With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenu...With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenues for digital transformation and intelligent upgrading.Industry 5.0,a further extension and development of Industry 4.0,has become an important development trend in industry with more emphasis on human-centered sustainability and flexibility.Accordingly,both the industrial metaverse and digital twins have attracted much attention in this new era.However,the relationship between them is not clear enough.In this paper,a comparison between digital twins and the metaverse in industry is made firstly.Then,we propose the concept and framework of Digital Twin Systems Engineering(DTSE)to demonstrate how digital twins support the industrial metaverse in the era of Industry 5.0 by integrating systems engineering principles.Furthermore,we discuss the key technologies and challenges of DTSE,in particular how artificial intelligence enhances the application of DTSE.Finally,a specific application scenario in the aviation field is presented to illustrate the application prospects of DTSE.展开更多
Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects s...Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects such as porosity issues, significant deformation, surface cracks, and challenging control of surface morphology encountered during the selective laser melting(SLM) additive manufacturing(AM) process of specialized Micro Electromechanical System(MEMS) components, multiparameter optimization and micro powder melt pool/macro-scale mechanical properties control simulation of specialized components are conducted. The optimal parameters obtained through highprecision preparation and machining of components and static/high dynamic verification are: laser power of 110 W, laser speed of 600 mm/s, laser diameter of 75 μm, and scanning spacing of 50 μm. The density of the subordinate components under this reference can reach 99.15%, the surface hardness can reach 51.9 HRA, the yield strength can reach 550 MPa, the maximum machining error of the components is 4.73%, and the average surface roughness is 0.45 μm. Through dynamic hammering and high dynamic firing verification, SLM components meet the requirements for overload resistance. The results have proven that MEM technology can provide a new means for the processing of MEMS components applied in high dynamic environments. The parameters obtained in the conclusion can provide a design basis for the additive preparation of MEMS components.展开更多
In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology bas...In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology based on the principle of high-throughput sequencing,and established a multi-locus 10 animalderived components identification method of cattle,goat,sheep,donkey,horse,chicken,duck,goose,pigeon,quail in meat and meat products.The specific loci of each species could be detected and the species could be accurately identified,including 5 loci for cattle and duck,3 loci for sheep,9 loci for chicken and horse,10 loci for goose and pigeon,6 loci for quail and 1 locus for donkey and goat,and an adulteration model was established to simulate commercially available samples.The results showed that the method established in this study had high throughput,good repeatability and accuracy,and was able to identify 10 animalderived components simultaneously with 100%repeatability accuracy.The detection limit was 0.1%(m/m)in simulated samples of chicken,duck and horse.Using the method established in this study to test commercially available samples,4 samples from 14 commercially available samples were detected to be inconsistent with the labels,of which 2 did not contain the target ingredient and 2 were adulterated with small amounts of other ingredients.展开更多
This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method...This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system.展开更多
Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC...Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC is a nonlinear system with a lot of overlapping information.In this paper,a dataset of eight roughness statistical parameters covering 112 digital joints is established.Then,the principal component analysis method is introduced to extract the significant information,which solves the information overlap problem of roughness characterization.Based on the two principal components of extracted features,the white shark optimizer algorithm was introduced to optimize the extreme gradient boosting model,and a new machine learning(ML)prediction model was established.The prediction accuracy of the new model and the other 17 models was measured using statistical metrics.The results show that the prediction result of the new model is more consistent with the real JRC value,with higher recognition accuracy and generalization ability.展开更多
The 7 ka old Qixiangzhan lava flow(QXZ,Tianchi volcano)represents the last eruptive event before the 946 CE,caldera-forming‘Millennium’eruption(ME).Petrographic,whole rock,mineral composition,Sr-Nd isotopic data on ...The 7 ka old Qixiangzhan lava flow(QXZ,Tianchi volcano)represents the last eruptive event before the 946 CE,caldera-forming‘Millennium’eruption(ME).Petrographic,whole rock,mineral composition,Sr-Nd isotopic data on QXZ show that:(a)the lava consists of two components,constituted by comenditic obsidian fragments immersed in a continuous,aphanitic component;(b)both components have the same geochemical and isotopic variations of the ME magma.The QXZ and ME comendites result from fractional crystallization and crustal assimilation processes.The temperature of the QXZ magma was about 790℃ and the depth of the magma reservoir around 7 km,the same values as estimated for ME.QXZ had a viscosity of 10^(5.5)-10^(9) Pa s and a velocity of 3-10 km/yr.The emplacement time was 0.5-1.6yr and the flow rate 0.48-1.50 m^(3)/s.These values lie within the range estimated for other rhyolitic flows worldwide.The QXZ lava originated through a mixed explosive-effusive activity with the obsidian resulting from the ascent of undercooling,degassing and the fragmentation of magma along the conduit walls,whereas the aphanitic component testifies to the less undercooled and segregated flow at the center of the conduit.The QXZ lava demonstrates the extensive history of the ME magma chamber.展开更多
Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers ...Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers and lacks theoretical guidance.This paper proposes a concise graph representation method based on graph theory for fuel thermal management systems,which can represent all possible connections between subsystems.A generalized optimization algorithm is proposed for fuel thermal management system architecture to minimize the heat sink.This algorithm can autonomously arrange subsystems with heat production differences and efficiently utilize the architecture of the fuel heat sink.At the same time,two evaluation indices are proposed from the perspective of subsystems.These indices intuitively and clearly show that the reason for the high efficiency of heat sink utilization is the balanced and moderate cooling of each subsystem and verify the rationality of the architecture optimization method.A set of simulations are also conducted,which demonstrate that the fuel tank temperature has no effect on the performance of the architecture.This paper provides a reference for the architectural design of aircraft fuel thermal management systems.The metrics used in this paper can also be utilized to evaluate the existing architecture.展开更多
Background:Rosa chinensis Jacq.and Rosa rugosa Thunb.are not only of ornamental value,but also edible flowers and the flower buds have been listed in the Chinese Pharmacopoeia as traditional medicines.The two plants h...Background:Rosa chinensis Jacq.and Rosa rugosa Thunb.are not only of ornamental value,but also edible flowers and the flower buds have been listed in the Chinese Pharmacopoeia as traditional medicines.The two plants have some differences in efficacy,but the flower buds are easily confused for similar traits.In addition,large-scale cultivation of ornamental rose flowers may lead to a decrease in the effective components of medicinal roses.Therefore,it is necessary to study the chemical composition and make quality evaluation of Rosae Chinensis Flos(Yueji)and Rosae Rugosae Flos(Meigui).Methods:In this study,40 batches of samples including Meigui and Yueji from different regions in China were collected to establish high-performance liquid chromatography fingerprints.Then,the fingerprints data was analyzed using principal component analysis,hierarchical cluster analysis,and partial least squares discriminant analysis analysis chemometrics to obtain information on intergroup differences,and non-targeted metabolomic techniques were applied to identify and compare chemical compositions of samples which were chosen from groups with large differences.Differential compounds were screened by orthogonal partial least-squares discriminant analysis and S-plot,and finally multi-component quantification was performed to comprehensively evaluate the quality of Yueji and Meigui.Results:The similarity between the fingerprints of 40 batches roses and the reference print R was 0.73 to 0.93,indicating that there were similarities and differences between the samples.Through principal component analysis and hierarchical cluster analysis of fingerprints data,the samples from different origins and varieties were intuitively divided into four groups.Partial least-squares discriminant analysis analysis showed that Meigui and Yueji cluster into two categories and the model was reliable.A total of 89 compounds were identified by high resolution mass spectrometry,mainly were flavonoids and flavonoid glycosides,as well as phenolic acids.Eight differential components were screened out by orthogonal partial least-squares discriminant analysis and S-plot analysis.Quantitative analyses of the eight compounds,including gallic acid,ellagic acid,hyperoside,isoquercitrin,etc.,showed that Yueji was generally richer in phenolic acids and flavonoids than Meigui,and the quality of Yueji from Shandong and Hebei was better.It is worth noting that Xinjiang rose is rich in various components,which is worth focusing on more in-depth research.Conclusion:In this study,the fingerprints of Meigui and Yueji were established.The chemical components information of roses was further improved based on non-targeted metabolomics and mass spectrometry technology.At the same time,eight differential components of Meigui and Yueji were screened out and quantitatively analyzed.The research results provided a scientific basis for the quality control and rational development and utilization of Rosae Chinensis Flos and Rosae Rugosae Flos,and also laid a foundation for the study of their pharmacodynamic material basis.展开更多
To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy...To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy storage systems based on measurement feedback is proposed.First,considering the high charge/discharge losses of hydrogen storage and the low energy density of battery storage,an operational optimization objective is established to enable adaptive energy adjustment in the Battery-hydrogen hybrid energy storage system.Next,an online optimization model minimizing the operational cost of the hybrid system is constructed to suppress grid-injected power deviations with satisfying the operational constraints of hydrogen storage and batteries.Finally,utilizing the online measurement of the energy states of hydrogen storage and batteries,an online optimization strategy based on measurement feedback is designed.Case study results show:before and after smoothing the fluctuations in wind power,the time when the power exceeded the upper and lower limits of the grid-injected power accounted for 24.1%and 1.45%of the total time,respectively,the proposed strategy can effectively keep the grid-injected power deviations of wind farms within the allowable range.Hydrogen storage and batteries respectively undertake long-term and short-term charge/discharge tasks,effectively reducing charge/discharge losses of the Battery-hydrogen hybrid energy storage systems and improving its operational efficiency.展开更多
Restoration of phase aberrations is crucial for addressing atmospheric turbulence in light propagation.Traditional restoration algorithms based on Zernike polynomials(ZPs)often encounter challenges related to high com...Restoration of phase aberrations is crucial for addressing atmospheric turbulence in light propagation.Traditional restoration algorithms based on Zernike polynomials(ZPs)often encounter challenges related to high computational complexity and insufficient capture of high-frequency phase aberration components,so we proposed a Principal-Component-Analysis-based method for representing phase aberrations.This paper discusses the factors influencing the accuracy of restoration,mainly including the sample space size and the sampling interval of D/r_(0),on the basis of characterizing phase aberrations by Principal Components(PCs).The experimental results show that a larger D/r_(0)sampling interval can ensure the generalization ability and robustness of the principal components in the case of a limited amount of original data,which can help to achieve high-precision deployment of the model in practical applications quickly.In the environment with relatively strong turbulence in the test set of D/r_(0)=24,the use of 34 terms of PCs can improve the corrected Strehl ratio(SR)from 0.007 to 0.1585,while the Strehl ratio of the light spot after restoration using 34 terms of ZPs is only 0.0215,demonstrating almost no correction effect.The results indicate that PCs can serve as a better alternative in representing and restoring the characteristics of atmospheric turbulence induced phase aberrations.These findings pave the way to use PCs of phase aberrations with fewer terms than traditional ZPs to achieve data dimensionality reduction,and offer a reference to accelerate and stabilize the model and deep learning based adaptive optics correction.展开更多
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f...In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.展开更多
Amino acids are the building blocks of proteins and play vital roles in both biological systems and drug development.In recent years,increasing attention has been given to the functionalization of amino acid derivativ...Amino acids are the building blocks of proteins and play vital roles in both biological systems and drug development.In recent years,increasing attention has been given to the functionalization of amino acid derivatives.Since the introduction of therapeutic insulin in the early 20th century,the conjugation of drug molecules with amino acids and peptides has been pivotal in driving advancements in drug discovery and become an integral part of modern medical practice.Currently,over a hundred peptide-drug conjugates have received global approval and are widely used to treat diseases such as diabetes,cancer,chronic pain,and multiple sclerosis.Key technologies for conjugating peptides with bioactive molecules include antibody-drug conjugates(ADCs),peptide-drug conjugates(PDCs),and proteolysis targeting chimeras(PROTACs).Significant efforts have been dedicated to developing strategies for the modification of amino acids and peptides,with particular focus on site-selective C-H alkylation/arylation reactions.These reactions are crucial for synthesizing bioactive molecules,as they enable the precise introduction of functional groups at specific positions,thereby improving the pharmacological properties of the resulting compounds.展开更多
Objective: The present research aims to determine if adherence to the Lewinnek safe zone, when exclusively considered, constitutes a pivotal element for ensuring stability in the context of total hip arthroplasty. Thi...Objective: The present research aims to determine if adherence to the Lewinnek safe zone, when exclusively considered, constitutes a pivotal element for ensuring stability in the context of total hip arthroplasty. This is done by examining the acetabular placement in instances of hip dislocation after total hip arthroplasty (THA). Methodology: The authors searched 2653 patient records from 2015 to 2022 looking for patients who had total hip arthroplasty at our facility. For the analysis, 23 patients were culled from 64 individuals who exhibited post-THA dislocations, employing a stringent exclusion criterion, and the resultant acetabular angulation and anteversion were quantified utilizing PEEKMED software (Peek Health S.A., Portugal) upon radiographic evidence. Results: Within the operational timeframe, from the cohort of 2653 subjects, 64 presented with at least a singular incident of displacement. Post-exclusion criterion enforcement, 23 patients were eligible for inclusion. Of these, 10 patients conformed to the safe zone demarcated by Lewinnek for both inclination and anteversion angles, while 13 exhibited deviations from the prescribed anteversion and/or inclination benchmarks. Conclusion: Analysis of the 23 patients reveals that 13 did not confirm to be in the safe zone parameters for anteversion and/or inclination, whereas 10 were within the safe zone as per Lewinnek’s guidelines. This investigative review, corroborated by extant literature, suggests that the isolated consideration of the Lewinnek safe zone does not suffice as a solitary protective factor. It further posits that additional variables are equally critical as acetabular positioning and mandate individual assessment.展开更多
The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structur...The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structure,environmental friendliness,and cost-effectiveness.Recent advances in controlling the pore structure of these carbons and its relationship between to is energy storage performance are discussed,emphasizing the critical role of a balanced distribution of micropores,mesopores and macropores in determining electrochemical behavior.Particular attention is given to how the intrinsic components of biomass precursors(lignin,cellulose,and hemicellulose)influence pore formation during carbonization.Carbonization and activation strategies to precisely control the pore structure are introduced.Finally,key challenges in the industrial production of these carbons are outlined,and future research directions are proposed.These include the establishment of a database of biomass intrinsic structures and machine learning-assisted pore structure engineering,aimed at providing guidance for the design of high-performance carbon materials for next-generation energy storage devices.展开更多
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp...Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.展开更多
Groundwater is a crucial water source for urban areas in Africa, particularly where surface water is insufficient to meet demand. This study analyses the water quality of five shallow wells (WW1-WW5) in Half-London Wa...Groundwater is a crucial water source for urban areas in Africa, particularly where surface water is insufficient to meet demand. This study analyses the water quality of five shallow wells (WW1-WW5) in Half-London Ward, Tunduma Town, Tanzania, using Principal Component Analysis (PCA) to identify the primary factors influencing groundwater contamination. Monthly samples were collected over 12 months and analysed for physical, chemical, and biological parameters. The PCA revealed between four and six principal components (PCs) for each well, explaining between 84.61% and 92.55% of the total variance in water quality data. In WW1, five PCs captured 87.53% of the variability, with PC1 (33.05%) dominated by pH, EC, TDS, and microbial contamination, suggesting significant influences from surface runoff and pit latrines. In WW2, six PCs explained 92.55% of the variance, with PC1 (36.17%) highlighting the effects of salinity, TDS, and agricultural runoff. WW3 had four PCs explaining 84.61% of the variance, with PC1 (39.63%) showing high contributions from pH, hardness, and salinity, indicating geological influences and contamination from human activities. Similarly, in WW4, six PCs explained 90.83% of the variance, where PC1 (43.53%) revealed contamination from pit latrines and fertilizers. WW5 also had six PCs, accounting for 92.51% of the variance, with PC1 (42.73%) indicating significant contamination from agricultural runoff and pit latrines. The study concludes that groundwater quality in Half-London Ward is primarily affected by a combination of surface runoff, pit latrine contamination, agricultural inputs, and geological factors. The presence of microbial contaminants and elevated nitrate and phosphate levels underscores the need for improved sanitation and sustainable agricultural practices. Recommendations include strengthening sanitation infrastructure, promoting responsible farming techniques, and implementing regular groundwater monitoring to safeguard water resources and public health in the region.展开更多
Electric Vehicle Charging Systems(EVCS)are increasingly vulnerable to cybersecurity threats as they integrate deeply into smart grids and Internet ofThings(IoT)environments,raising significant security challenges.Most...Electric Vehicle Charging Systems(EVCS)are increasingly vulnerable to cybersecurity threats as they integrate deeply into smart grids and Internet ofThings(IoT)environments,raising significant security challenges.Most existing research primarily emphasizes network-level anomaly detection,leaving critical vulnerabilities at the host level underexplored.This study introduces a novel forensic analysis framework leveraging host-level data,including system logs,kernel events,and Hardware Performance Counters(HPC),to detect and analyze sophisticated cyberattacks such as cryptojacking,Denial-of-Service(DoS),and reconnaissance activities targeting EVCS.Using comprehensive forensic analysis and machine learning models,the proposed framework significantly outperforms existing methods,achieving an accuracy of 98.81%.The findings offer insights into distinct behavioral signatures associated with specific cyber threats,enabling improved cybersecurity strategies and actionable recommendations for robust EVCS infrastructure protection.展开更多
A significant number and range of challenges besetting sustainability can be traced to the actions and inter actions of multiple autonomous agents(people mostly)and the entities they create(e.g.,institutions,policies,...A significant number and range of challenges besetting sustainability can be traced to the actions and inter actions of multiple autonomous agents(people mostly)and the entities they create(e.g.,institutions,policies,social network)in the corresponding social-environmental systems(SES).To address these challenges,we need to understand decisions made and actions taken by agents,the outcomes of their actions,including the feedbacks on the corresponding agents and environment.The science of complex adaptive systems-complex adaptive sys tems(CAS)science-has a significant potential to handle such challenges.We address the advantages of CAS science for sustainability by identifying the key elements and challenges in sustainability science,the generic features of CAS,and the key advances and challenges in modeling CAS.Artificial intelligence and data science combined with agent-based modeling promise to improve understanding of agents’behaviors,detect SES struc tures,and formulate SES mechanisms.展开更多
The intricate interplay between neurotransmitter systems,neural circuits,and neuroendocrine pathways underpins brain function and dysfunction in neurological and psychiatric disorders.This review synthesizes contempor...The intricate interplay between neurotransmitter systems,neural circuits,and neuroendocrine pathways underpins brain function and dysfunction in neurological and psychiatric disorders.This review synthesizes contemporary advances in neuropharmacology,focusing on dopaminergic,serotonergic,glutamatergic,and GABAergic systems,and their roles in regulating motor control,cognition,emotion,and stress responses.Dopaminergic pathways,including the nigrostriatal,mesolimbic,and mesocortical circuits,are explored in the context of Parkinson’s disease,schizophrenia,and addiction,with emphasis on pharmacological agents such as L-DOPA,antipsychotics,and amphetamines.Serotonergic modulation through SSRIs and psychedelics is examined for its impact on mood and neuroplasticity,while glutamatergic and GABAergic systems are discussed in relation to synaptic plasticity,excitotoxicity,and therapeutic innovations like ketamine and benzodiazepines.The neuroendocrine system,particularly the hypothalamic-pituitary-adrenal(HPA)axis,is highlighted for its role in stress-related disorders and interactions with neurotransmitter networks.Despite progress,significant challenges persist,including translational gaps between preclinical models and human trials,species-specifi c receptor disparities,and ethical dilemmas surrounding cognitive enhancers and genetic manipulation.Emerging frontiers such as nanotechnology-enabled drug delivery,optogenetics,and gut-brain axis modulation are reviewed as transformative approaches to overcome these barriers.Personalized medicine,integrating neuroimaging biomarkers and pharmacogenomics,promises to tailor therapies to individual neural and genetic profi les,while biased agonists and closed-loop systems exemplify the shift toward circuit-specifi c interventions.Ethical considerations,including equitable access to advanced therapies and responsible innovation,are underscored as critical to ensuring societal benefi t.By harmonizing molecular precision with systems neuroscience,this review advocates for interdisciplinary strategies to advance neuropharmacology,ultimately aiming to restore dynamic neural and neuroendocrine homeostasis in health and disease.展开更多
Diversifying crop rotation aims to balance production and ecological concerns.However,yield and water use efficiency(WUE)of crop in diversified rotation systems have not been well documented,especially under limited i...Diversifying crop rotation aims to balance production and ecological concerns.However,yield and water use efficiency(WUE)of crop in diversified rotation systems have not been well documented,especially under limited irrigation.Here,we conducted a 6-year experiment with five treatments:1)wheatmaize cropping system(WM),as control;2)WMME,spring maize→WM rotation;3)WMML,spring millet→WM rotation;4)WMMP,spring peanut→WM rotation;and 5)WMMS,spring soybean→WM rotation,to explore how diversified rotations affected yield and WUE of wheat.Results showed that approximately 60% higher precipitation during wheat growing season in Cycle 1(2015-2017)resulted in yield increases by 33.8%-55.7% compared to those in Cycle 2(2017-2019)and Cycle3(2019-2021).Grain yield and WUE of wheat were 16.7% and 9.6% higher in Cycle 1,81.5% and 86.8% higher in Cycle 2,and 56.1% and 78.7% higher in Cycle 3 on average in diversified rotations compared to those in WM,respectively.Further analysis revealed that spike number and aboveground biomass were the main contributors to the increments,which can be explained by the increased evapotranspiration during the middle-late wheat growth stages(e.g.,regreening,jointing,and anthesis)in diversified rotations.In general,diversified rotations enhanced synchronization of soil water supply with crop water demand by affecting the spatiotemporal dynamics of soil moisture under varied precipitation conditions,thereby increasing yield and WUE of wheat.Hence,diversified spring crops→WM rotations offer a sustainable and efficient strategy for enhancing wheat production and water conservation in dry areas.展开更多
基金Supported by Beijing Municipal Natural Science Foundation of China(Grant No.24JL002)China Postdoctoral Science Foundation(Grant No.2024M754054)+2 种基金National Natural Science Foundation of China(Grant No.52120105008)Beijing Municipal Outstanding Young Scientis Program of Chinathe New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenues for digital transformation and intelligent upgrading.Industry 5.0,a further extension and development of Industry 4.0,has become an important development trend in industry with more emphasis on human-centered sustainability and flexibility.Accordingly,both the industrial metaverse and digital twins have attracted much attention in this new era.However,the relationship between them is not clear enough.In this paper,a comparison between digital twins and the metaverse in industry is made firstly.Then,we propose the concept and framework of Digital Twin Systems Engineering(DTSE)to demonstrate how digital twins support the industrial metaverse in the era of Industry 5.0 by integrating systems engineering principles.Furthermore,we discuss the key technologies and challenges of DTSE,in particular how artificial intelligence enhances the application of DTSE.Finally,a specific application scenario in the aviation field is presented to illustrate the application prospects of DTSE.
基金funded by the National Natural Science Foundation of China Youth Fund(Grant No.62304022)Science and Technology on Electromechanical Dynamic Control Laboratory(China,Grant No.6142601012304)the 2022e2024 China Association for Science and Technology Innovation Integration Association Youth Talent Support Project(Grant No.2022QNRC001).
文摘Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects such as porosity issues, significant deformation, surface cracks, and challenging control of surface morphology encountered during the selective laser melting(SLM) additive manufacturing(AM) process of specialized Micro Electromechanical System(MEMS) components, multiparameter optimization and micro powder melt pool/macro-scale mechanical properties control simulation of specialized components are conducted. The optimal parameters obtained through highprecision preparation and machining of components and static/high dynamic verification are: laser power of 110 W, laser speed of 600 mm/s, laser diameter of 75 μm, and scanning spacing of 50 μm. The density of the subordinate components under this reference can reach 99.15%, the surface hardness can reach 51.9 HRA, the yield strength can reach 550 MPa, the maximum machining error of the components is 4.73%, and the average surface roughness is 0.45 μm. Through dynamic hammering and high dynamic firing verification, SLM components meet the requirements for overload resistance. The results have proven that MEM technology can provide a new means for the processing of MEMS components applied in high dynamic environments. The parameters obtained in the conclusion can provide a design basis for the additive preparation of MEMS components.
基金financially supported by National Key R&D Program(2021YFF0701905)。
文摘In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology based on the principle of high-throughput sequencing,and established a multi-locus 10 animalderived components identification method of cattle,goat,sheep,donkey,horse,chicken,duck,goose,pigeon,quail in meat and meat products.The specific loci of each species could be detected and the species could be accurately identified,including 5 loci for cattle and duck,3 loci for sheep,9 loci for chicken and horse,10 loci for goose and pigeon,6 loci for quail and 1 locus for donkey and goat,and an adulteration model was established to simulate commercially available samples.The results showed that the method established in this study had high throughput,good repeatability and accuracy,and was able to identify 10 animalderived components simultaneously with 100%repeatability accuracy.The detection limit was 0.1%(m/m)in simulated samples of chicken,duck and horse.Using the method established in this study to test commercially available samples,4 samples from 14 commercially available samples were detected to be inconsistent with the labels,of which 2 did not contain the target ingredient and 2 were adulterated with small amounts of other ingredients.
基金The National Natural Science Foundation of China(W2431048)The Science and Technology Research Program of Chongqing Municipal Education Commission,China(KJZDK202300807)The Chongqing Natural Science Foundation,China(CSTB2024NSCQQCXMX0052).
文摘This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system.
基金funding from the National Natural Science Foundation of China (Grant No.42277175)the pilot project of cooperation between the Ministry of Natural Resources and Hunan Province“Research and demonstration of key technologies for comprehensive remote sensing identification of geological hazards in typical regions of Hunan Province” (Grant No.2023ZRBSHZ056)the National Key Research and Development Program of China-2023 Key Special Project (Grant No.2023YFC2907400).
文摘Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC is a nonlinear system with a lot of overlapping information.In this paper,a dataset of eight roughness statistical parameters covering 112 digital joints is established.Then,the principal component analysis method is introduced to extract the significant information,which solves the information overlap problem of roughness characterization.Based on the two principal components of extracted features,the white shark optimizer algorithm was introduced to optimize the extreme gradient boosting model,and a new machine learning(ML)prediction model was established.The prediction accuracy of the new model and the other 17 models was measured using statistical metrics.The results show that the prediction result of the new model is more consistent with the real JRC value,with higher recognition accuracy and generalization ability.
基金funded by the National Natural Science Foundation of China(Grant Nos.41972313 and 41790453)the Engineering Research Center of Geothermal Resources Development Technology and Equipment,Ministry of Education,Jilin University。
文摘The 7 ka old Qixiangzhan lava flow(QXZ,Tianchi volcano)represents the last eruptive event before the 946 CE,caldera-forming‘Millennium’eruption(ME).Petrographic,whole rock,mineral composition,Sr-Nd isotopic data on QXZ show that:(a)the lava consists of two components,constituted by comenditic obsidian fragments immersed in a continuous,aphanitic component;(b)both components have the same geochemical and isotopic variations of the ME magma.The QXZ and ME comendites result from fractional crystallization and crustal assimilation processes.The temperature of the QXZ magma was about 790℃ and the depth of the magma reservoir around 7 km,the same values as estimated for ME.QXZ had a viscosity of 10^(5.5)-10^(9) Pa s and a velocity of 3-10 km/yr.The emplacement time was 0.5-1.6yr and the flow rate 0.48-1.50 m^(3)/s.These values lie within the range estimated for other rhyolitic flows worldwide.The QXZ lava originated through a mixed explosive-effusive activity with the obsidian resulting from the ascent of undercooling,degassing and the fragmentation of magma along the conduit walls,whereas the aphanitic component testifies to the less undercooled and segregated flow at the center of the conduit.The QXZ lava demonstrates the extensive history of the ME magma chamber.
文摘Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers and lacks theoretical guidance.This paper proposes a concise graph representation method based on graph theory for fuel thermal management systems,which can represent all possible connections between subsystems.A generalized optimization algorithm is proposed for fuel thermal management system architecture to minimize the heat sink.This algorithm can autonomously arrange subsystems with heat production differences and efficiently utilize the architecture of the fuel heat sink.At the same time,two evaluation indices are proposed from the perspective of subsystems.These indices intuitively and clearly show that the reason for the high efficiency of heat sink utilization is the balanced and moderate cooling of each subsystem and verify the rationality of the architecture optimization method.A set of simulations are also conducted,which demonstrate that the fuel tank temperature has no effect on the performance of the architecture.This paper provides a reference for the architectural design of aircraft fuel thermal management systems.The metrics used in this paper can also be utilized to evaluate the existing architecture.
基金supported by the key project at the central government level:The ability establishment of sustainable use for valuable Chinese medicine resources(Grant number 2060302)the National Natural Science Foundation of China(Grant number 82373982,82173929).
文摘Background:Rosa chinensis Jacq.and Rosa rugosa Thunb.are not only of ornamental value,but also edible flowers and the flower buds have been listed in the Chinese Pharmacopoeia as traditional medicines.The two plants have some differences in efficacy,but the flower buds are easily confused for similar traits.In addition,large-scale cultivation of ornamental rose flowers may lead to a decrease in the effective components of medicinal roses.Therefore,it is necessary to study the chemical composition and make quality evaluation of Rosae Chinensis Flos(Yueji)and Rosae Rugosae Flos(Meigui).Methods:In this study,40 batches of samples including Meigui and Yueji from different regions in China were collected to establish high-performance liquid chromatography fingerprints.Then,the fingerprints data was analyzed using principal component analysis,hierarchical cluster analysis,and partial least squares discriminant analysis analysis chemometrics to obtain information on intergroup differences,and non-targeted metabolomic techniques were applied to identify and compare chemical compositions of samples which were chosen from groups with large differences.Differential compounds were screened by orthogonal partial least-squares discriminant analysis and S-plot,and finally multi-component quantification was performed to comprehensively evaluate the quality of Yueji and Meigui.Results:The similarity between the fingerprints of 40 batches roses and the reference print R was 0.73 to 0.93,indicating that there were similarities and differences between the samples.Through principal component analysis and hierarchical cluster analysis of fingerprints data,the samples from different origins and varieties were intuitively divided into four groups.Partial least-squares discriminant analysis analysis showed that Meigui and Yueji cluster into two categories and the model was reliable.A total of 89 compounds were identified by high resolution mass spectrometry,mainly were flavonoids and flavonoid glycosides,as well as phenolic acids.Eight differential components were screened out by orthogonal partial least-squares discriminant analysis and S-plot analysis.Quantitative analyses of the eight compounds,including gallic acid,ellagic acid,hyperoside,isoquercitrin,etc.,showed that Yueji was generally richer in phenolic acids and flavonoids than Meigui,and the quality of Yueji from Shandong and Hebei was better.It is worth noting that Xinjiang rose is rich in various components,which is worth focusing on more in-depth research.Conclusion:In this study,the fingerprints of Meigui and Yueji were established.The chemical components information of roses was further improved based on non-targeted metabolomics and mass spectrometry technology.At the same time,eight differential components of Meigui and Yueji were screened out and quantitatively analyzed.The research results provided a scientific basis for the quality control and rational development and utilization of Rosae Chinensis Flos and Rosae Rugosae Flos,and also laid a foundation for the study of their pharmacodynamic material basis.
基金Supported by State Grid Zhejiang Electric Power Co.,Ltd.Science and Technology Project Funding(No.B311DS230005).
文摘To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy storage systems based on measurement feedback is proposed.First,considering the high charge/discharge losses of hydrogen storage and the low energy density of battery storage,an operational optimization objective is established to enable adaptive energy adjustment in the Battery-hydrogen hybrid energy storage system.Next,an online optimization model minimizing the operational cost of the hybrid system is constructed to suppress grid-injected power deviations with satisfying the operational constraints of hydrogen storage and batteries.Finally,utilizing the online measurement of the energy states of hydrogen storage and batteries,an online optimization strategy based on measurement feedback is designed.Case study results show:before and after smoothing the fluctuations in wind power,the time when the power exceeded the upper and lower limits of the grid-injected power accounted for 24.1%and 1.45%of the total time,respectively,the proposed strategy can effectively keep the grid-injected power deviations of wind farms within the allowable range.Hydrogen storage and batteries respectively undertake long-term and short-term charge/discharge tasks,effectively reducing charge/discharge losses of the Battery-hydrogen hybrid energy storage systems and improving its operational efficiency.
文摘Restoration of phase aberrations is crucial for addressing atmospheric turbulence in light propagation.Traditional restoration algorithms based on Zernike polynomials(ZPs)often encounter challenges related to high computational complexity and insufficient capture of high-frequency phase aberration components,so we proposed a Principal-Component-Analysis-based method for representing phase aberrations.This paper discusses the factors influencing the accuracy of restoration,mainly including the sample space size and the sampling interval of D/r_(0),on the basis of characterizing phase aberrations by Principal Components(PCs).The experimental results show that a larger D/r_(0)sampling interval can ensure the generalization ability and robustness of the principal components in the case of a limited amount of original data,which can help to achieve high-precision deployment of the model in practical applications quickly.In the environment with relatively strong turbulence in the test set of D/r_(0)=24,the use of 34 terms of PCs can improve the corrected Strehl ratio(SR)from 0.007 to 0.1585,while the Strehl ratio of the light spot after restoration using 34 terms of ZPs is only 0.0215,demonstrating almost no correction effect.The results indicate that PCs can serve as a better alternative in representing and restoring the characteristics of atmospheric turbulence induced phase aberrations.These findings pave the way to use PCs of phase aberrations with fewer terms than traditional ZPs to achieve data dimensionality reduction,and offer a reference to accelerate and stabilize the model and deep learning based adaptive optics correction.
基金Supported by the National Natural Science Foundation of China(11971458,11471310)。
文摘In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.
文摘Amino acids are the building blocks of proteins and play vital roles in both biological systems and drug development.In recent years,increasing attention has been given to the functionalization of amino acid derivatives.Since the introduction of therapeutic insulin in the early 20th century,the conjugation of drug molecules with amino acids and peptides has been pivotal in driving advancements in drug discovery and become an integral part of modern medical practice.Currently,over a hundred peptide-drug conjugates have received global approval and are widely used to treat diseases such as diabetes,cancer,chronic pain,and multiple sclerosis.Key technologies for conjugating peptides with bioactive molecules include antibody-drug conjugates(ADCs),peptide-drug conjugates(PDCs),and proteolysis targeting chimeras(PROTACs).Significant efforts have been dedicated to developing strategies for the modification of amino acids and peptides,with particular focus on site-selective C-H alkylation/arylation reactions.These reactions are crucial for synthesizing bioactive molecules,as they enable the precise introduction of functional groups at specific positions,thereby improving the pharmacological properties of the resulting compounds.
文摘Objective: The present research aims to determine if adherence to the Lewinnek safe zone, when exclusively considered, constitutes a pivotal element for ensuring stability in the context of total hip arthroplasty. This is done by examining the acetabular placement in instances of hip dislocation after total hip arthroplasty (THA). Methodology: The authors searched 2653 patient records from 2015 to 2022 looking for patients who had total hip arthroplasty at our facility. For the analysis, 23 patients were culled from 64 individuals who exhibited post-THA dislocations, employing a stringent exclusion criterion, and the resultant acetabular angulation and anteversion were quantified utilizing PEEKMED software (Peek Health S.A., Portugal) upon radiographic evidence. Results: Within the operational timeframe, from the cohort of 2653 subjects, 64 presented with at least a singular incident of displacement. Post-exclusion criterion enforcement, 23 patients were eligible for inclusion. Of these, 10 patients conformed to the safe zone demarcated by Lewinnek for both inclination and anteversion angles, while 13 exhibited deviations from the prescribed anteversion and/or inclination benchmarks. Conclusion: Analysis of the 23 patients reveals that 13 did not confirm to be in the safe zone parameters for anteversion and/or inclination, whereas 10 were within the safe zone as per Lewinnek’s guidelines. This investigative review, corroborated by extant literature, suggests that the isolated consideration of the Lewinnek safe zone does not suffice as a solitary protective factor. It further posits that additional variables are equally critical as acetabular positioning and mandate individual assessment.
文摘The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structure,environmental friendliness,and cost-effectiveness.Recent advances in controlling the pore structure of these carbons and its relationship between to is energy storage performance are discussed,emphasizing the critical role of a balanced distribution of micropores,mesopores and macropores in determining electrochemical behavior.Particular attention is given to how the intrinsic components of biomass precursors(lignin,cellulose,and hemicellulose)influence pore formation during carbonization.Carbonization and activation strategies to precisely control the pore structure are introduced.Finally,key challenges in the industrial production of these carbons are outlined,and future research directions are proposed.These include the establishment of a database of biomass intrinsic structures and machine learning-assisted pore structure engineering,aimed at providing guidance for the design of high-performance carbon materials for next-generation energy storage devices.
文摘Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.
文摘Groundwater is a crucial water source for urban areas in Africa, particularly where surface water is insufficient to meet demand. This study analyses the water quality of five shallow wells (WW1-WW5) in Half-London Ward, Tunduma Town, Tanzania, using Principal Component Analysis (PCA) to identify the primary factors influencing groundwater contamination. Monthly samples were collected over 12 months and analysed for physical, chemical, and biological parameters. The PCA revealed between four and six principal components (PCs) for each well, explaining between 84.61% and 92.55% of the total variance in water quality data. In WW1, five PCs captured 87.53% of the variability, with PC1 (33.05%) dominated by pH, EC, TDS, and microbial contamination, suggesting significant influences from surface runoff and pit latrines. In WW2, six PCs explained 92.55% of the variance, with PC1 (36.17%) highlighting the effects of salinity, TDS, and agricultural runoff. WW3 had four PCs explaining 84.61% of the variance, with PC1 (39.63%) showing high contributions from pH, hardness, and salinity, indicating geological influences and contamination from human activities. Similarly, in WW4, six PCs explained 90.83% of the variance, where PC1 (43.53%) revealed contamination from pit latrines and fertilizers. WW5 also had six PCs, accounting for 92.51% of the variance, with PC1 (42.73%) indicating significant contamination from agricultural runoff and pit latrines. The study concludes that groundwater quality in Half-London Ward is primarily affected by a combination of surface runoff, pit latrine contamination, agricultural inputs, and geological factors. The presence of microbial contaminants and elevated nitrate and phosphate levels underscores the need for improved sanitation and sustainable agricultural practices. Recommendations include strengthening sanitation infrastructure, promoting responsible farming techniques, and implementing regular groundwater monitoring to safeguard water resources and public health in the region.
文摘Electric Vehicle Charging Systems(EVCS)are increasingly vulnerable to cybersecurity threats as they integrate deeply into smart grids and Internet ofThings(IoT)environments,raising significant security challenges.Most existing research primarily emphasizes network-level anomaly detection,leaving critical vulnerabilities at the host level underexplored.This study introduces a novel forensic analysis framework leveraging host-level data,including system logs,kernel events,and Hardware Performance Counters(HPC),to detect and analyze sophisticated cyberattacks such as cryptojacking,Denial-of-Service(DoS),and reconnaissance activities targeting EVCS.Using comprehensive forensic analysis and machine learning models,the proposed framework significantly outperforms existing methods,achieving an accuracy of 98.81%.The findings offer insights into distinct behavioral signatures associated with specific cyber threats,enabling improved cybersecurity strategies and actionable recommendations for robust EVCS infrastructure protection.
基金The National Science Foundation funded this research under the Dy-namics of Coupled Natural and Human Systems program(Grants No.DEB-1212183 and BCS-1826839)support from San Diego State University and Auburn University.
文摘A significant number and range of challenges besetting sustainability can be traced to the actions and inter actions of multiple autonomous agents(people mostly)and the entities they create(e.g.,institutions,policies,social network)in the corresponding social-environmental systems(SES).To address these challenges,we need to understand decisions made and actions taken by agents,the outcomes of their actions,including the feedbacks on the corresponding agents and environment.The science of complex adaptive systems-complex adaptive sys tems(CAS)science-has a significant potential to handle such challenges.We address the advantages of CAS science for sustainability by identifying the key elements and challenges in sustainability science,the generic features of CAS,and the key advances and challenges in modeling CAS.Artificial intelligence and data science combined with agent-based modeling promise to improve understanding of agents’behaviors,detect SES struc tures,and formulate SES mechanisms.
文摘The intricate interplay between neurotransmitter systems,neural circuits,and neuroendocrine pathways underpins brain function and dysfunction in neurological and psychiatric disorders.This review synthesizes contemporary advances in neuropharmacology,focusing on dopaminergic,serotonergic,glutamatergic,and GABAergic systems,and their roles in regulating motor control,cognition,emotion,and stress responses.Dopaminergic pathways,including the nigrostriatal,mesolimbic,and mesocortical circuits,are explored in the context of Parkinson’s disease,schizophrenia,and addiction,with emphasis on pharmacological agents such as L-DOPA,antipsychotics,and amphetamines.Serotonergic modulation through SSRIs and psychedelics is examined for its impact on mood and neuroplasticity,while glutamatergic and GABAergic systems are discussed in relation to synaptic plasticity,excitotoxicity,and therapeutic innovations like ketamine and benzodiazepines.The neuroendocrine system,particularly the hypothalamic-pituitary-adrenal(HPA)axis,is highlighted for its role in stress-related disorders and interactions with neurotransmitter networks.Despite progress,significant challenges persist,including translational gaps between preclinical models and human trials,species-specifi c receptor disparities,and ethical dilemmas surrounding cognitive enhancers and genetic manipulation.Emerging frontiers such as nanotechnology-enabled drug delivery,optogenetics,and gut-brain axis modulation are reviewed as transformative approaches to overcome these barriers.Personalized medicine,integrating neuroimaging biomarkers and pharmacogenomics,promises to tailor therapies to individual neural and genetic profi les,while biased agonists and closed-loop systems exemplify the shift toward circuit-specifi c interventions.Ethical considerations,including equitable access to advanced therapies and responsible innovation,are underscored as critical to ensuring societal benefi t.By harmonizing molecular precision with systems neuroscience,this review advocates for interdisciplinary strategies to advance neuropharmacology,ultimately aiming to restore dynamic neural and neuroendocrine homeostasis in health and disease.
基金supported by the National Natural Science Foundation of China(32172125 and U21A20218)。
文摘Diversifying crop rotation aims to balance production and ecological concerns.However,yield and water use efficiency(WUE)of crop in diversified rotation systems have not been well documented,especially under limited irrigation.Here,we conducted a 6-year experiment with five treatments:1)wheatmaize cropping system(WM),as control;2)WMME,spring maize→WM rotation;3)WMML,spring millet→WM rotation;4)WMMP,spring peanut→WM rotation;and 5)WMMS,spring soybean→WM rotation,to explore how diversified rotations affected yield and WUE of wheat.Results showed that approximately 60% higher precipitation during wheat growing season in Cycle 1(2015-2017)resulted in yield increases by 33.8%-55.7% compared to those in Cycle 2(2017-2019)and Cycle3(2019-2021).Grain yield and WUE of wheat were 16.7% and 9.6% higher in Cycle 1,81.5% and 86.8% higher in Cycle 2,and 56.1% and 78.7% higher in Cycle 3 on average in diversified rotations compared to those in WM,respectively.Further analysis revealed that spike number and aboveground biomass were the main contributors to the increments,which can be explained by the increased evapotranspiration during the middle-late wheat growth stages(e.g.,regreening,jointing,and anthesis)in diversified rotations.In general,diversified rotations enhanced synchronization of soil water supply with crop water demand by affecting the spatiotemporal dynamics of soil moisture under varied precipitation conditions,thereby increasing yield and WUE of wheat.Hence,diversified spring crops→WM rotations offer a sustainable and efficient strategy for enhancing wheat production and water conservation in dry areas.