The supply of electricity to remote regions is a significant challenge owing to the pivotal transition in the global energy landscape.To address this issue,an off-grid microgrid solution integrated with energy storage...The supply of electricity to remote regions is a significant challenge owing to the pivotal transition in the global energy landscape.To address this issue,an off-grid microgrid solution integrated with energy storage systems is proposed in this study.Off-grid microgrids are self-sufficient electrical networks that are capable of effectively resolving electricity access problems in remote areas by providing stable and reliable power to local residents.A comprehensive review of the design,control strategies,energy management,and optimization of off-grid microgrids based on domestic and international research is presented in this study.It also explores the critical role of energy stor-age systems in enhancing microgrid stability and economic efficiency.Additionally,the capacity configurations of energy storage systems within off-grid networks are analyzed.Energy storage systems not only mitigate the intermittency and volatility of renewable energy gen-eration but also supply power support during peak demand periods,thereby improving grid stability and reliability.By comparing different energy storage technologies,such as lithium-ion batteries,pumped hydro storage,and compressed air energy storage,the optimal energy storage capacity configurations tailored to various application scenarios are proposed in this study.Finally,using a typical micro-grid as a case study,an empirical analysis of off-grid microgrids and energy storage integration has been conducted.The optimal con-figuration of energy storage systems is determined,and the impact of wind and solar power integration under various scenarios on grid balance is explored.It has been found that a rational configuration of energy storage systems can significantly enhance the utilization rate of renewable energy,reduce system operating costs,and strengthen grid resilience under extreme conditions.This study provides essential theoretical support and practical guidance for the design and implementation of off-grid microgrids in remote areas.展开更多
Most developing countries continue to face challenges in accessing sustainable energy.This study investigates a solar panel and battery-powered system for an urban off-grid microgrid in Nigeria,where demand-sideflexib...Most developing countries continue to face challenges in accessing sustainable energy.This study investigates a solar panel and battery-powered system for an urban off-grid microgrid in Nigeria,where demand-sideflexibility and strategic interactions between households and utilities can optimize system sizing.A nonlinear programming model is built using bilevel problem formulation that incorporates both the households’willingness to reduce their energy consumption and the utility’s agreement to provide price rebates.The results show that,for an energy community of 10 households with annual energy demand of 7.8 MWh,an oversized solar-storage system is required(12 kWp of photovoltaic solar panels and 26 kWh of battery storage).The calculated average cost of 0.31€/kWh is three times higher than the current tariff,making it unaffordable for most Nigerian households.To address this,the utility company could implement Demand Response programs with direct load control that delay the use of certain appliances,such as fans,irons and air conditioners.If these measures reduce total demand by 5%,both the required system size and overall costs could decrease significantly,by approximately one-third.This adjustment leads to a reduced tariffof 0.20€/kWh.When Demand Response is imple-mented through negotiation between the utility and households,the amount of load-shaving achieved is lower.This is because house-holds experience discomfort from curtailment and are generally less willing to provideflexibility.However,negotiation allows for greaterflexibility than direct control,due to dynamic interactions and more active consumer participation in the energy transition.Nonetheless,tariffs remain higher than current market prices.Off-grid contracts could become competitive iffinancial support is pro-vided,such as low-interest loans and capital grants covering up to 75%of the upfront cost.展开更多
This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and e...This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and energy storage system (ESS). The reliability of the MG system is modeled based on the loss of power supply probability (SPSP). For optimization, an enhanced Genetic Algorithm (GA) is used to minimize the total cost of the system over a 20-year period, while satisfying some reliability and operation constraints. A case study addressing optimal sizing of an off-grid hybrid microgrid in Nigeria is discussed. The result is compared with results obtained from the Brute Force and standard GA methods.展开更多
Blade Tip Timing(BTT)enables non-contact measurements of rotating blades by placing probes strategically.Due to the uneven probe layout,BTT signals exhibit periodic irregularities.While recovering parameters like freq...Blade Tip Timing(BTT)enables non-contact measurements of rotating blades by placing probes strategically.Due to the uneven probe layout,BTT signals exhibit periodic irregularities.While recovering parameters like frequency from such signals is possible,achieving high-precision vibration parameters remains challenging.This paper proposed a novel two-stage off-grid estimation method.It leverages a unique array layout(coprime array)to obtain a regular augmented covariance matrix.Subsequently,parameters in the matrix are recovered using the sparse iterative covariance-based estimation method based on covariance fitting criteria.Finally,high-precision estimates of imprecise parameters are obtained using unconditional maximum likelihood estimation,effectively eliminating the effects of basis mismatch.Through substantial numerical and experimental validation,the proposed method demonstrates significantly higher accuracy compared to classical BTT parameter estimation methods,approaching the lower bound of unbiased estimation variance.Furthermore,due to its immunity to frequency gridding,it can track minor frequency deviations,making it more suitable for indicating blade condition.展开更多
Modern shipboard microgrids(SMGs)incorporating distributed energy resources(DERs)enhance energy resilience and reduce carbon emissions.However,the hierarchical control schemes of DERs bring challenges to the tradition...Modern shipboard microgrids(SMGs)incorporating distributed energy resources(DERs)enhance energy resilience and reduce carbon emissions.However,the hierarchical control schemes of DERs bring challenges to the traditional power flow methods.This paper devises a generalized three-phase power flow approach for SMGs that integrate hierarchically controlled DERs.The main contributions include:(1)a droop-controlled three-phase Newton power flow algorithm that automatically incorporates the droop characteristics of DERs;(2)a secondary-controlled three-phase power flow method for power sharing and voltage regulation;and(3)modified Jacobian matrices to incorporate various hierarchical control modes.Numerical results demonstrate the effectiveness of the devised approach in both balanced and unbalanced three-phase hierarchically controlled SMG systems with arbitrary config-urations.展开更多
With the direct rise of the social demand for renewable energy,as a new type of energy supply model in the new era,the operation control and optimization of microgrid play an important role in solving the problem of r...With the direct rise of the social demand for renewable energy,as a new type of energy supply model in the new era,the operation control and optimization of microgrid play an important role in solving the problem of resource sharing.Microgrid can realize the flexibility of distributed power supply and the application of high efficiency,solving the problem of a large number and variety of forms of the power grid.Based on this,this paper will discuss the operation control strategy of microgrid based on a new energy grid connection,and provide constructive ideas for high-quality operation of microgrid.展开更多
With the rapid development of renewable energy,the Microgrid Coalition(MGC)has become an important approach to improving energy utilization efficiency and economic performance.To address the operational optimization p...With the rapid development of renewable energy,the Microgrid Coalition(MGC)has become an important approach to improving energy utilization efficiency and economic performance.To address the operational optimization problem inmulti-microgrid cooperation,a cooperative game strategy based on the Nash bargainingmodel is proposed,aiming to enable collaboration among microgrids to maximize overall benefits while considering energy trading and cost optimization.First,each microgrid is regarded as a game participant,and a multi-microgrid cooperative game model based on Nash bargaining theory is constructed,targeting the minimization of total operational cost under constraints such as power balance and energy storage limits.Second,the Nash bargaining solution is introduced as the benefit allocation scheme to ensure individual rationality and coalition stability.Finally,theAlternating Direction Method of Multipliers(ADMM)is employed to decompose the centralized optimization problem into distributed subproblems for iterative solution,thereby reducing communication burden and protecting privacy.Case studies reveal that the operational costs of the threemicrogrids are reduced by 26.28%,19.00%,and 17.19%,respectively,and the overall renewable energy consumption rate is improved by approximately 66.11%.展开更多
This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus volta...This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus voltage oscillation caused by the bifurcation behavior of DC microgrid converters.Firstly,the article elaborately establishes a mathematical model of a single distributed power source with hierarchical control.On this basis,a smallworld network model that can better adapt to the topology structure of DC microgrids is further constructed.Then,a voltage synchronization analysis method based on the main stability function is proposed,and the synchronous characteristics of DC bus voltage are deeply studied by analyzing the size of the minimum non-zero eigenvalue.In view of the situation that the line coupling strength between distributed power sources is insufficient to achieve bus voltage synchronization,this paper innovatively proposes a new improved adaptive controller to effectively control voltage synchronization.And the convergence of the designed controller is strictly proved by using Lyapunov’s stability theorem.Finally,the effectiveness and feasibility of the designed controller in this paper are fully verified through detailed simulation experiments.After comparative analysis with the traditional adaptive controller,it is found that the newly designed controller can make the bus voltages of each distributed power source achieve synchronization more quickly,and is significantly superior to the traditional adaptive controller in terms of anti-interference performance.展开更多
The advent of microgrids in modern energy systems heralds a promising era of resilience,sustainability,and efficiency.Within the realm of grid-tied microgrids,the selection of an optimal optimization algorithm is crit...The advent of microgrids in modern energy systems heralds a promising era of resilience,sustainability,and efficiency.Within the realm of grid-tied microgrids,the selection of an optimal optimization algorithm is critical for effective energy management,particularly in economic dispatching.This study compares the performance of Particle Swarm Optimization(PSO)and Genetic Algorithms(GA)in microgrid energy management systems,implemented using MATLAB tools.Through a comprehensive review of the literature and sim-ulations conducted in MATLAB,the study analyzes performance metrics,convergence speed,and the overall efficacy of GA and PSO,with a focus on economic dispatching tasks.Notably,a significant distinction emerges between the cost curves generated by the two algo-rithms for microgrid operation,with the PSO algorithm consistently resulting in lower costs due to its effective economic dispatching capabilities.Specifically,the utilization of the PSO approach could potentially lead to substantial savings on the power bill,amounting to approximately$15.30 in this evaluation.Thefindings provide insights into the strengths and limitations of each algorithm within the complex dynamics of grid-tied microgrids,thereby assisting stakeholders and researchers in arriving at informed decisions.This study contributes to the discourse on sustainable energy management by offering actionable guidance for the advancement of grid-tied micro-grid technologies through MATLAB-implemented optimization algorithms.展开更多
In response to the increasing global energy demand and environmental pollution,microgrids have emerged as an innovative solution by integrating distributed energy resources(DERs),energy storage systems,and loads to im...In response to the increasing global energy demand and environmental pollution,microgrids have emerged as an innovative solution by integrating distributed energy resources(DERs),energy storage systems,and loads to improve energy efficiency and reliability.This study proposes a novel hybrid optimization algorithm,DE-HHO,combining differential evolution(DE)and Harris Hawks optimization(HHO)to address microgrid scheduling issues.The proposed method adopts a multi-objective optimization framework that simultaneously minimizes operational costs and environmental impacts.The DE-HHO algorithm demonstrates significant advantages in convergence speed and global search capability through the analysis of wind,solar,micro-gas turbine,and battery models.Comprehensive simulation tests show that DE-HHO converges rapidly within 10 iterations and achieves a 4.5%reduction in total cost compared to PSO and a 5.4%reduction compared to HHO.Specifically,DE-HHO attains an optimal total cost of$20,221.37,outperforming PSO($21,184.45)and HHO($21,372.24).The maximum cost obtained by DE-HHO is$23,420.55,with a mean of$21,615.77,indicating stability and cost control capabilities.These results highlight the effectiveness of DE-HHO in reducing operational costs and enhancing system stability for efficient and sustainable microgrid operation.展开更多
The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.Thi...The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.This paper presents a novel sparrow search algorithm(SSA)-tuned proportional-integral(PI)controller for grid-connected photovoltaic(PV)systems,designed to optimize dynamic perfor-mance,energy extraction,and power quality.Key contributions include the development of a systematic SSA-based optimization frame-work for real-time PI parameter tuning,ensuring precise voltage and current regulation,improved maximum power point tracking(MPPT)efficiency,and minimized total harmonic distortion(THD).The proposed approach is evaluated against conventional PSO-based and P&O controllers through comprehensive simulations,demonstrating its superior performance across key metrics:a 39.47%faster response time compared to PSO,a 12.06%increase in peak active power relative to P&O,and a 52.38%reduction in THD,ensuring compliance with IEEE grid standards.Moreover,the SSA-tuned PI controller exhibits enhanced adaptability to dynamic irradiancefluc-tuations,rapid response time,and robust grid integration under varying conditions,making it highly suitable for real-time smart grid applications.This work establishes the SSA-tuned PI controller as a reliable and efficient solution for improving PV system performance in grid-connected scenarios,while also setting the foundation for future research into multi-objective optimization,experimental valida-tion,and hybrid renewable energy systems.展开更多
Conventional coordinated control strategies for DC bus voltage signal(DBS)in islanded DC microgrids(IDCMGs)struggle with coordinating multiple distributed generators(DGs)and cannot effectively incorporate state of cha...Conventional coordinated control strategies for DC bus voltage signal(DBS)in islanded DC microgrids(IDCMGs)struggle with coordinating multiple distributed generators(DGs)and cannot effectively incorporate state of charge(SOC)information of the energy storage system,thereby reducing the system flexibility.In this study,we propose an adaptive coordinated control strategy that employs a two-layer fuzzy neural network controller(FNNC)to adapt to varying operating conditions in an IDCMG with multiple PV and battery energy storage system(BESS)units.The first-layer FNNC generates optimal operating mode commands for each DG,thereby avoiding the requirement for complex operating modes based on SOC segmentation.An optimal switching sequence logic prioritizes the most appropriate units during mode transitions.The second-layer FNNC dynamically adjusts the droop power to overcome power distribution challenges among DG groups.This helps in preventing the PV power from exceeding the limits and mitigating the risk of BESS overcharging or over-discharging.The simulation results indicate that the proposed strategy enhances the coordinated operation of multi-DG IDCMGs,thereby ensuring the efficient and safe utilization of PV and BESS.展开更多
This study explores off-grid power generation business models in the Lao People's Democratic Republic(Lao PDR),with the objective of identifying viable pathways to expand energy access in rural and underserved reg...This study explores off-grid power generation business models in the Lao People's Democratic Republic(Lao PDR),with the objective of identifying viable pathways to expand energy access in rural and underserved regions.The research aims to analyze and evaluate various business models in terms of their technical,economic,and social viability within the unique geographic and policy context of Lao PDR.There are two level of the research objectives:High Level Objectives(HLO)and Concreted Research Objectives(CRO).For HLO is that an appropriated off-grid power generation business model for Laos supports the Lao PDR Government’s commitment to promote an inclusive green growth development agenda that ensures lowered GHG emissions and increased energy efficiency.The Lao PDR National Determined Contribution(NDC)to the United Nations Framework Convention on Climate Change(UNFCCC)notes the country’s ambitious plans to lower energy consumption and reduce GHG emissions.While the CRO are focused on learning strategies,regulation and practical lessons from other countries the ASEAN region on the off-grid development and business model.To analyze and investigate the environmental strategy of business model under external and internal context and related and considered factors.And finally,this is to conclude and recommend the off-grid power generation business model as the research conclusion,which will become a support mechanism for the companies to operate consistently over many years into the future according to ambitious goal for supplying modern and save energy for rural families by 2030.展开更多
Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and d...Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and difficult scheduling of their optimal charging.To cope with these problems,this paper presents a novel approach for photovoltaic grid-connected microgrid EV charging station energy demand forecasting.The present study is part of a comprehensive framework involving emerging technologies such as drones and artificial intelligence designed to support the EVs’charging scheduling task.By using predictive algorithms for solar generation and load demand estimation,this approach aimed at ensuring dynamic and efficient energy flow between the solar energy source,the grid and the electric vehicles.The main contribution of this paper lies in developing an intelligent approach based on deep recurrent neural networks to forecast the energy demand using only its previous records.Therefore,various forecasters based on Long Short-term Memory,Gated Recurrent Unit,and their bi-directional and stacked variants were investigated using a real dataset collected from an EV charging station located at Trieste University(Italy).The developed forecasters have been evaluated and compared according to different metrics,including R,RMSE,MAE,and MAPE.We found that the obtained R values for both PV power generation and energy demand ranged between 97%and 98%.These study findings can be used for reliable and efficient decision-making on the management side of the optimal scheduling of the charging operations.展开更多
Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sam...Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sampling time period inevitably causes the wasteful use of communication resources.This paper proposes a self-triggered secondary control scheme under perturbations from false data injection(FDI)attacks.We designed a linear clock for each DG to trigger its controller at aperiodic and intermittent instants.Sub-sequently,a hash-based defense mechanism(HDM)is designed for detecting and eliminating malicious data infiltrated in the MGs.With the aid of HDM,a self-triggered control scheme achieves the secondary control objectives even in the presence of FDI attacks.Rigorous theoretical analyses and simulation results indicate that the introduced secondary control scheme significantly reduces communication costs and enhances the resilience of MGs under FDI attacks.展开更多
Low-voltage direct current(DC)microgrids have recently emerged as a promising and viable alternative to traditional alternating cur-rent(AC)microgrids,offering numerous advantages.Consequently,researchers are explorin...Low-voltage direct current(DC)microgrids have recently emerged as a promising and viable alternative to traditional alternating cur-rent(AC)microgrids,offering numerous advantages.Consequently,researchers are exploring the potential of DC microgrids across var-ious configurations.However,despite the sustainability and accuracy offered by DC microgrids,they pose various challenges when integrated into modern power distribution systems.Among these challenges,fault diagnosis holds significant importance.Rapid fault detection in DC microgrids is essential to maintain stability and ensure an uninterrupted power supply to critical loads.A primary chal-lenge is the lack of standards and guidelines for the protection and safety of DC microgrids,including fault detection,location,and clear-ing procedures for both grid-connected and islanded modes.In response,this study presents a brief overview of various approaches for protecting DC microgrids.展开更多
The rapid proliferation of renewable energy integration and escalating grid operational complexity have intensified demands for resilient self-healing mechanisms in modern power systems.Conventional approaches relying...The rapid proliferation of renewable energy integration and escalating grid operational complexity have intensified demands for resilient self-healing mechanisms in modern power systems.Conventional approaches relying on static models and heuristic rules exhibit limitations in addressing dynamic fault propagation and multimodal data fusion.This study proposes a Transformer-enhanced intelligent microgrid self-healing framework that synergizes large languagemodels(LLMs)with adaptive optimization,achieving three key innovations:(1)Ahierarchical attention mechanism incorporating grid impedance characteristics for spatiotemporal feature extraction,(2)Dynamic covariance estimation Kalman filtering with wavelet packet energy entropy thresholds(Daubechies-4 basis,6-level decomposition),and(3)A grouping-stratified ant colony optimization algorithm featuring penalty-based pheromone updating.Validated on IEEE 33/100-node systems,our framework demonstrates 96.7%fault localization accuracy(23%improvement over STGCN)and 0.82-s protection delay,outperforming MILP-basedmethods by 37%in reconfiguration speed.The system maintains 98.4%self-healing success rate under cascading faults,resolving 89.3%of phase-toground faults within 500 ms through adaptive impedance matching.Field tests on 220 kV substations with 45%renewable penetration show 99.1%voltage stability(±5%deviation threshold)and 40%communication efficiency gains via compressed GOOSE message parsing.Comparative analysis reveals 12.6×faster convergence than conventional ACO in 1000-node networks,with 95.2%robustness against±25%load fluctuations.These advancements provide a scalable solution for real-time fault recovery in renewable-dense grids,reducing outage duration by 63%inmulti-agent simulations compared to centralized architectures.展开更多
Interconnection planning involving bi-directional converters(BdCs)is crucial for enhancing the reliability and robustness of hybrid alternating current(AC)/direct current(DC)microgrid clusters with high penetrations o...Interconnection planning involving bi-directional converters(BdCs)is crucial for enhancing the reliability and robustness of hybrid alternating current(AC)/direct current(DC)microgrid clusters with high penetrations of renewable energy resources(RESs).However,challenges such as the non-convex nature of BdC efficiency and renewable energy uncertainty complicate the planning process.To address these issues,this paper proposes a tri-level BdC-based planning framework that incorporates dynamic BdC efficiency and a data-correlated uncertainty set(DcUS)derived from historical data patterns.The proposed framework employs a least-squares approximation to linearize BdC efficiency and constructs the DcUS to balance computational efficiency and solution robustness.Additionally,a fully parallel column and constraint generation algorithm is developed to solve the model efficiently.Numerical simulations on a practical hybrid AC/DC microgrid system demonstrate that the proposed method reduces interconnection costs by up to 21.8%compared to conventional uncertainty sets while ensuring robust operation under all considered scenarios.These results highlight the computational efficiency,robustness,and practicality of the proposed approach,making it a promising solution for modern power systems.展开更多
In this study,we analyzed the untapped energy potential of remote mountainous regions in eastern Morocco,thereby addressing the research gap on sustainable electrification in such areas.We proposed a hybrid energy sys...In this study,we analyzed the untapped energy potential of remote mountainous regions in eastern Morocco,thereby addressing the research gap on sustainable electrification in such areas.We proposed a hybrid energy system corresponding to the local conditions and integrated the solar,wind,and biomass energy using batteries and green hydrogen as storage systems,considering the grid as a backup.Simulations conducted using HOMER Pro indicate an annual energy output of 5.6 GWh from solar,6.9 GWh from wind,and 1 GWh from biomass,thereby ensuring 100%renewable self-sufficiency.The system is highly cost-effective and achieves a levelized cost of energy of 0.024$/kWh while significantly reducing the greenhouse gas emissions by over 99%for CO_(2) and 100%for SO_(2).This study presents a sustainable,reliable,and economically viable solution for rural electrification,which concurs with SDG 7.展开更多
The rapid development of new energy power generation technology and the transformation of power electronics in the core equipment of source-grid-load drives the power system towards the“double-high”development patte...The rapid development of new energy power generation technology and the transformation of power electronics in the core equipment of source-grid-load drives the power system towards the“double-high”development pattern of“high proportion of renewable energy”and“high proportion of power electronic equipment”.To enhance the transient performance of AC/DC hybrid microgrid(HMG)in the context of“double-high,”aπtype virtual synchronous generator(π-VSG)control strategy is applied to bidirectional interface converter(BIC)to address the issues of lacking inertia and poor disturbance immunity caused by the high penetration rate of power electronic equipment and new energy.Firstly,the virtual synchronous generator mechanical motion equations and virtual capacitance equations are used to introduce the virtual inertia control equations that consider the transient performance of HMG;based on the equations,theπ-type equivalent control model of the BIC is established.Next,the inertia power is actively transferred through the BIC according to the load fluctuation to compensate for the system’s inertia deficit.Secondly,theπ-VSG control utilizes small-signal analysis to investigate howthe fundamental parameters affect the overall stability of the HMG and incorporates power step response curves to reveal the relationship between the control’s virtual parameters and transient performance.Finally,the PSCAD/EMTDC simulation results show that theπ-VSG control effectively improves the immunity of AC frequency and DC voltage in the HMG system under the load fluctuation condition,increases the stability of the HMG system and satisfies the power-sharing control objective between the AC and DC subgrids.展开更多
基金funded by Humanities and Social Sciences of Ministry of Education Planning Fund of China(21YJA790009)National Natural Science Foundation of China(72140001).
文摘The supply of electricity to remote regions is a significant challenge owing to the pivotal transition in the global energy landscape.To address this issue,an off-grid microgrid solution integrated with energy storage systems is proposed in this study.Off-grid microgrids are self-sufficient electrical networks that are capable of effectively resolving electricity access problems in remote areas by providing stable and reliable power to local residents.A comprehensive review of the design,control strategies,energy management,and optimization of off-grid microgrids based on domestic and international research is presented in this study.It also explores the critical role of energy stor-age systems in enhancing microgrid stability and economic efficiency.Additionally,the capacity configurations of energy storage systems within off-grid networks are analyzed.Energy storage systems not only mitigate the intermittency and volatility of renewable energy gen-eration but also supply power support during peak demand periods,thereby improving grid stability and reliability.By comparing different energy storage technologies,such as lithium-ion batteries,pumped hydro storage,and compressed air energy storage,the optimal energy storage capacity configurations tailored to various application scenarios are proposed in this study.Finally,using a typical micro-grid as a case study,an empirical analysis of off-grid microgrids and energy storage integration has been conducted.The optimal con-figuration of energy storage systems is determined,and the impact of wind and solar power integration under various scenarios on grid balance is explored.It has been found that a rational configuration of energy storage systems can significantly enhance the utilization rate of renewable energy,reduce system operating costs,and strengthen grid resilience under extreme conditions.This study provides essential theoretical support and practical guidance for the design and implementation of off-grid microgrids in remote areas.
基金support from Nantes Universite through the project AAP II GENOME(Ges-tion des Energies Nouvelles et Optimisation Electrique)and LEAP-RE MiDiNa project,grant N°NR-23-LERE-0002-01.
文摘Most developing countries continue to face challenges in accessing sustainable energy.This study investigates a solar panel and battery-powered system for an urban off-grid microgrid in Nigeria,where demand-sideflexibility and strategic interactions between households and utilities can optimize system sizing.A nonlinear programming model is built using bilevel problem formulation that incorporates both the households’willingness to reduce their energy consumption and the utility’s agreement to provide price rebates.The results show that,for an energy community of 10 households with annual energy demand of 7.8 MWh,an oversized solar-storage system is required(12 kWp of photovoltaic solar panels and 26 kWh of battery storage).The calculated average cost of 0.31€/kWh is three times higher than the current tariff,making it unaffordable for most Nigerian households.To address this,the utility company could implement Demand Response programs with direct load control that delay the use of certain appliances,such as fans,irons and air conditioners.If these measures reduce total demand by 5%,both the required system size and overall costs could decrease significantly,by approximately one-third.This adjustment leads to a reduced tariffof 0.20€/kWh.When Demand Response is imple-mented through negotiation between the utility and households,the amount of load-shaving achieved is lower.This is because house-holds experience discomfort from curtailment and are generally less willing to provideflexibility.However,negotiation allows for greaterflexibility than direct control,due to dynamic interactions and more active consumer participation in the energy transition.Nonetheless,tariffs remain higher than current market prices.Off-grid contracts could become competitive iffinancial support is pro-vided,such as low-interest loans and capital grants covering up to 75%of the upfront cost.
文摘This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and energy storage system (ESS). The reliability of the MG system is modeled based on the loss of power supply probability (SPSP). For optimization, an enhanced Genetic Algorithm (GA) is used to minimize the total cost of the system over a 20-year period, while satisfying some reliability and operation constraints. A case study addressing optimal sizing of an off-grid hybrid microgrid in Nigeria is discussed. The result is compared with results obtained from the Brute Force and standard GA methods.
基金the National Natural Science Foundation of China(Nos.52105117,52222504&51875433)the Funds for Distinguished Young talent of Shaanxi Province,China(No.2019JC-04)。
文摘Blade Tip Timing(BTT)enables non-contact measurements of rotating blades by placing probes strategically.Due to the uneven probe layout,BTT signals exhibit periodic irregularities.While recovering parameters like frequency from such signals is possible,achieving high-precision vibration parameters remains challenging.This paper proposed a novel two-stage off-grid estimation method.It leverages a unique array layout(coprime array)to obtain a regular augmented covariance matrix.Subsequently,parameters in the matrix are recovered using the sparse iterative covariance-based estimation method based on covariance fitting criteria.Finally,high-precision estimates of imprecise parameters are obtained using unconditional maximum likelihood estimation,effectively eliminating the effects of basis mismatch.Through substantial numerical and experimental validation,the proposed method demonstrates significantly higher accuracy compared to classical BTT parameter estimation methods,approaching the lower bound of unbiased estimation variance.Furthermore,due to its immunity to frequency gridding,it can track minor frequency deviations,making it more suitable for indicating blade condition.
基金supported in part by the Department of Navy award N00014-24-1-2287 and N00014-23-1-2124。
文摘Modern shipboard microgrids(SMGs)incorporating distributed energy resources(DERs)enhance energy resilience and reduce carbon emissions.However,the hierarchical control schemes of DERs bring challenges to the traditional power flow methods.This paper devises a generalized three-phase power flow approach for SMGs that integrate hierarchically controlled DERs.The main contributions include:(1)a droop-controlled three-phase Newton power flow algorithm that automatically incorporates the droop characteristics of DERs;(2)a secondary-controlled three-phase power flow method for power sharing and voltage regulation;and(3)modified Jacobian matrices to incorporate various hierarchical control modes.Numerical results demonstrate the effectiveness of the devised approach in both balanced and unbalanced three-phase hierarchically controlled SMG systems with arbitrary config-urations.
文摘With the direct rise of the social demand for renewable energy,as a new type of energy supply model in the new era,the operation control and optimization of microgrid play an important role in solving the problem of resource sharing.Microgrid can realize the flexibility of distributed power supply and the application of high efficiency,solving the problem of a large number and variety of forms of the power grid.Based on this,this paper will discuss the operation control strategy of microgrid based on a new energy grid connection,and provide constructive ideas for high-quality operation of microgrid.
基金funded by StateGrid Beijing Electric PowerCompany Technology Project,grant number 520210230004.
文摘With the rapid development of renewable energy,the Microgrid Coalition(MGC)has become an important approach to improving energy utilization efficiency and economic performance.To address the operational optimization problem inmulti-microgrid cooperation,a cooperative game strategy based on the Nash bargainingmodel is proposed,aiming to enable collaboration among microgrids to maximize overall benefits while considering energy trading and cost optimization.First,each microgrid is regarded as a game participant,and a multi-microgrid cooperative game model based on Nash bargaining theory is constructed,targeting the minimization of total operational cost under constraints such as power balance and energy storage limits.Second,the Nash bargaining solution is introduced as the benefit allocation scheme to ensure individual rationality and coalition stability.Finally,theAlternating Direction Method of Multipliers(ADMM)is employed to decompose the centralized optimization problem into distributed subproblems for iterative solution,thereby reducing communication burden and protecting privacy.Case studies reveal that the operational costs of the threemicrogrids are reduced by 26.28%,19.00%,and 17.19%,respectively,and the overall renewable energy consumption rate is improved by approximately 66.11%.
基金supported by the National Natural Science Foundation of China(Nos.51767017 and 51867015)the Basic Research and Innovation Group Project of Gansu(No.18JR3RA13)the Major Science and Technology Project of Gansu(No.19ZD2GA003).
文摘This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus voltage oscillation caused by the bifurcation behavior of DC microgrid converters.Firstly,the article elaborately establishes a mathematical model of a single distributed power source with hierarchical control.On this basis,a smallworld network model that can better adapt to the topology structure of DC microgrids is further constructed.Then,a voltage synchronization analysis method based on the main stability function is proposed,and the synchronous characteristics of DC bus voltage are deeply studied by analyzing the size of the minimum non-zero eigenvalue.In view of the situation that the line coupling strength between distributed power sources is insufficient to achieve bus voltage synchronization,this paper innovatively proposes a new improved adaptive controller to effectively control voltage synchronization.And the convergence of the designed controller is strictly proved by using Lyapunov’s stability theorem.Finally,the effectiveness and feasibility of the designed controller in this paper are fully verified through detailed simulation experiments.After comparative analysis with the traditional adaptive controller,it is found that the newly designed controller can make the bus voltages of each distributed power source achieve synchronization more quickly,and is significantly superior to the traditional adaptive controller in terms of anti-interference performance.
文摘The advent of microgrids in modern energy systems heralds a promising era of resilience,sustainability,and efficiency.Within the realm of grid-tied microgrids,the selection of an optimal optimization algorithm is critical for effective energy management,particularly in economic dispatching.This study compares the performance of Particle Swarm Optimization(PSO)and Genetic Algorithms(GA)in microgrid energy management systems,implemented using MATLAB tools.Through a comprehensive review of the literature and sim-ulations conducted in MATLAB,the study analyzes performance metrics,convergence speed,and the overall efficacy of GA and PSO,with a focus on economic dispatching tasks.Notably,a significant distinction emerges between the cost curves generated by the two algo-rithms for microgrid operation,with the PSO algorithm consistently resulting in lower costs due to its effective economic dispatching capabilities.Specifically,the utilization of the PSO approach could potentially lead to substantial savings on the power bill,amounting to approximately$15.30 in this evaluation.Thefindings provide insights into the strengths and limitations of each algorithm within the complex dynamics of grid-tied microgrids,thereby assisting stakeholders and researchers in arriving at informed decisions.This study contributes to the discourse on sustainable energy management by offering actionable guidance for the advancement of grid-tied micro-grid technologies through MATLAB-implemented optimization algorithms.
文摘In response to the increasing global energy demand and environmental pollution,microgrids have emerged as an innovative solution by integrating distributed energy resources(DERs),energy storage systems,and loads to improve energy efficiency and reliability.This study proposes a novel hybrid optimization algorithm,DE-HHO,combining differential evolution(DE)and Harris Hawks optimization(HHO)to address microgrid scheduling issues.The proposed method adopts a multi-objective optimization framework that simultaneously minimizes operational costs and environmental impacts.The DE-HHO algorithm demonstrates significant advantages in convergence speed and global search capability through the analysis of wind,solar,micro-gas turbine,and battery models.Comprehensive simulation tests show that DE-HHO converges rapidly within 10 iterations and achieves a 4.5%reduction in total cost compared to PSO and a 5.4%reduction compared to HHO.Specifically,DE-HHO attains an optimal total cost of$20,221.37,outperforming PSO($21,184.45)and HHO($21,372.24).The maximum cost obtained by DE-HHO is$23,420.55,with a mean of$21,615.77,indicating stability and cost control capabilities.These results highlight the effectiveness of DE-HHO in reducing operational costs and enhancing system stability for efficient and sustainable microgrid operation.
文摘The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.This paper presents a novel sparrow search algorithm(SSA)-tuned proportional-integral(PI)controller for grid-connected photovoltaic(PV)systems,designed to optimize dynamic perfor-mance,energy extraction,and power quality.Key contributions include the development of a systematic SSA-based optimization frame-work for real-time PI parameter tuning,ensuring precise voltage and current regulation,improved maximum power point tracking(MPPT)efficiency,and minimized total harmonic distortion(THD).The proposed approach is evaluated against conventional PSO-based and P&O controllers through comprehensive simulations,demonstrating its superior performance across key metrics:a 39.47%faster response time compared to PSO,a 12.06%increase in peak active power relative to P&O,and a 52.38%reduction in THD,ensuring compliance with IEEE grid standards.Moreover,the SSA-tuned PI controller exhibits enhanced adaptability to dynamic irradiancefluc-tuations,rapid response time,and robust grid integration under varying conditions,making it highly suitable for real-time smart grid applications.This work establishes the SSA-tuned PI controller as a reliable and efficient solution for improving PV system performance in grid-connected scenarios,while also setting the foundation for future research into multi-objective optimization,experimental valida-tion,and hybrid renewable energy systems.
基金supported by National Key R&D Program of ChinaunderGrant,(2021YFB2601403).
文摘Conventional coordinated control strategies for DC bus voltage signal(DBS)in islanded DC microgrids(IDCMGs)struggle with coordinating multiple distributed generators(DGs)and cannot effectively incorporate state of charge(SOC)information of the energy storage system,thereby reducing the system flexibility.In this study,we propose an adaptive coordinated control strategy that employs a two-layer fuzzy neural network controller(FNNC)to adapt to varying operating conditions in an IDCMG with multiple PV and battery energy storage system(BESS)units.The first-layer FNNC generates optimal operating mode commands for each DG,thereby avoiding the requirement for complex operating modes based on SOC segmentation.An optimal switching sequence logic prioritizes the most appropriate units during mode transitions.The second-layer FNNC dynamically adjusts the droop power to overcome power distribution challenges among DG groups.This helps in preventing the PV power from exceeding the limits and mitigating the risk of BESS overcharging or over-discharging.The simulation results indicate that the proposed strategy enhances the coordinated operation of multi-DG IDCMGs,thereby ensuring the efficient and safe utilization of PV and BESS.
文摘This study explores off-grid power generation business models in the Lao People's Democratic Republic(Lao PDR),with the objective of identifying viable pathways to expand energy access in rural and underserved regions.The research aims to analyze and evaluate various business models in terms of their technical,economic,and social viability within the unique geographic and policy context of Lao PDR.There are two level of the research objectives:High Level Objectives(HLO)and Concreted Research Objectives(CRO).For HLO is that an appropriated off-grid power generation business model for Laos supports the Lao PDR Government’s commitment to promote an inclusive green growth development agenda that ensures lowered GHG emissions and increased energy efficiency.The Lao PDR National Determined Contribution(NDC)to the United Nations Framework Convention on Climate Change(UNFCCC)notes the country’s ambitious plans to lower energy consumption and reduce GHG emissions.While the CRO are focused on learning strategies,regulation and practical lessons from other countries the ASEAN region on the off-grid development and business model.To analyze and investigate the environmental strategy of business model under external and internal context and related and considered factors.And finally,this is to conclude and recommend the off-grid power generation business model as the research conclusion,which will become a support mechanism for the companies to operate consistently over many years into the future according to ambitious goal for supplying modern and save energy for rural families by 2030.
基金University of Jeddah,Jeddah,Saudi Arabia,grant No.(UJ-23-SRP-10).
文摘Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and difficult scheduling of their optimal charging.To cope with these problems,this paper presents a novel approach for photovoltaic grid-connected microgrid EV charging station energy demand forecasting.The present study is part of a comprehensive framework involving emerging technologies such as drones and artificial intelligence designed to support the EVs’charging scheduling task.By using predictive algorithms for solar generation and load demand estimation,this approach aimed at ensuring dynamic and efficient energy flow between the solar energy source,the grid and the electric vehicles.The main contribution of this paper lies in developing an intelligent approach based on deep recurrent neural networks to forecast the energy demand using only its previous records.Therefore,various forecasters based on Long Short-term Memory,Gated Recurrent Unit,and their bi-directional and stacked variants were investigated using a real dataset collected from an EV charging station located at Trieste University(Italy).The developed forecasters have been evaluated and compared according to different metrics,including R,RMSE,MAE,and MAPE.We found that the obtained R values for both PV power generation and energy demand ranged between 97%and 98%.These study findings can be used for reliable and efficient decision-making on the management side of the optimal scheduling of the charging operations.
基金supported by Hainan Provincial Natural Science Foundation of China(No.524RC532)Research Startup Funding from Hainan Institute of Zhejiang University(No.0210-6602-A12202)Project of Sanya Yazhou Bay Science and Technology City(No.SKJC-2022-PTDX-009/010/011).
文摘Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sampling time period inevitably causes the wasteful use of communication resources.This paper proposes a self-triggered secondary control scheme under perturbations from false data injection(FDI)attacks.We designed a linear clock for each DG to trigger its controller at aperiodic and intermittent instants.Sub-sequently,a hash-based defense mechanism(HDM)is designed for detecting and eliminating malicious data infiltrated in the MGs.With the aid of HDM,a self-triggered control scheme achieves the secondary control objectives even in the presence of FDI attacks.Rigorous theoretical analyses and simulation results indicate that the introduced secondary control scheme significantly reduces communication costs and enhances the resilience of MGs under FDI attacks.
文摘Low-voltage direct current(DC)microgrids have recently emerged as a promising and viable alternative to traditional alternating cur-rent(AC)microgrids,offering numerous advantages.Consequently,researchers are exploring the potential of DC microgrids across var-ious configurations.However,despite the sustainability and accuracy offered by DC microgrids,they pose various challenges when integrated into modern power distribution systems.Among these challenges,fault diagnosis holds significant importance.Rapid fault detection in DC microgrids is essential to maintain stability and ensure an uninterrupted power supply to critical loads.A primary chal-lenge is the lack of standards and guidelines for the protection and safety of DC microgrids,including fault detection,location,and clear-ing procedures for both grid-connected and islanded modes.In response,this study presents a brief overview of various approaches for protecting DC microgrids.
基金the project“Research on Power SafetyDecision Support SystemBased on Large Language Models”(Science and Technology Project of Huaian Hongneng Group Co.,Ltd.)under Contract No.SGTYHT/23-JS-001.
文摘The rapid proliferation of renewable energy integration and escalating grid operational complexity have intensified demands for resilient self-healing mechanisms in modern power systems.Conventional approaches relying on static models and heuristic rules exhibit limitations in addressing dynamic fault propagation and multimodal data fusion.This study proposes a Transformer-enhanced intelligent microgrid self-healing framework that synergizes large languagemodels(LLMs)with adaptive optimization,achieving three key innovations:(1)Ahierarchical attention mechanism incorporating grid impedance characteristics for spatiotemporal feature extraction,(2)Dynamic covariance estimation Kalman filtering with wavelet packet energy entropy thresholds(Daubechies-4 basis,6-level decomposition),and(3)A grouping-stratified ant colony optimization algorithm featuring penalty-based pheromone updating.Validated on IEEE 33/100-node systems,our framework demonstrates 96.7%fault localization accuracy(23%improvement over STGCN)and 0.82-s protection delay,outperforming MILP-basedmethods by 37%in reconfiguration speed.The system maintains 98.4%self-healing success rate under cascading faults,resolving 89.3%of phase-toground faults within 500 ms through adaptive impedance matching.Field tests on 220 kV substations with 45%renewable penetration show 99.1%voltage stability(±5%deviation threshold)and 40%communication efficiency gains via compressed GOOSE message parsing.Comparative analysis reveals 12.6×faster convergence than conventional ACO in 1000-node networks,with 95.2%robustness against±25%load fluctuations.These advancements provide a scalable solution for real-time fault recovery in renewable-dense grids,reducing outage duration by 63%inmulti-agent simulations compared to centralized architectures.
基金supported by the National Natural Science Foundation of China(72271213)the Shenzhen Science and Technology Program(JCYJ20220530143800001 and RCYX20221008092927070)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(2024A1515240024)the National Key Research and Development Program of China(2022YFB2403500).
文摘Interconnection planning involving bi-directional converters(BdCs)is crucial for enhancing the reliability and robustness of hybrid alternating current(AC)/direct current(DC)microgrid clusters with high penetrations of renewable energy resources(RESs).However,challenges such as the non-convex nature of BdC efficiency and renewable energy uncertainty complicate the planning process.To address these issues,this paper proposes a tri-level BdC-based planning framework that incorporates dynamic BdC efficiency and a data-correlated uncertainty set(DcUS)derived from historical data patterns.The proposed framework employs a least-squares approximation to linearize BdC efficiency and constructs the DcUS to balance computational efficiency and solution robustness.Additionally,a fully parallel column and constraint generation algorithm is developed to solve the model efficiently.Numerical simulations on a practical hybrid AC/DC microgrid system demonstrate that the proposed method reduces interconnection costs by up to 21.8%compared to conventional uncertainty sets while ensuring robust operation under all considered scenarios.These results highlight the computational efficiency,robustness,and practicality of the proposed approach,making it a promising solution for modern power systems.
基金supported by CPS2E Laboratory,National Higher School of Mines of Rabat.
文摘In this study,we analyzed the untapped energy potential of remote mountainous regions in eastern Morocco,thereby addressing the research gap on sustainable electrification in such areas.We proposed a hybrid energy system corresponding to the local conditions and integrated the solar,wind,and biomass energy using batteries and green hydrogen as storage systems,considering the grid as a backup.Simulations conducted using HOMER Pro indicate an annual energy output of 5.6 GWh from solar,6.9 GWh from wind,and 1 GWh from biomass,thereby ensuring 100%renewable self-sufficiency.The system is highly cost-effective and achieves a levelized cost of energy of 0.024$/kWh while significantly reducing the greenhouse gas emissions by over 99%for CO_(2) and 100%for SO_(2).This study presents a sustainable,reliable,and economically viable solution for rural electrification,which concurs with SDG 7.
基金funded by“The Fourth Phase of 2022 Advantage Discipline Engineering-Control Science and Engineering”,grant number 4013000063.
文摘The rapid development of new energy power generation technology and the transformation of power electronics in the core equipment of source-grid-load drives the power system towards the“double-high”development pattern of“high proportion of renewable energy”and“high proportion of power electronic equipment”.To enhance the transient performance of AC/DC hybrid microgrid(HMG)in the context of“double-high,”aπtype virtual synchronous generator(π-VSG)control strategy is applied to bidirectional interface converter(BIC)to address the issues of lacking inertia and poor disturbance immunity caused by the high penetration rate of power electronic equipment and new energy.Firstly,the virtual synchronous generator mechanical motion equations and virtual capacitance equations are used to introduce the virtual inertia control equations that consider the transient performance of HMG;based on the equations,theπ-type equivalent control model of the BIC is established.Next,the inertia power is actively transferred through the BIC according to the load fluctuation to compensate for the system’s inertia deficit.Secondly,theπ-VSG control utilizes small-signal analysis to investigate howthe fundamental parameters affect the overall stability of the HMG and incorporates power step response curves to reveal the relationship between the control’s virtual parameters and transient performance.Finally,the PSCAD/EMTDC simulation results show that theπ-VSG control effectively improves the immunity of AC frequency and DC voltage in the HMG system under the load fluctuation condition,increases the stability of the HMG system and satisfies the power-sharing control objective between the AC and DC subgrids.