program of China(2019YFA0708700,2023YFF0614100)CNPC Major Science and Technology Project(2021ZZ01,2023ZZ04).
文摘Given that a large amount of crude oil remains on the surface of rocks and is difficult to produce after conventional waterflooding,a new superwetting oil displacement system incorporating the synergy between a hydroxyl anion compound(1OH-1C)and an extended surfactant(S-C_(13)PO_(13)S)was designed.The interfacial tension,contact angle and emulsification performance of the system were measured.The oil displacement effects and improved oil recovery(IOR)mechanisms of 1OH-1C,S-C_(13)PO_(13)S and their compound system were investigated by microscopic visualization oil displacement experiments and core displacement experiments.The results show that 1OH-1C creates a superwetting interface and electrostatic separation pressure on the solid surface,which destroys the strong interactions between crude oil and quartz to peel off the oil film.S-C_(13)PO_(13)S has low interfacial tension,which can promote the flow of remaining oil and emulsify it into oil-in-water emulsions.The compound system of 1OH-1C and S-C_(13)PO_(13)S has both superwettability and low IFT,which can effectively improve oil recovery through a synergistic effect.The oil displacement experiment of low-permeability natural core shows that the compound solution can increase the oil recovery by 16.4 percentage points after waterflooding.This new high-efficiency system is promising for greatly improving oil recovery in low-permeability reservoirs.
基金supported by the General Program of the National Natural Science Foundation of China(52074335)the National Key Research and Development Program of China(2022YFE0129900 and 2019YFA0708700)+1 种基金the Fundamental Research Funds for the Central Universities(23CX07003A)the Special Funding Program for the Operational Expenses of National Research Institutions(SKLDOG2024-ZYRC-01).
文摘In deep oil reservoir development,enhanced oil recovery(EOR)techniques encounter significant challenges under high-temperature and high-salinity conditions.Traditional profile-control agents often fail to maintain stable blocking under extreme conditions and exhibit poor resistance to high temperature and high salinity.This study develops a functionalized nanographite system(the MEGO system)with superior high-temperature dispersibility and thermosalinity-responsive capability through polyether amine(PEA)grafting and noncovalent interactions with disodium naphthalene sulfonate(DNS)molecules.The grafted PEA and DNS provide steric hindrance and electrostatic repulsion,enhancing thermal and salinity resistance.After ten days of aggregation,the MEGO system forms stable particle aggregates(55.51-61.80 lm)that are suitable for deep reservoir migration and profile control.Both experiments and simulations reveal that particle size variations are synergistically controlled by temperature and salt ions(Na^(+),Ca^(2+),and Mg^(2+)).Compared with monovalent ions,divalent ions promote nanographite aggregation more strongly through double-layer compression and bridging effects.In core displacement experiments,the MEGO system demonstrated superior performance in reservoirs with permeabilities ranging from 21.6 to 103 mD.The aggregates formed within the pore throats significantly enhanced flow resistance,expanded the sweep volume,and increased the overall oil recovery to 56.01%.This research indicates that the MEGO system holds excellent potential for EOR in deep oil reservoirs.
基金supported by the National Natural Science Foundation of China(31871778,31801468,and 32072201)Foshan Social Field Technology R&D Special Program(2120001008478)+1 种基金Science and Technology Program of Guangzhou,China(202201011762)State Key Laboratory of Dampness Syndrome of Chinese Medicine,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine(SZ2024KF05)。
文摘Semen Platycladi(SP)is the dried ripe kernel of Platycladus orientalis(L.)Franco,has been used for insomnia treatment for bimillennium in China,which mechanism is not fully understood.The aim of this study was to explore the sleep-promoting mechanism of essential oil and saponins from SP.As 2 main bioactive constituents of SP,essential oil(SPO)and saponin(SPS)were extracted,then was given to p-chlorophenylalanine(PCPA)-induced insomnia mice by intragastric administration.Then,the behavioral tests,neurotransmitter receptors,cytokines and hormone in brain were investigated.Behavior test showed that SPO and SPS exhibited sleep-enhancing effect through suppressing depression,shortening the onset time while prolonging the sleep duration in insomnia mice.Also SPO and SPS up-regulated serotonin(5-HT)receptors in serotonergic neurons,increased glutamic acid decarboxylase(GAD)content in GABAergic neurons,and stimulatedγ-aminobutyric acid(GABA)receptors expression to enhance the synaptic inhibition.Moreover,they could down-regulated the cytokines and rebalanced hormone expressions.Although both SPO and SPS exerted sleep-promoting,they had different focusing targets.SPS had stronger effect on neurotransmitter receptors regulation while SPO had better hormone rebalanced ability.Briefly,SPO and SPS exerted sedative-hypnotic effect in insomnia mice through modulating multi-targets in serotonergic and GABAergic system.
基金supported by the Basic Research Funds for the Central Government“Innovative Team of Zhejiang University”under contract number(2022FZZX01-09).
文摘Data center cooling systems are substantial energy consumers,and managing the heat generated by electronic devices is becoming more complex as chip power levels continue to rise.The single-phase immersion cooling(SPIC)server with oil coolant is numerically investigated using the validated Re-Normalization Group(RNG)k-εmodel.For the investigated scenarios where coolant velocity at the tank inlet is 0.004 m/s and the total power is 740 W,the heat transfer between the heat sinks and the coolant is dominated by natural convection,although forced convection mediates the overall heat transfer inside the tank.The maximum velocity of coolant through the heat sink is 0.035 m/s and the average heat transfer coefficient is up to 75.8 W/(m2·K).The geometry of the heat sink is important for the cooling performance.Increasing both the fin thickness and number enhances the natural convection effect of the heat sink,but also increases the flow resistance.The heat sink with a fin thickness of 3 mm performs the best,reducing the average graphics processing unit(GPU)temperature from 71.3℃ to 68.6℃.A heat sink with an optimal fin number of 16 reduces the average GPU temperature to 67.7℃.As for the effect of fin height,increasing it from 15 to 30 mm results in increases in the heat transfer area and flow rate by about 72%and 32%,respectively,which reduces the average GPU temperature to 65.2℃.Therefore,the importance of fin parameters ranks in the following order:fin height,number,and thickness.This study highlights the potential application of oil coolants in SPIC systems and offers theoretical guidance for the efficient design of natural convection cooling solutions.
文摘BACKGROUND Silicone oil(SiO)migration to the central nervous system(CNS)is a rare complication of SiO tamponade after vitreo-retinal surgeries,it could masquerade hemorrhage on computed tomography neuro-imaging.Only limited cases were reported in the literature,certain intra-operative and post-operative ocular risk factors might contribute to the different extend of SiO migration in the CNS.AIM To study the risk factors for cerebral ventricular migration(CVM)on top of visual pathway migration(VPM).METHODS Conforming to the preferred reporting items for systematic reviews and metaanalyses guidelines,literature searches on PubMed,MEDLINE,EMBASE were performed on June 1,2024.Publications on SiO migration to CNS were included in this review.Non-English articles,and studies without neuro-imaging of the CNS were excluded.Patient demographics,SiO filled eyes'ocular characteristics and vitrectomy surgical details were extracted from included studies in this review.VPM and CVM were assigned as group 1 and group 2 respectively.Fisher's exact tests,Mann-Whitney U tests and binary logistic regression were performed.RESULTS Total 68 articles were obtained after searches,48 publications were included for analysis.Total 54 SiO filled eyes were analyzed.Post-vitrectomy intraocular pressure(IOP)was found to be significant in both Mann-Whitney U test(P=0.047)and binary logistic regression(P=0.012).Diabetic was found to be significant in binary logistic regression(P=0.037),but at borderline risk for CVM in Fisher's exact test(P=0.05).Other significant factors include longer SiO tamponade time(P=0.002 in Fisher's exact test)and visual acuity(P=0.011 in binary logistic regression).Optic nerve atrophy or disc cupping(P=1.00,P=0.790)and congenital optic disc anomalies(P=0.424)were all with P>0.05.CONCLUSION SiO migration to CNS is rare with limited case reports only.Our analysis of the existing literature demonstrated higher post-vitrectomy IOP was associated with CVM,followed by patients’diabetic status,longer SiO tamponade time and visual acuity.Optic nerve atrophy,disc cupping and congenital optic disc anomalies were not associated.Modifiable risk factors of post-vitrectomy IOP and SiO tamponade time should be closely monitored by vitreoretinal surgeons.Lower IOP target post-vitrectomy and earlier SiO removal surgeries should be arranged.
基金Supported by the National Natural Science Foundation of China(Grant Nos.52475089,52035002)National Key Research and Development Program of China(Grant No.2021YFB2011400)the Chongqing Natural Science Foundation(Grant No.CSTB2022NSCQ-MSX1243).
文摘This study aims to develop an accurate calculation model of transmission torque and load-bearing capacity for hydro-viscous clutches(HVC)used in high-power vehicles,which is important to investigate the step-less speed regulation characteristics in a fan drive system.However,most of the existing models ignore the distribution differences of groove area along the radial direction,which may lead to significant deviations in calculating the mechanical property of friction pairs related to operating conditions and the engagement process.To fill this gap,a new calculation model for bearing capacity and frictional torque of friction pairs with different oil grooves is proposed,in which the traditional fixed contact area ratio coefficient for oil groove measurement is replaced by a more precise discrete micro-ring area ratio(DMAR)integration method.Then,a 32-degree-of-freedoms dynamic model of HVC at a fan drive system is established for the prediction of dynamic responses during speed regulation.Results show that friction pairs with different oil grooves have a direct influence on frictional torque and bearing capacity through the change of DMAR along the radial direction.The friction pairs with different groove structures have oscillation phenomena at the engagement steady-state boundary.Furthermore,a step-less speed regulation experimental setup is established to verify the correctness of the proposed model.It is demonstrated that the axial engagement force and the speed regulation curve predicted by the proposed method are in good agreement with the experimental data.The results could effectively predict the engagement dynamic characteristics.The numerical relationship among the structure parameters,the mechanical properties of friction pairs,and the speed regulation characteristics of the system are established through the proposed model,which lays a theoretical foundation for the structure design of friction plates and optimization of step-less speed regulation performance.
基金Supporting Project number(RSP2025R92)at King Saud University,Riyadh,Saudi Arabia,for their support.
文摘The importance of organic geochemistry and basin modeling is widely recognized and used to understand the source rock potential and hydrocarbon generation history of the Mangahewa Formation,and thereby given the foundational role in the petroleum exploration.This study utilized the total organic carbon(TOC)content and hydrogen index(HI)to investigate the dominant kerogen type and hydrogen richness for the significance of petroleum generative potential.The Mangahewa coals and carbonaceous shales exhibit an excellent source rocks,with high total organic content(TOC)of more than 22%.The coals and carbonaceous shales were also characterised by Type Ⅱ‒Ⅲ kerogen with Type Ⅲ kerogen,promising oiland gas-prones.The Mangahewa Formation reached the main oil generation,with vitrinite reflectances between 0.53%and 1.01%.Vitrinite reflectance was also used in developing themal models and reveal the transformation(TR)of 10‒50%kerogen to oil during the Late Miocene.The models also showed that the Mangahewa source rock has a significant oil generation and little expulsion competency,with a TR of up to 54%.These findings support the substantial oil-generating potential in the Taranaki Basin's southern graben and can be used as a guide when developing strategies for an oil exploration program.
文摘An enhanced geothermal system(EGS)represents a promising approach to sustainable energy generation by harnessing subsurface heat from deep geological formations with low natural permeability.Sedimentary basins-such as the Williston Basin in North Dakota-are considered viable candidates for EGS development due to their broad geographic extent and moderate geothermal potential.Notably,depleted or non-productive oil wells within these basins offer a cost-effective opportunity for EGS implementation as they can be repurposed,thereby significantly reducing the need for new drilling.This study evaluates the feasibility of EGS deployment in McKenzie County,North Dakota.Core samples from five partially abandoned or dry oil wells associated with production from the Red River Formation were obtained from the Core Library of the North Dakota Geological Survey.These samples,spanning the entire thickness of the formation,were sectioned and polished at defined depth intervals for detailed analyses and precise measurements of key reservoir properties critical to geothermal assessment.Several parameters were analyzed to assess the geothermal viability of these wells,including formation temperature,temperature gradient,porosity,thermal conductivity,energy storage potential,and estimated power output via the Organic Rankine Cycle(ORC).The results demonstrate significant depth-dependent variations in thermal and petrophysical properties.Specifically,the depth range of 4000-4500 m is identified as a promising target for EGS stimulation since it is characterized by elevated temperatures,high thermal conductivity,favorable temperature gradients,and sufficient porosity-all essential properties for enhancing permeability through hydraulic fracturing.Furthermore,the calculated energy content and potential ORC power output at these depths indicate that effective geothermal energy extraction is technically feasible.This suggests a compelling opportunity to repurpose existing fossil energy infrastructure-such as abandoned oil wells-for renewable geothermal applications.Overall,the findings of this study underscore the potential of sedimentary formations for EGS development and contribute to advancing low-carbon,diversified energy solutions in alignment with national decarbonization goals.
文摘By investigating the performance characteristics of the bio-based surfactant 8901A,a composite decontamination and injection system was developed using 8901A as the primary agent,tailored for application in low-permeability and heavy oil reservoirs under varying temperature conditions.The results demonstrate that this system effectively reduces oil–water interfacial tension,achieving an ultra-low interfacial tension state.The static oil washing efficiency of oil sands exceeds 85%,the average pressure reduction rate reaches 21.55%,and the oil recovery rate improves by 13.54%.These enhancements significantly increase the system’s ability to dissolve oilbased blockages,thereby lowering water injection pressure caused by organic fouling,increasing the injection volume of injection wells,and ultimately improving oil recovery efficiency.
基金financially supported by the National Natural Science Foundation of China(No.U20B6003)the China Scholarship Council(No.202306440015)a project of the China Petroleum&Chemical Corporation(No.P22174)。
文摘The hybrid CO_(2) thermal technique has achieved considerable success globally in extracting residual heavy oil from reserves following a long-term steam stimulation process.Using microscopic visualization experiments and molecular dynamics(MD)simulations,this study investigates the microscopic enhanced oil recovery(EOR)mechanisms underlying residual oil removal using hybrid CO_(2) thermal systems.Based on the experimental models for the occurrence of heavy oil,this study evaluates the performance of hybrid CO_(2) thermal systems under various conditions using MD simulations.The results demonstrate that introducing CO_(2) molecules into heavy oil can effectively penetrate and decompose dense aggregates that are originally formed on hydrophobic surfaces.A stable miscible hybrid CO_(2) thermal system,with a high effective distribution ratio of CO_(2),proficiently reduces the interaction energies between heavy oil and rock surfaces,as well as within heavy oil.A visualization analysis of the interactions reveals that strong van der Waals(vdW)attractions occur between CO_(2) and heavy oil molecules,effectively promoting the decomposition and swelling of heavy oil.This unlocks the residual oil on the hydrophobic surfaces.Considering the impacts of temperature and CO_(2) concentration,an optimal gas-to-steam injection ratio(here,the CO_(2):steam ratio)ranging between 1:6 and 1:9 is recommended.This study examines the microscopic mechanisms underlying the hybrid CO_(2) thermal technique at a molecular scale,providing a significant theoretical guide for its expanded application in EOR.
基金Supported by the National Natural Science Foundation of China (Grant No. 52071097)Hainan Provincial Natural Science Foundation of China (Grant No. 522MS162)Research Fund from Science and Technology on Underwater Vehicle Technology Laboratory (Grant No. 2021JCJQ-SYSJJ-LB06910)。
文摘Path planning for recovery is studied on the engineering background of double unmanned surface vehicles(USVs)towing oil booms for oil spill recovery.Given the influence of obstacles on the sea,the improved artificial potential field(APF)method is used for path planning.For addressing the two problems of unreachable target and local minimum in the APF,three improved algorithms are proposed by combining the motion performance constraints of the double USV system.These algorithms are then combined as the final APF-123 algorithm for oil spill recovery.Multiple sets of simulation tests are designed according to the flaws of the APF and the process of oil spill recovery.Results show that the proposed algorithms can ensure the system’s safety in tracking oil spills in a complex environment,and the speed is increased by more than 40%compared with the APF method.
文摘Environmental pollution,energy consumption,and greenhouse gas emissions are critical global issues.To address these challenges,optimizing skimmer coatings is a major step in commercializing cleaning oil stains.This research presents a novel approach to creating and refining oil absorbent coatings,introducing a unique oil spill removal skimmer enhanced with a super hydrophobic polyaniline(PANI)nanofiber coating.The goal of this study was to improve oil absorption performance,increase the contact angle,lower drag,reduce energy consumption,achieve high desirability,and lower production costs.PANI treated with hydrochloric acid was a key focus as it resulted in higher porosity and smaller pore diameters,providing a larger surface area,which are crucial factors for boosting oil absorption and minimizing drag.To optimize optimal nanofiber morphology,PANI synthesized with methanesulfonic acid was first dedoped and then redoped with hydrochloric acid.After optimization,the most effective skimmer coating was achieved using a formulation consisting of 0.1%PANI,an ammonium persulfate/aniline ratio of 0.4,and an acid/aniline ratio of 9.689,along with redoped PANI nanofibers.The optimized skimmer exhibited a remarkable contact angle of 177.477°.The coating achieved drag reduction of 32%,oil absorption of 88.725%,a cost of$1.710,and a desirability rating of 78.5%.In this study,an optimized skimmer coat containing super hydrophobic coat-PANI nanofibers was fabricated.By enhancing contact angle and reducing drag,these coatings increased the skimmer performance by improving oil absorption and reducing fuel consumption.
基金supported by the Natural Science Foundation of Hubei Provincial Department of Education(D20232101)Shandong Second Medical University 2024 Affiliated Hospital(Teaching Hospital)Scientific Research Development Fund Project(2024FYQ026)+3 种基金the innovative Research Programme of Xiangyang No.1 People’s Hospital(XYY2023ZY01)Faculty Development Grants of Xiangyang No.1 People’s Hospital Affiliated to Hubei University of Medicine(XYY2023D05)Joint supported by Hubei Provincial Natural Science Foundation and Xiangyang of China(2025AFD091)Traditional Chinese Medicine Scientific Research Project of Hubei Provincial Administration of Traditional Chinese Medicine(ZY2025D019).
文摘Background:Diabetic foot,a severe complication of diabetes,is characterized by chronic refractory wounds.Sanhuang Oil,a topical herbal formula,demonstrates significant therapeutic effects including antibacterial,anti-inflammatory,and immunomodulatory activities.However,its active constituents and mechanisms of action against diabetic foot remain to be elucidated.Methods:In this study,the chemical constituents of Sanhuang Oil were identified using UPLC-QE-Orbitrap-MS.Subsequently,the mechanism by which Sanhuang Oil promotes diabetic foot ulcer healing was predicted by integrating network pharmacology and molecular docking.Additionally,diabetic mouse model was established in ICR mice using a combination of a high-fat diet(HFD)and streptozotocin(STZ)chemical induction.A full-thickness skin defect was created on the dorsum of the mice.Wound healing and the healing rate were observed following Sanhuang Oil intervention.The mechanism underlying Sanhuang Oil’s promotion of diabetic ulcer healing was further investigated using transcriptomics and histopathological examination(H&E staining).Results:A total of 97 active ingredients were identified from Sanhuang Oil.Network pharmacology analysis predicted 543 common targets,and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis identified 203 relevant pathways.Molecular docking further confirmed high binding affinity(binding energy≤−5.0 kcal/mol)between specific active components in Sanhuang Oil(e.g.,coptisine,phellodendrine,baicalein)and key targets associated with diabetic foot ulcers(e.g.,EGFR,AKT1,STAT3).In vivo experimental results demonstrated that the wound healing rate was significantly higher in Sanhuang Oil-treated groups compared to the model group(P<0.001).HE staining revealed that the high-dose Sanhuang Oil group exhibited more pronounced epithelial tissue coverage over the wound,reduced inflammatory cell infiltration,and increased collagen deposition and fibroblast proliferation.transcriptomic analysis identified Pdk4,Ttn,Csrp3,Actn2,Myoz2,Tnnc2,Myod1,Myog,Myot,and Myf6 as key regulatory proteins involved in promoting wound healing.Conclusion:Sanhuang Oil promotes wound healing in diabetic ulcer mice,potentially by mitigating inflammation and regulating key targets such as Pdk4 to enhance fibroblast function.These findings provide novel insights into the multi-target,multi-pathway mechanism of Sanhuang Oil for treating diabetic foot ulcers.
文摘Background:This study focused on developing and optimizing a self-microemulsifying drug delivery system(SMEDDS)to improve Lafutidine’s solubility and bioavailability,thereby enhancing its effectiveness in treating gastric ulcers.Traditional formulations are less effective due to their limited water solubility and bioavailability.Methods:The study used solubility tests,pseudo-ternary phase diagrams,and central composite design(CCD)to optimize.The formulation was optimized by varying the oil concentration(10–40%)and surfactant/cosurfactant ratio(0.33–3.00),and then tested for droplet size,drug content,emulsification,phase stability,and in vitro dissolution.Results:The study found that the optimized formulation contained 14%Capmul PG 8NF oil,62%Labrasol surfactant,and 24%Tween 80 cosurfactant.This combination generated an average droplet size of 111.02 nm and improved drug release properties.Furthermore,the formulation was stable without phase separation,with a drug content of 88.2–99.8%.Conclusion:SMEDDS significantly improves lafutidine delivery by increasing solubility and absorption,thereby overcoming oral administration challenges.The system quickly formed small droplets in water and released the drug in 15 min.Enhancing lafutidine’s bioavailability may improve its efficacy in treating gastric ulcers,resulting in better patient outcomes and potentially lower dosing frequency.
基金This paper was subsidized by the 15th National key Sci-Tech Project (NO.2001BA605A02-04-01)
文摘The relative permeability curve has been measured with simulation oil (refined oil) and gas (nitrogen or air) at room temperature and a lowpressure, both of which are very important parameters for depicting the flow of fluid through porous media in a hydrocarbon reservoir. This basic measurement is often applied in exploitation evaluation, but the underground conditions with high temperature and pressure, and the phase equilibrium of oil and gas, are not taken into consideration when the relative permeability curve is tested. There is an important theoretical and practical sense in testing the diphase relative permeability curve of the equilibrium of oil and gas under the conditions of high temperature and pressure. The test method for the relative permeability curve is proposed in this paper. The relative permeability of the equilibrium of oil and gas and the standard one are tested in two fluids, and the differences between these two methods are stated. The research results can be applied to the simulation and prediction of CVD in long cores and then the phenomenon can better explain that the recovery of condensate gas rich in condensate oil is higher than that of CVD test in PVT. Meanwhile, the research shows that the relative permeability curve of equilibrium oil and gas is sensitive to the rate of exploitation, and the viewpoint proves that an improved gas recovery rate can properly increase the recovery of condensate oil.
基金funded by the National Natural Science Foundation of China(Grant Nos.41902151,42172180,41830431,and 41902144)the Petro China Scientific Research and Technology Development Project(Grant No.2021DJ1802)。
文摘Mid-high maturity shale oil is the most realistic field for the scale breakthrough of terrestrial shale oil production in China.Generally,three deficiencies hinder shale oil development in China:heavy oil density,small sweet spot areas,and poor distribution continuity.Thus,identifying the“sweet spots”in shale oil reservoirs is critical for the efficient exploration and development of terrestrial shale oil.This study targets the siltstone type(Class-Ⅱshale oil)and pure shale type(Class-Ⅲshale oil)of the Chang 7 Member in the Ordos Basin,and identifies three stratigraphic units,namely the hydrocarbon accumulation unit,hydrocarbon generation unit,and hydrocarbon retention unit,which together constitute the in-source“shale oil system”.The hydrocarbon accumulation unit is mainly siltstone,where the hydrocarbons are migrated from shales.It has favorable porethroat network connectivity with a pore connectivity ratio of 32–57%,being the siltstone-type sweet spots.The hydrocarbon generation unit is mainly composed of high-TOC mudstone/shale and is the main contributor to in-source hydrocarbon generation and expulsion.This unit has high three-dimensional connectivity(28–30%),as shown by the pore-throat network model,associated with vertical paths for hydrocarbon expulsion.The hydrocarbon retention unit is mainly composed of low-TOC mudstone/shale retaining self-generated and migrated hydrocarbons.The pore connectivity rate is 17–42%,and the pore-throat network connectivity direction is uneven.Light and low-carbon-number hydrocarbons are preferentially trapped or even sealed in small pores of the retention unit,forming the typical mudstone/shale-type sweet spots.In the process called shale oil intrasource migration,the oil migrates in source rocks causing component fractionation,which allows more shale oil to enrich in the hydrocarbon accumulation and retention units to form sweet spots,compared with the hydrocarbon generation unit.The migration paths include the one from mudstone/shale to siltstone interlayers and that from the high-TOC mudstone/shale intervals to the low-TOC intervals.The in-source accumulation of shale oil shows the differentiated enrichment model featuring“high-TOC mudstone/shale generating hydrocarbons,low-TOC mudstone/shale retaining hydrocarbons,siltstone accumulating hydrocarbons and multiple intra-source migration paths”.In the Ordos Basin,the organic-lean(TOC 1–3%)mudstone/shale intervals appear to be the sweet spots of shale oil,where there are abundant medium-short-chain hydrocarbons retained with high flowability.After fracturing stimulation,their production conditions may be even superior to those of siltstones.This proposed idea changes the previous strategy to look for sweet spots in high-TOC intervals derived from the shale gas industry.