Acoustic-vortex(AV)tweezers ensure stable particle trapping at a zero-pressure center,while particle assembly between two vortex cores is still prevented by the high-potential barrier.Although a one-dimensional low-pr...Acoustic-vortex(AV)tweezers ensure stable particle trapping at a zero-pressure center,while particle assembly between two vortex cores is still prevented by the high-potential barrier.Although a one-dimensional low-pressure attractive path of particle assembly can be constructed by the interference between two independent cylindrical Bessel beams,it remains challenging to create two-dimensional(2D)neighboring vortexes using a source array in practical applications.In this paper,a three-step phase-reversal strategy of 2D particle assembly based on the synchronized evolution of a centrosymmetric array of M off-axis acoustic vortexes(OA-AVs)with a preset radial offset is proposed based on a ring array of planar sources.By introducing initial vortex phase differences of-2π/M and+2π/M to the vortex array,low-pressure patterns of an M-sided regular polygon and M-branched star are formed by connecting the vortex cores and the field center before and after the tangent state of adjacent OA-AVs.Center-oriented particle assembly is finally realized by a central AV constructed by coincident in-phase OA-AVs.The capability of particle manipulation in the lateral and radial directions is demonstrated by low-pressure patterns with acoustic radiation forces pointing to the field center during a synchronized central approach.The field evolution is certified by experimental field measurements for OA-AVs with different vo rtex numbers,initial vortex phase differences,and radial offsets using a ring array of 16 planar sources.The feasibility of particle assembly in two dimensions is also verified by the accurate manipulation of four particles using the low-pressure patterns of a four-sided polygon,a four-branched star,and a central AV in experiments.The three-step strategy paves a new way for 2D particle assembly based on the synchronize d evolution of centrosymmetric OA-AVs using a simplified single-sided source array,exhibiting excellent potential for the precise navigation and manipulation of cells and particles in biomedical applications.展开更多
Millimeter-wave transmission combined with Orbital Angular Momentum(OAM)has the advantage of reducing the loss of beam power and increasing the system capacity.However,to fulfill this advantage,the antennas at the tra...Millimeter-wave transmission combined with Orbital Angular Momentum(OAM)has the advantage of reducing the loss of beam power and increasing the system capacity.However,to fulfill this advantage,the antennas at the transmitter and receiver must be parallel and coaxial;otherwise,the accuracy of mode detection at the receiver can be seriously influenced.In this paper,we design an OAM millimeter-wave communication system for overcoming the above limitation.Specifically,the first contribution is that the power distribution between different OAM modes and the capacity of the system with different mode sets are analytically derived for performance analysis.The second contribution lies in that a novel mode selection scheme is proposed to reduce the total interference between different modes.Numerical results show that system performance is less affected by the offset when the mode set with smaller modes or larger intervals is selected.展开更多
This paper presents a novel view of the impact of electron collision off-axis positions on the dynamic properties and relativistic nonlinear Thomson inverse scattering of excited electrons within tightly focused, circ...This paper presents a novel view of the impact of electron collision off-axis positions on the dynamic properties and relativistic nonlinear Thomson inverse scattering of excited electrons within tightly focused, circularly polarized laser pulses of varying intensities. We examine the effects of the transverse ponderomotive force, specifically how the deviation angle and speed of electron motion are affected by the initial off-axis position of the electron and the peak amplitude of the laser pulse. When the laser pulse intensity is low, an increase in the electron's initial off-axis distance results in reduced spatial radiation power, improved collimation, super-continuum phenomena generation, red-shifting of the spectrum's harmonic peak, and significant symmetry in the radiation radial direction. However, in contradiction to conventional understandings,when the laser pulse intensity is relatively high, the properties of the relativistic nonlinear Thomson inverse scattering of the electron deviate from the central axis, changing direction in opposition to the aforementioned effects. After reaching a peak, these properties then shift again, aligning with the previous direction. The complex interplay of these effects suggests a greater nuance and intricacy in the relationship between laser pulse intensity, electron position, and scattering properties than previously thought.展开更多
The flexoelectric effect refers to the electromechanical coupling between electric polarization and mechanical strain gradient.It universally exists in a variety of materials in any space group,such as liquid crystals...The flexoelectric effect refers to the electromechanical coupling between electric polarization and mechanical strain gradient.It universally exists in a variety of materials in any space group,such as liquid crystals,dielectrics,biological materials,and semiconductors.Because of its unique size effect,nanoscale flexoelectricity has shown novel phenomena and promising applications in electronics,optronics,mechatronics,and photovoltaics.In this review,we provide a succinct report on the discovery and development of the flexoelectric effect,focusing on flexoelectric materials and related applications.Finally,we discuss recent flexoelectric research progress and still‐unsolved problems.展开更多
The effects of trapped electrons on off-axis lower hybrid current drive (LHCD) in tokamaks are studied, A computer code for solving the Fokker-Planck equation in a toroidal geometry is developed and employed. The co...The effects of trapped electrons on off-axis lower hybrid current drive (LHCD) in tokamaks are studied, A computer code for solving the Fokker-Planck equation in a toroidal geometry is developed and employed. The code is suitable for various auxiliary heating and current drive schemes in tokamak plasmas. The influence of the resonance regime on the current drive efficiency as well as the influence of trapped particle fraction on the current drive efficiency are emphasized. It is shown that, as an electrostatic force, the lower hybrid wave causes some of the trapped electrons to be untrapped and lose their energy, which can cut the LHCD efficiency by about 30%. The ITER scaling law is also used to estimate the trapped electron effects.展开更多
Agricultural intensification has led to an increase in monoculture and the use of chemical pesticides,resulting in a decline in biodiversity and a reduction in ecosystem services,particularly biological pest managemen...Agricultural intensification has led to an increase in monoculture and the use of chemical pesticides,resulting in a decline in biodiversity and a reduction in ecosystem services,particularly biological pest management.However,studies have shown that agroforestry can not only improve land productivity and biodiversity but also regulate some ecosystem services.This study reviews the impacts of physical and biological factors on herbivorous pests,parasites,and predatory natural enemies in fruit-crop agroforestry systems.Fruit-crop agroforestry systems provide high spatial heterogeneity by altering crop layouts,regulating the microclimate and soil quality,and offering food resources and shelter for natural enemies,thus promoting biological pest control.This enhances biological control and makes the agrocomplex system an effective tool for sustainable agriculture.Our research shows that volatile plant substances attract or repel pests and natural enemies based on the characteristics of the insects themselves.When scientifically designed,fruit-crop agroforestry systems provide high spatial heterogeneity and favorable microclimatic conditions,which enhance biological pest control and make the agroforestry system an effective tool for sustainable agriculture.Our research shows that fruit-crop agroforestry systems can provide richer food resources and habitat,enhancing biological pest control and improving pest management.展开更多
Liver cancer is the fourth cause of cancer-related deaths and the primary cause of death in patients with compensated cirrhosis.In recent years,the role of traditional Chinese medicine in the treatment of liver cancer...Liver cancer is the fourth cause of cancer-related deaths and the primary cause of death in patients with compensated cirrhosis.In recent years,the role of traditional Chinese medicine in the treatment of liver cancer has attracted more and more attention and recognition.Luteolin(LUT)and glycyrrhetinic(GA)are natural compounds extracted from Chinese herbal medicine.LUT exhibits various biological activity including anti-inflammatory,antibacterial,antiviral,anti-tumor,and neuroprotective effects.GA significantly inhibits the growth and metastasis of cancer cells.However,the low water solubility of both compounds hinders their clinical applications.In this study,rod-shaped nanoparticles(NPs)self-assembled from LUT and GA were designed to enhance drug solubility and tumor-targeting capability.We verified that the assembly mechanism of the NPs was π-π stacking.These NPs significantly inhibited the proliferation of liver cancer cells while had no significant effect on normal liver cells.In a mouse model of liver cancer,these NPs demonstrated superior tumor-targeting ability due to the enhanced permeability and retention effect,and the affinity of GA for liver cancer cells,resulting in better therapeutic efficacy with lower systemic toxicity.Results of network pharmacology analysis showed that LUT and GA respectively targeted estrogen receptor 1(ESR1)protein and cyclin-dependent kinase 1(CDK1)protein to corporately induce tumor cell cycle arrest,which induced the inhibition of tumor cell proliferation.In conclusion,this study provides a novel reference for the treatment of liver cancer.展开更多
Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P...Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P fractions is potentially an adaptive strategy for plants to cope with soil N(P)availability and nutrient-limiting conditions.However,the impact of the interactions between imbalanced anthropogenic N and P inputs on the concentrations and allocation proportions of leaf P fractions in forest woody plants remains elusive.We conducted a metaanalysis of data about the concentrations and allocation proportions of leaf P fractions,specifically associated with individual and combined additions of N and P in evergreen forests,the dominant vegetation type in southern China where the primary productivity is usually considered limited by P.This assessment allowed us to quantitatively evaluate the effects of N and P additions alone and interactively on leaf P allocation and use strategies.Nitrogen addition(exacerbating P limitation)reduced the concentrations of leaf total P and different leaf P fractions.Nitrogen addition reduced the allocation to leaf metabolic P but increased the allocation to other fractions,while P addition showed opposite trends.The simultaneous additions of N and P showed an antagonistic(mutual suppression)effect on the concentrations of leaf P fractions,but an additive(summary)effect on the allocation proportions of leaf P fractions.These results highlight the importance of strategies of leaf P fraction allocation in forest plants under changes in environmental nutrient availability.Importantly,our study identified critical interactions associated with combined N and P inputs that affect leaf P fractions,thus aiding in predicting plant acclimation strategies in the context of intensifying and imbalanced anthropogenic nutrient inputs.展开更多
In the practice of healthcare,patient-reported outcomes(PROs)and PRO measures(PROMs)are used as an attempt to observe the changes in complex clinical situations.They guide us in making decisions based on the evidence ...In the practice of healthcare,patient-reported outcomes(PROs)and PRO measures(PROMs)are used as an attempt to observe the changes in complex clinical situations.They guide us in making decisions based on the evidence regarding patient care by recording the change in outcomes for a particular treatment to a given condition and finally to understand whether a patient will benefit from a particular treatment and to quantify the treatment effect.For any PROM to be usable in health care,we need it to be reliable,encapsulating the points of interest with the potential to detect any real change.Using structured outcome measures routinely in clinical practice helps the physician to understand the functional limitation of a patient that would otherwise not be clear in an office interview,and this allows the physician and patient to have a meaningful conver-sation as well as a customized plan for each patient.Having mentioned the rationale and the benefits of PROMs,understanding the quantification process is crucial before embarking on management decisions.A better interpretation of change needs to identify the treatment effect based on clinical relevance for a given condition.There are a multiple set of measurement indices to serve this effect and most of them are used interchangeably without clear demarcation on their differences.This article details the various quantification metrics used to evaluate the treatment effect using PROMs,their limitations and the scope of usage and implementation in clinical practice.展开更多
Structural regulation of Pd-based electrocatalytic hydrodechlorination(EHDC)catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challe...Structural regulation of Pd-based electrocatalytic hydrodechlorination(EHDC)catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challenging.Herein,a support electron inductive effect of Pd-Mn/Ni foam catalyst was proposed via in-situ Mn doping to optimize the electronic structure of the Ni foam(NF),which can inductive regulation of Pd for improving the EHDC performance.The mass activity and current efficiency of Pd-Mn/NF catalyst are 2.91 and 1.34 times superior to that of Pd/NF with 2,4-dichlorophenol as model compound,respectively.The Mn-doped interlayer optimized the electronic structure of Pd by bringing the d-state closer to the Fermi level than Pd on the NF surface,which optimizied the binding of EHDC intermediates.Additionally,the Mn-doped interlayer acted as a promoter for generating H∗and accelerating the EHDC reaction.This work presents a simple and effective regulation strategy for constructing high-efficient cathode catalyst for the EHDC of chlorinated organic compounds.展开更多
Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer...Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer and ion transport kinetics due to weak turbulence and low electric intensity in flow electrodes,both restricted by the current collectors.Herein,a new tip-array current collector(designated as T-CC)was developed to replace the conventional planar current collectors,which intensifies both the charge transfer and ion transport significantly.The effects of tip arrays on flow and electric fields were studied by both computational simulations and electrochemical impedance spectroscopy,which revealed the reduction of ion transport barrier,charge transport barrier and internal resistance.With the voltage increased from 1.0 to 1.5 and 2.0 V,the T-CC-based FCDI system(T-FCDI)exhibited average salt removal rates(ASRR)of 0.18,0.50,and 0.89μmol cm^(-2) min^(-1),respectively,which are 1.82,2.65,and 2.48 folds higher than that of the conventional serpentine current collectors,and 1.48,1.67,and 1.49 folds higher than that of the planar current collectors.Meanwhile,with the solid content in flow electrodes increased from 1 to 5 wt%,the ASRR for T-FCDI increased from 0.29 to 0.50μmol cm^(-2) min^(-1),which are 1.70 and 1.67 folds higher than that of the planar current collectors.Additionally,a salt removal efficiency of 99.89%was achieved with T-FCDI and the charge efficiency remained above 95%after 24 h of operation,thus showing its superior long-term stability.展开更多
Objective The use of lasers has been an important part of urology in the treatment of stone and prostate disease.The thermal effects of lasers in lithotripsy have been a subject of debate over the years.The objective ...Objective The use of lasers has been an important part of urology in the treatment of stone and prostate disease.The thermal effects of lasers in lithotripsy have been a subject of debate over the years.The objective of this review was to assess the current state of knowledge available on the thermal effects of lasers in lithotripsy,as well as explore any new areas where studies are needed.Methods In August 2022,a keyword search on Google Scholar,PubMed,and Scopus for all papers containing the phrases“thermal effects”AND“laser”AND“lithotripsy”AND“urology”was done followed by citation jumping to other studies pertaining to the topic and 35 relevant papers were included in our study.The data from relevant papers were segregated into five groups according to the factor studied and type of study,and tables were created for a comparison of data.Results Temperature above the threshold of 43℃ was reached only when the power was>40 W and when there was adequate irrigation(at least 15–30 mL/min).Shorter lasing time divided by lithotripsy time or operator duty cycles less than 70%also resulted in a smaller temperature rise.Conclusion At least eight factors modify the thermal effects of lasers,and most importantly,the use of chilled irrigation at higher perfusion rates,lower power settings of<40 W,and with a shorter operator duty cycle will help to prevent thermal injuries from occurring.Stones impacted in the ureter or pelvi-ureteric junction further increase the probability of thermal injuries during laser firing.展开更多
Exosomes(Exos)are extracellular vesicles secreted by cells and serve as crucial mediators of intercellular communication.They play a pivotal role in the pathogenesis and progression of various diseases and offer promi...Exosomes(Exos)are extracellular vesicles secreted by cells and serve as crucial mediators of intercellular communication.They play a pivotal role in the pathogenesis and progression of various diseases and offer promising avenues for therapeutic interventions.Exos derived from mesenchymal stem cells(MSCs)have significant immunomodulatory properties.They effectively regulate immune responses by modulating both innate and adaptive immunity.These Exos can inhibit excessive inflammatory responses and promote tissue repair.Moreover,they participate in antigen presentation,which is essential for activating immune responses.The cargo of these Exos,including ligands,proteins,and microRNAs,can suppress T cell activity or enhance the population of immunosuppressive cells to dampen the immune response.By inhibiting lymphocyte proliferation,acting on macrophages,and increasing the population of regulatory T cells,these Exos contribute to maintaining immune and metabolic homeostasis.Furthermore,they can activate immune-related signaling pathways or serve as vehicles to deliver microRNAs and other bioactive substances to target tumor cells,which holds potential for immunotherapy applications.Given the immense therapeutic potential of MSC-derived Exos,this review comprehensively explores their mechanisms of immune regulation and therapeutic applications in areas such as infection control,tumor suppression,and autoimmune disease management.This article aims to provide valuable insights into the mechanisms behind the actions of MSC-derived Exos,offering theoretical references for their future clinical utilization as cell-free drug preparations.展开更多
Excellent progress has been made in the last few decades in the cure rates of pediatric malignancies,with more than 80%of children with cancer who have access to contemporary treatment being cured.However,the therapie...Excellent progress has been made in the last few decades in the cure rates of pediatric malignancies,with more than 80%of children with cancer who have access to contemporary treatment being cured.However,the therapies responsible for this survival can also produce adverse physical and psychological long-term outcomes,referred to as late effects,which appear months to years after the completion of cancer treatment.Research has shown that 60%to 90%of childhood cancer survivors(CCSs)develop one or more chronic health conditions,and 20%to 80%of survivors experience severe or life-threatening complications during adulthood.Therefore,understanding the late side effects of such treatments is important to improve the health and quality of life of the growing population of CCSs.展开更多
Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the ...Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the Jahn-Teller(JT)effect associated with Mn-ion,the cathode exhibits poor structural stability.Herein,we propose a strategy to enhance structural stability by introducing robust metal-oxygen(M-O)bonds,which can realize the pinning effect to constrain the distortion in the transition metal(TM)layer.Concurrently,all the elements employed have exceptionally high crustal abundance.As a proof of concept,the designed K_(0.5)Mn_(0.9)Mg_(0.025)Ti_(0.025)Al_(0.05)O_(2)cathode exhibited a discharge capacity of approximately 100 mA h g^(-1)at 20 mA g^(-1)with 79%capacity retention over 50 cycles,and 73%capacity retention over 200 cycles at 200 mA g^(-1),showcased much better battery performance than the designed cathode with less robust M-O bonds.The properties of the formed M-O bonds were investigated using theoretical calculations.The enhanced dynamics,mitigated JT effect,and improved structural stability were elucidated through the in-situ X-ray diffractometer(XRD),in-situ electrochemical impedance spectroscopy(EIS)(and distribution of relaxation times(DRT)method),and ex-situ X-ray absorption fine structure(XAFS)tests.This study holds substantial reference value for the future design of costeffective Mn-based layered cathodes for PIBs.展开更多
With the rapid development of artificial intelligence,magnetocaloric materials as well as other materials are being developed with increased efficiency and enhanced performance.However,most studies do not take phase t...With the rapid development of artificial intelligence,magnetocaloric materials as well as other materials are being developed with increased efficiency and enhanced performance.However,most studies do not take phase transitions into account,and as a result,the predictions are usually not accurate enough.In this context,we have established an explicable relationship between alloy compositions and phase transition by feature imputation.A facile machine learning is proposed to screen candidate NiMn-based Heusler alloys with desired magnetic entropy change and magnetic transition temperature with a high accuracy R^(2)≈0.98.As expected,the measured properties of prepared NiMn-based alloys,including phase transition type,magnetic entropy changes and transition temperature,are all in good agreement with the ML predictions.As well as being the first to demonstrate an explicable relationship between alloy compositions,phase transitions and magnetocaloric properties,our proposed ML model is highly predictive and interpretable,which can provide a strong theoretical foundation for identifying high-performance magnetocaloric materials in the future.展开更多
BACKGROUND Sensitivity to stress is essential in the onset,clinical symptoms,course,and prognosis of major depressive disorder(MDD).Meanwhile,it was unclear how variously classified but connected stress-sensitivity va...BACKGROUND Sensitivity to stress is essential in the onset,clinical symptoms,course,and prognosis of major depressive disorder(MDD).Meanwhile,it was unclear how variously classified but connected stress-sensitivity variables affect MDD.We hypothesize that high-level trait-and state-related stress-sensitivity factors may have different cumulative effects on the clinical symptoms and follow-up outcomes of MDD.AIM To investigate how stress-sensitivity factors added up and affected MDD clinical symptoms and follow-up results.METHODS In this prospective study,281 MDD patients were enrolled from a tertiary care setting.High-level stress-sensitivity factors were classified as trait anxiety,state anxiety,perceived stress,and neuroticism,with a total score in the top quartile of the research cohort.The cumulative effects of stress-sensitivity factors on cognitive dysfunction,disability and functional impairment,suicide risk,and depressive and anxiety symptoms were examined using an analysis of variance with linear trend analysis.Correlations were investigated further using multiple regression analysis.RESULTS Regarding high-level stress-sensitivity factors,53.40%of patients had at least one at baseline,and 29.61%had two or more.Four high-level stress-sensitivity components had significant cumulative impacts on MDD symptoms at baseline(all P<0.001).Perceived stress predicted the greatest effect sizes of state-related factors on depressive symptoms(partialη^(2)=0.153;standardizedβ=0.195;P<0.05).The follow-up outcomes were significantly impacted only by the high-level trait-related components,mainly when it came to depressive symptoms and suicide risk,which were predicted by trait anxiety and neuroticism,respectively(partialη^(2)=0.204 and 0.156;standardizedβ=0.247 and 0.392;P<0.05).CONCLUSION To enhance outcomes of MDD and lower the suicide risk,screening for stress-sensitivity factors and considering multifaceted measures,mainly focusing on trait-related ones,should be addressed clinically.展开更多
During the hyperacute phase of intracerebral hemorrhage(ICH),the mass effect and blood components mechanically lead to brain damage and neurotoxicity.Our findings revealed that the mass effect and transferrin precipit...During the hyperacute phase of intracerebral hemorrhage(ICH),the mass effect and blood components mechanically lead to brain damage and neurotoxicity.Our findings revealed that the mass effect and transferrin precipitate neuronal oxidative stress and iron uptake,culminating in ferroptosis in neurons.M6A(N6-methyladenosine)modification,the most prevalent mRNA modification,plays a critical role in various cell death pathways.The Fto(fat mass and obesity-associated protein)demethylase has been implicated in numerous signaling pathways of neurological diseases by modulating m6A mRNA levels.Regulation of Fto protein levels in neurons effectively mitigated mass effect-induced neuronal ferroptosis.Applying nanopore direct RNA sequencing,we identified voltage-dependent anion channel 3(Vdac3)as a potential target associated with ferroptosis.Fto influenced neuronal ferroptosis by regulating the m6A methylation of Vdac3 mRNA.These findings elucidate the intricate interplay between Fto,Vdac3,m6A methylation,and ferroptosis in neurons during the hyperacute phase post-ICH and suggest novel therapeutic strategies for ICH.展开更多
During the propagation of high-power lasers within internal channels,the laser beam heats the propagation medium,causing the thermal blooming effect that degrades the beam quality at the output.The intricate configura...During the propagation of high-power lasers within internal channels,the laser beam heats the propagation medium,causing the thermal blooming effect that degrades the beam quality at the output.The intricate configuration of the optical path within the internal channel necessitates complex and time-consuming efforts to assess the impact of thermal blooming effect on the optical path.To meet the engineering need for rapid evaluation of thermal blooming effect in optical paths,this study proposed a rapid simulation method for the thermal blooming effect in internal optical paths based on the finite element method.This method discretized the fluid region into infinitesimal elements and employed finite element method for flow field analysis.A simplified analytical model of the flow field region in complex internal channels was established,and regions with similar thermal blooming effect were divided within this model.Based on the calculated optical path differences within these regions,numerical simulations of phase distortion caused by thermal blooming were conducted.The calculated result were compared with those obtained using the existing methods.The findings reveal that for complex optical paths,the discrepancy between the two approaches is less than 3.6%,with similar phase distortion patterns observed.For L-type units,this method and the existing methods identify the same primary factors influencing aberrations and exhibit consistent trends in their variation.This method was used to analyze the impact of thermal blooming effect in a straight channel under different gravity directions.The results show that phase distortion varies with changes in the direction of gravity,and the magnitude of the phase difference is strongly correlated with the component of gravity perpendicular to the optical axis.Compared to the existing methods,this approach offers greater flexibility,obviates the need for complex custom analysis programming.The analytical results of this method enable a rapid assessment of the thermal blooming effect in optical paths within the internal channel.This is especially useful during the engineering design.These results also provide crucial references for developing strategies to suppress thermal blooming effect.展开更多
NH_(3)-SCR(SCR:Selective catalytic reduction)is an effective technology for the de-NO_(x)process from both mobile and stationary pollution sources,and the most commonly used catalysts are the vanadia-based catalysts.A...NH_(3)-SCR(SCR:Selective catalytic reduction)is an effective technology for the de-NO_(x)process from both mobile and stationary pollution sources,and the most commonly used catalysts are the vanadia-based catalysts.An innovative V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst for NO_(x)removal was prepared in this study.The influences of Ce and Ta in the V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst on the SCR performance and physicochemical properties were investigated.The V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst not only exhibited excellent SCR activity in a wide temperature window,but also presented strong resistance to H_(2)Oand SO_(2)at 275◦C.A series of characterizationmethods was used to study the catalysts,including H2-temperature programmed reduction,X-ray photoelectron spectroscopy,NH_(3)-temperature programmed desorption,etc.It was discovered that a synergistic effect existed between Ce and Ta species.The introduction of Ce and Ta enlarged the specific surface area,increased the amount of acid sites and the ratio of Ce^(3+),(V^(3+)+V^(4+))and Oα,and strengthened the redox capability which were related to synergistic effect between Ce and Ta species,significantly improving the NH_(3)-SCR activity.展开更多
基金funded by the National Nature Science Foundation of China(11934009,12174198,and 12227808)the Natural Science Foundation of Jiangsu Province,China(BE2022814)+2 种基金the Universal Technology for Primary and Secondary Schoolsthe National Research Institute for Teaching Materialsthe Qing Lan Project of Jiangsu Province,China。
文摘Acoustic-vortex(AV)tweezers ensure stable particle trapping at a zero-pressure center,while particle assembly between two vortex cores is still prevented by the high-potential barrier.Although a one-dimensional low-pressure attractive path of particle assembly can be constructed by the interference between two independent cylindrical Bessel beams,it remains challenging to create two-dimensional(2D)neighboring vortexes using a source array in practical applications.In this paper,a three-step phase-reversal strategy of 2D particle assembly based on the synchronized evolution of a centrosymmetric array of M off-axis acoustic vortexes(OA-AVs)with a preset radial offset is proposed based on a ring array of planar sources.By introducing initial vortex phase differences of-2π/M and+2π/M to the vortex array,low-pressure patterns of an M-sided regular polygon and M-branched star are formed by connecting the vortex cores and the field center before and after the tangent state of adjacent OA-AVs.Center-oriented particle assembly is finally realized by a central AV constructed by coincident in-phase OA-AVs.The capability of particle manipulation in the lateral and radial directions is demonstrated by low-pressure patterns with acoustic radiation forces pointing to the field center during a synchronized central approach.The field evolution is certified by experimental field measurements for OA-AVs with different vo rtex numbers,initial vortex phase differences,and radial offsets using a ring array of 16 planar sources.The feasibility of particle assembly in two dimensions is also verified by the accurate manipulation of four particles using the low-pressure patterns of a four-sided polygon,a four-branched star,and a central AV in experiments.The three-step strategy paves a new way for 2D particle assembly based on the synchronize d evolution of centrosymmetric OA-AVs using a simplified single-sided source array,exhibiting excellent potential for the precise navigation and manipulation of cells and particles in biomedical applications.
基金supported in part by The National Natural Science Foundation of China(62071255,62171232,61771257)The Major Projects of the Natural Science Foundation of the Jiangsu Higher Education Institutions(20KJA510009)+3 种基金The Open Research Fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology(Nanjing University of Posts and Telecommunications),Ministry of Education(JZNY201914)The open research fund of National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology,Nanjing University of Posts and Telecommunications(KFJJ20170305)The Research Fund of Nanjing University of Posts and Telecommunications(NY218012)Henan province science and technology research projects High and new technology(No.182102210106).
文摘Millimeter-wave transmission combined with Orbital Angular Momentum(OAM)has the advantage of reducing the loss of beam power and increasing the system capacity.However,to fulfill this advantage,the antennas at the transmitter and receiver must be parallel and coaxial;otherwise,the accuracy of mode detection at the receiver can be seriously influenced.In this paper,we design an OAM millimeter-wave communication system for overcoming the above limitation.Specifically,the first contribution is that the power distribution between different OAM modes and the capacity of the system with different mode sets are analytically derived for performance analysis.The second contribution lies in that a novel mode selection scheme is proposed to reduce the total interference between different modes.Numerical results show that system performance is less affected by the offset when the mode set with smaller modes or larger intervals is selected.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10947170/A05 and 11104291)the Natural Science Fund for Colleges and Universities in Jiangsu Province (Grant No.10KJB140006)+2 种基金the Natural Sciences Foundation of Shanghai (Grant No.11ZR1441300)the Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant No.NY221098)the Jiangsu Qing Lan Project for their sponsorship。
文摘This paper presents a novel view of the impact of electron collision off-axis positions on the dynamic properties and relativistic nonlinear Thomson inverse scattering of excited electrons within tightly focused, circularly polarized laser pulses of varying intensities. We examine the effects of the transverse ponderomotive force, specifically how the deviation angle and speed of electron motion are affected by the initial off-axis position of the electron and the peak amplitude of the laser pulse. When the laser pulse intensity is low, an increase in the electron's initial off-axis distance results in reduced spatial radiation power, improved collimation, super-continuum phenomena generation, red-shifting of the spectrum's harmonic peak, and significant symmetry in the radiation radial direction. However, in contradiction to conventional understandings,when the laser pulse intensity is relatively high, the properties of the relativistic nonlinear Thomson inverse scattering of the electron deviate from the central axis, changing direction in opposition to the aforementioned effects. After reaching a peak, these properties then shift again, aligning with the previous direction. The complex interplay of these effects suggests a greater nuance and intricacy in the relationship between laser pulse intensity, electron position, and scattering properties than previously thought.
基金support of the National Natural Science Foundation of China(Grant Nos.52192611,51872031,61904013,and 62405157)China Postdoctoral Science Foundation(Nos.2023M741890 and GZC20231215)the Fundamental Research Funds for the Central Universities.
文摘The flexoelectric effect refers to the electromechanical coupling between electric polarization and mechanical strain gradient.It universally exists in a variety of materials in any space group,such as liquid crystals,dielectrics,biological materials,and semiconductors.Because of its unique size effect,nanoscale flexoelectricity has shown novel phenomena and promising applications in electronics,optronics,mechatronics,and photovoltaics.In this review,we provide a succinct report on the discovery and development of the flexoelectric effect,focusing on flexoelectric materials and related applications.Finally,we discuss recent flexoelectric research progress and still‐unsolved problems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10675043, 10575031 and 10675042).
文摘The effects of trapped electrons on off-axis lower hybrid current drive (LHCD) in tokamaks are studied, A computer code for solving the Fokker-Planck equation in a toroidal geometry is developed and employed. The code is suitable for various auxiliary heating and current drive schemes in tokamak plasmas. The influence of the resonance regime on the current drive efficiency as well as the influence of trapped particle fraction on the current drive efficiency are emphasized. It is shown that, as an electrostatic force, the lower hybrid wave causes some of the trapped electrons to be untrapped and lose their energy, which can cut the LHCD efficiency by about 30%. The ITER scaling law is also used to estimate the trapped electron effects.
文摘Agricultural intensification has led to an increase in monoculture and the use of chemical pesticides,resulting in a decline in biodiversity and a reduction in ecosystem services,particularly biological pest management.However,studies have shown that agroforestry can not only improve land productivity and biodiversity but also regulate some ecosystem services.This study reviews the impacts of physical and biological factors on herbivorous pests,parasites,and predatory natural enemies in fruit-crop agroforestry systems.Fruit-crop agroforestry systems provide high spatial heterogeneity by altering crop layouts,regulating the microclimate and soil quality,and offering food resources and shelter for natural enemies,thus promoting biological pest control.This enhances biological control and makes the agrocomplex system an effective tool for sustainable agriculture.Our research shows that volatile plant substances attract or repel pests and natural enemies based on the characteristics of the insects themselves.When scientifically designed,fruit-crop agroforestry systems provide high spatial heterogeneity and favorable microclimatic conditions,which enhance biological pest control and make the agroforestry system an effective tool for sustainable agriculture.Our research shows that fruit-crop agroforestry systems can provide richer food resources and habitat,enhancing biological pest control and improving pest management.
基金the financial support from Henan Province Natural Science Foundation(No.252300420583)Henan Provincial Science and Technology Research Project(Nos.242102310455,242102310473,242102310517)the Key Project of Science and Technology Research funded by the Henan Provincial Department of Education(No.24A350002)。
文摘Liver cancer is the fourth cause of cancer-related deaths and the primary cause of death in patients with compensated cirrhosis.In recent years,the role of traditional Chinese medicine in the treatment of liver cancer has attracted more and more attention and recognition.Luteolin(LUT)and glycyrrhetinic(GA)are natural compounds extracted from Chinese herbal medicine.LUT exhibits various biological activity including anti-inflammatory,antibacterial,antiviral,anti-tumor,and neuroprotective effects.GA significantly inhibits the growth and metastasis of cancer cells.However,the low water solubility of both compounds hinders their clinical applications.In this study,rod-shaped nanoparticles(NPs)self-assembled from LUT and GA were designed to enhance drug solubility and tumor-targeting capability.We verified that the assembly mechanism of the NPs was π-π stacking.These NPs significantly inhibited the proliferation of liver cancer cells while had no significant effect on normal liver cells.In a mouse model of liver cancer,these NPs demonstrated superior tumor-targeting ability due to the enhanced permeability and retention effect,and the affinity of GA for liver cancer cells,resulting in better therapeutic efficacy with lower systemic toxicity.Results of network pharmacology analysis showed that LUT and GA respectively targeted estrogen receptor 1(ESR1)protein and cyclin-dependent kinase 1(CDK1)protein to corporately induce tumor cell cycle arrest,which induced the inhibition of tumor cell proliferation.In conclusion,this study provides a novel reference for the treatment of liver cancer.
基金supported by the National Natural Science Foundation of China(No.41473068)supported by China Postdoctoral Science Foundation(No.2022M722667)。
文摘Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P fractions is potentially an adaptive strategy for plants to cope with soil N(P)availability and nutrient-limiting conditions.However,the impact of the interactions between imbalanced anthropogenic N and P inputs on the concentrations and allocation proportions of leaf P fractions in forest woody plants remains elusive.We conducted a metaanalysis of data about the concentrations and allocation proportions of leaf P fractions,specifically associated with individual and combined additions of N and P in evergreen forests,the dominant vegetation type in southern China where the primary productivity is usually considered limited by P.This assessment allowed us to quantitatively evaluate the effects of N and P additions alone and interactively on leaf P allocation and use strategies.Nitrogen addition(exacerbating P limitation)reduced the concentrations of leaf total P and different leaf P fractions.Nitrogen addition reduced the allocation to leaf metabolic P but increased the allocation to other fractions,while P addition showed opposite trends.The simultaneous additions of N and P showed an antagonistic(mutual suppression)effect on the concentrations of leaf P fractions,but an additive(summary)effect on the allocation proportions of leaf P fractions.These results highlight the importance of strategies of leaf P fraction allocation in forest plants under changes in environmental nutrient availability.Importantly,our study identified critical interactions associated with combined N and P inputs that affect leaf P fractions,thus aiding in predicting plant acclimation strategies in the context of intensifying and imbalanced anthropogenic nutrient inputs.
文摘In the practice of healthcare,patient-reported outcomes(PROs)and PRO measures(PROMs)are used as an attempt to observe the changes in complex clinical situations.They guide us in making decisions based on the evidence regarding patient care by recording the change in outcomes for a particular treatment to a given condition and finally to understand whether a patient will benefit from a particular treatment and to quantify the treatment effect.For any PROM to be usable in health care,we need it to be reliable,encapsulating the points of interest with the potential to detect any real change.Using structured outcome measures routinely in clinical practice helps the physician to understand the functional limitation of a patient that would otherwise not be clear in an office interview,and this allows the physician and patient to have a meaningful conver-sation as well as a customized plan for each patient.Having mentioned the rationale and the benefits of PROMs,understanding the quantification process is crucial before embarking on management decisions.A better interpretation of change needs to identify the treatment effect based on clinical relevance for a given condition.There are a multiple set of measurement indices to serve this effect and most of them are used interchangeably without clear demarcation on their differences.This article details the various quantification metrics used to evaluate the treatment effect using PROMs,their limitations and the scope of usage and implementation in clinical practice.
基金supported by the National Natural Science Foundation of China(Nos.22178388 and 22108306)Taishan Scholars Program of Shandong Province(No.tsqn201909065)Chongqing Science and Technology Bureau(No.cstc2019jscx-gksb X0032).
文摘Structural regulation of Pd-based electrocatalytic hydrodechlorination(EHDC)catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challenging.Herein,a support electron inductive effect of Pd-Mn/Ni foam catalyst was proposed via in-situ Mn doping to optimize the electronic structure of the Ni foam(NF),which can inductive regulation of Pd for improving the EHDC performance.The mass activity and current efficiency of Pd-Mn/NF catalyst are 2.91 and 1.34 times superior to that of Pd/NF with 2,4-dichlorophenol as model compound,respectively.The Mn-doped interlayer optimized the electronic structure of Pd by bringing the d-state closer to the Fermi level than Pd on the NF surface,which optimizied the binding of EHDC intermediates.Additionally,the Mn-doped interlayer acted as a promoter for generating H∗and accelerating the EHDC reaction.This work presents a simple and effective regulation strategy for constructing high-efficient cathode catalyst for the EHDC of chlorinated organic compounds.
基金supported by the Shenzhen Science and Technology Program(JCYJ20230808105111022,JCYJ20220818095806013)Natural Science Foundation of Guangdong(2023A1515012267)+1 种基金the National Natural Science Foundation of China(22178223)the Royal Society/NSFC cost share program(IEC\NSFC\223372).
文摘Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer and ion transport kinetics due to weak turbulence and low electric intensity in flow electrodes,both restricted by the current collectors.Herein,a new tip-array current collector(designated as T-CC)was developed to replace the conventional planar current collectors,which intensifies both the charge transfer and ion transport significantly.The effects of tip arrays on flow and electric fields were studied by both computational simulations and electrochemical impedance spectroscopy,which revealed the reduction of ion transport barrier,charge transport barrier and internal resistance.With the voltage increased from 1.0 to 1.5 and 2.0 V,the T-CC-based FCDI system(T-FCDI)exhibited average salt removal rates(ASRR)of 0.18,0.50,and 0.89μmol cm^(-2) min^(-1),respectively,which are 1.82,2.65,and 2.48 folds higher than that of the conventional serpentine current collectors,and 1.48,1.67,and 1.49 folds higher than that of the planar current collectors.Meanwhile,with the solid content in flow electrodes increased from 1 to 5 wt%,the ASRR for T-FCDI increased from 0.29 to 0.50μmol cm^(-2) min^(-1),which are 1.70 and 1.67 folds higher than that of the planar current collectors.Additionally,a salt removal efficiency of 99.89%was achieved with T-FCDI and the charge efficiency remained above 95%after 24 h of operation,thus showing its superior long-term stability.
文摘Objective The use of lasers has been an important part of urology in the treatment of stone and prostate disease.The thermal effects of lasers in lithotripsy have been a subject of debate over the years.The objective of this review was to assess the current state of knowledge available on the thermal effects of lasers in lithotripsy,as well as explore any new areas where studies are needed.Methods In August 2022,a keyword search on Google Scholar,PubMed,and Scopus for all papers containing the phrases“thermal effects”AND“laser”AND“lithotripsy”AND“urology”was done followed by citation jumping to other studies pertaining to the topic and 35 relevant papers were included in our study.The data from relevant papers were segregated into five groups according to the factor studied and type of study,and tables were created for a comparison of data.Results Temperature above the threshold of 43℃ was reached only when the power was>40 W and when there was adequate irrigation(at least 15–30 mL/min).Shorter lasing time divided by lithotripsy time or operator duty cycles less than 70%also resulted in a smaller temperature rise.Conclusion At least eight factors modify the thermal effects of lasers,and most importantly,the use of chilled irrigation at higher perfusion rates,lower power settings of<40 W,and with a shorter operator duty cycle will help to prevent thermal injuries from occurring.Stones impacted in the ureter or pelvi-ureteric junction further increase the probability of thermal injuries during laser firing.
基金Supported by the National Natural Science Foundation of China,No.82072537the General Project of Hunan Natural Science Foundation,No.2022JJ30412 and No.2021JJ30464.
文摘Exosomes(Exos)are extracellular vesicles secreted by cells and serve as crucial mediators of intercellular communication.They play a pivotal role in the pathogenesis and progression of various diseases and offer promising avenues for therapeutic interventions.Exos derived from mesenchymal stem cells(MSCs)have significant immunomodulatory properties.They effectively regulate immune responses by modulating both innate and adaptive immunity.These Exos can inhibit excessive inflammatory responses and promote tissue repair.Moreover,they participate in antigen presentation,which is essential for activating immune responses.The cargo of these Exos,including ligands,proteins,and microRNAs,can suppress T cell activity or enhance the population of immunosuppressive cells to dampen the immune response.By inhibiting lymphocyte proliferation,acting on macrophages,and increasing the population of regulatory T cells,these Exos contribute to maintaining immune and metabolic homeostasis.Furthermore,they can activate immune-related signaling pathways or serve as vehicles to deliver microRNAs and other bioactive substances to target tumor cells,which holds potential for immunotherapy applications.Given the immense therapeutic potential of MSC-derived Exos,this review comprehensively explores their mechanisms of immune regulation and therapeutic applications in areas such as infection control,tumor suppression,and autoimmune disease management.This article aims to provide valuable insights into the mechanisms behind the actions of MSC-derived Exos,offering theoretical references for their future clinical utilization as cell-free drug preparations.
文摘Excellent progress has been made in the last few decades in the cure rates of pediatric malignancies,with more than 80%of children with cancer who have access to contemporary treatment being cured.However,the therapies responsible for this survival can also produce adverse physical and psychological long-term outcomes,referred to as late effects,which appear months to years after the completion of cancer treatment.Research has shown that 60%to 90%of childhood cancer survivors(CCSs)develop one or more chronic health conditions,and 20%to 80%of survivors experience severe or life-threatening complications during adulthood.Therefore,understanding the late side effects of such treatments is important to improve the health and quality of life of the growing population of CCSs.
基金financially supported by the National Natural Science Foundation of China(NSFC)(52274295)the Natural Science Foundation of Hebei Province(E2021501029)+3 种基金the Fundamental Research Funds for the Central Universities(N2423051,N2423053,N2302016,N2423019,N2323013,N2423005)the Science and Technology Project of Hebei Education Department(QN2024238)the Basic Research Program Project of Shijiazhuang City for Universities Stationed in Hebei Province(241790937A)the Science and Technology Project of Qinhuangdao City in 2023.
文摘Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the Jahn-Teller(JT)effect associated with Mn-ion,the cathode exhibits poor structural stability.Herein,we propose a strategy to enhance structural stability by introducing robust metal-oxygen(M-O)bonds,which can realize the pinning effect to constrain the distortion in the transition metal(TM)layer.Concurrently,all the elements employed have exceptionally high crustal abundance.As a proof of concept,the designed K_(0.5)Mn_(0.9)Mg_(0.025)Ti_(0.025)Al_(0.05)O_(2)cathode exhibited a discharge capacity of approximately 100 mA h g^(-1)at 20 mA g^(-1)with 79%capacity retention over 50 cycles,and 73%capacity retention over 200 cycles at 200 mA g^(-1),showcased much better battery performance than the designed cathode with less robust M-O bonds.The properties of the formed M-O bonds were investigated using theoretical calculations.The enhanced dynamics,mitigated JT effect,and improved structural stability were elucidated through the in-situ X-ray diffractometer(XRD),in-situ electrochemical impedance spectroscopy(EIS)(and distribution of relaxation times(DRT)method),and ex-situ X-ray absorption fine structure(XAFS)tests.This study holds substantial reference value for the future design of costeffective Mn-based layered cathodes for PIBs.
基金supported by the National Key R&D Program of China(No.2022YFE0109500)the National Natural Science Foundation of China(Nos.52071255,52301250,52171190 and 12304027)+2 种基金the Key R&D Project of Shaanxi Province(No.2022GXLH-01-07)the Fundamental Research Funds for the Central Universities(China)the World-Class Universities(Disciplines)and the Characteristic Development Guidance Funds for the Central Universities.
文摘With the rapid development of artificial intelligence,magnetocaloric materials as well as other materials are being developed with increased efficiency and enhanced performance.However,most studies do not take phase transitions into account,and as a result,the predictions are usually not accurate enough.In this context,we have established an explicable relationship between alloy compositions and phase transition by feature imputation.A facile machine learning is proposed to screen candidate NiMn-based Heusler alloys with desired magnetic entropy change and magnetic transition temperature with a high accuracy R^(2)≈0.98.As expected,the measured properties of prepared NiMn-based alloys,including phase transition type,magnetic entropy changes and transition temperature,are all in good agreement with the ML predictions.As well as being the first to demonstrate an explicable relationship between alloy compositions,phase transitions and magnetocaloric properties,our proposed ML model is highly predictive and interpretable,which can provide a strong theoretical foundation for identifying high-performance magnetocaloric materials in the future.
基金Supported by Science and Technology Innovation 2030-Major Projects,No.2021ZD0202000National Key Research and Development Program of China,No.2019YFA0706200+2 种基金National Natural Science Foundation of China,No.82371535Science and Technology Innovation Program of Hunan Province,No.2023RC3083Fundamental Research Funds for the Central Universities of Central South University,No.2023ZZTS0838.
文摘BACKGROUND Sensitivity to stress is essential in the onset,clinical symptoms,course,and prognosis of major depressive disorder(MDD).Meanwhile,it was unclear how variously classified but connected stress-sensitivity variables affect MDD.We hypothesize that high-level trait-and state-related stress-sensitivity factors may have different cumulative effects on the clinical symptoms and follow-up outcomes of MDD.AIM To investigate how stress-sensitivity factors added up and affected MDD clinical symptoms and follow-up results.METHODS In this prospective study,281 MDD patients were enrolled from a tertiary care setting.High-level stress-sensitivity factors were classified as trait anxiety,state anxiety,perceived stress,and neuroticism,with a total score in the top quartile of the research cohort.The cumulative effects of stress-sensitivity factors on cognitive dysfunction,disability and functional impairment,suicide risk,and depressive and anxiety symptoms were examined using an analysis of variance with linear trend analysis.Correlations were investigated further using multiple regression analysis.RESULTS Regarding high-level stress-sensitivity factors,53.40%of patients had at least one at baseline,and 29.61%had two or more.Four high-level stress-sensitivity components had significant cumulative impacts on MDD symptoms at baseline(all P<0.001).Perceived stress predicted the greatest effect sizes of state-related factors on depressive symptoms(partialη^(2)=0.153;standardizedβ=0.195;P<0.05).The follow-up outcomes were significantly impacted only by the high-level trait-related components,mainly when it came to depressive symptoms and suicide risk,which were predicted by trait anxiety and neuroticism,respectively(partialη^(2)=0.204 and 0.156;standardizedβ=0.247 and 0.392;P<0.05).CONCLUSION To enhance outcomes of MDD and lower the suicide risk,screening for stress-sensitivity factors and considering multifaceted measures,mainly focusing on trait-related ones,should be addressed clinically.
基金supported by the National Key R&D Program of China(2022YFE0131000)the National Natural Science Foundation of China(82220108012,82271306,and 82071307)+1 种基金The Science and Education for Health Foundation of Suzhou for Youth(KJXW2023001)the Boxi Youth Natural Science Foundation(BXQN2023028).
文摘During the hyperacute phase of intracerebral hemorrhage(ICH),the mass effect and blood components mechanically lead to brain damage and neurotoxicity.Our findings revealed that the mass effect and transferrin precipitate neuronal oxidative stress and iron uptake,culminating in ferroptosis in neurons.M6A(N6-methyladenosine)modification,the most prevalent mRNA modification,plays a critical role in various cell death pathways.The Fto(fat mass and obesity-associated protein)demethylase has been implicated in numerous signaling pathways of neurological diseases by modulating m6A mRNA levels.Regulation of Fto protein levels in neurons effectively mitigated mass effect-induced neuronal ferroptosis.Applying nanopore direct RNA sequencing,we identified voltage-dependent anion channel 3(Vdac3)as a potential target associated with ferroptosis.Fto influenced neuronal ferroptosis by regulating the m6A methylation of Vdac3 mRNA.These findings elucidate the intricate interplay between Fto,Vdac3,m6A methylation,and ferroptosis in neurons during the hyperacute phase post-ICH and suggest novel therapeutic strategies for ICH.
文摘During the propagation of high-power lasers within internal channels,the laser beam heats the propagation medium,causing the thermal blooming effect that degrades the beam quality at the output.The intricate configuration of the optical path within the internal channel necessitates complex and time-consuming efforts to assess the impact of thermal blooming effect on the optical path.To meet the engineering need for rapid evaluation of thermal blooming effect in optical paths,this study proposed a rapid simulation method for the thermal blooming effect in internal optical paths based on the finite element method.This method discretized the fluid region into infinitesimal elements and employed finite element method for flow field analysis.A simplified analytical model of the flow field region in complex internal channels was established,and regions with similar thermal blooming effect were divided within this model.Based on the calculated optical path differences within these regions,numerical simulations of phase distortion caused by thermal blooming were conducted.The calculated result were compared with those obtained using the existing methods.The findings reveal that for complex optical paths,the discrepancy between the two approaches is less than 3.6%,with similar phase distortion patterns observed.For L-type units,this method and the existing methods identify the same primary factors influencing aberrations and exhibit consistent trends in their variation.This method was used to analyze the impact of thermal blooming effect in a straight channel under different gravity directions.The results show that phase distortion varies with changes in the direction of gravity,and the magnitude of the phase difference is strongly correlated with the component of gravity perpendicular to the optical axis.Compared to the existing methods,this approach offers greater flexibility,obviates the need for complex custom analysis programming.The analytical results of this method enable a rapid assessment of the thermal blooming effect in optical paths within the internal channel.This is especially useful during the engineering design.These results also provide crucial references for developing strategies to suppress thermal blooming effect.
基金supported by the National Natural Science Foundation of China(Nos.22276182 and 22188102)the Natural Science Foundation of Fujian Province,China(No.2023J06048)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2021303).
文摘NH_(3)-SCR(SCR:Selective catalytic reduction)is an effective technology for the de-NO_(x)process from both mobile and stationary pollution sources,and the most commonly used catalysts are the vanadia-based catalysts.An innovative V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst for NO_(x)removal was prepared in this study.The influences of Ce and Ta in the V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst on the SCR performance and physicochemical properties were investigated.The V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst not only exhibited excellent SCR activity in a wide temperature window,but also presented strong resistance to H_(2)Oand SO_(2)at 275◦C.A series of characterizationmethods was used to study the catalysts,including H2-temperature programmed reduction,X-ray photoelectron spectroscopy,NH_(3)-temperature programmed desorption,etc.It was discovered that a synergistic effect existed between Ce and Ta species.The introduction of Ce and Ta enlarged the specific surface area,increased the amount of acid sites and the ratio of Ce^(3+),(V^(3+)+V^(4+))and Oα,and strengthened the redox capability which were related to synergistic effect between Ce and Ta species,significantly improving the NH_(3)-SCR activity.