BACKGROUND: Sepsis is a life-threatening inflammatory condition in which the invading pathogen avoids the host's defense mechanisms and continuously stimulates and damages host cells. Consequently, many immune res...BACKGROUND: Sepsis is a life-threatening inflammatory condition in which the invading pathogen avoids the host's defense mechanisms and continuously stimulates and damages host cells. Consequently, many immune responses initially triggered for protection become harmful because of the failure to restore homeostasis, resulting in ongoing hyperinflammation and immunosuppression. METHODS: A literature review was conducted to address bacterial sepsis, describe advances in understanding complex immunological reactions, critically assess diagnostic approaches, and emphasize the importance of studying bacterial bottlenecks in the detection and treatment of sepsis.RESULTS: Diagnosing sepsis via a single laboratory test is not feasible;therefore, multiple key biomarkers are typically monitored, with a focus on trends rather than absolute values. The immediate interpretation of sepsis-associated clinical signs and symptoms, along with the use of specific and sensitive laboratory tests, is crucial for the survival of patients in the early stages. However, long-term mortality associated with sepsis is now recognized, and alongside the progression of this condition, there is an in vivo selection of adapted pathogens.CONCLUSION: Bacterial sepsis remains a significant cause of mortality across all ages and societies. While substantial progress has been made in understanding the immunological mechanisms underlying the inflammatory response, there is growing recognition that the ongoing host-pathogen interactions, including the emergence of adapted virulent strains, shape both the acute and long-term outcomes in sepsis. This underscores the urgent need for novel high-throughput diagnostic methods and a shift toward more pre-emptive, rather than reactive, treatment strategies in sepsis care.展开更多
In this study,two wheat-derived cadmium(Cd)-immobilizing endophytic Pseudomonas paralactis M14 and Priestia megaterium R27 were evaluated for their effects on wheat tissue Cd uptake under hydroponic conditions.Then,th...In this study,two wheat-derived cadmium(Cd)-immobilizing endophytic Pseudomonas paralactis M14 and Priestia megaterium R27 were evaluated for their effects on wheat tissue Cd uptake under hydroponic conditions.Then,the impacts of the biochar(BC),M14+R27(MR),and BC+MR treatments on wheat Cd uptake and the mechanisms involved were investigated at the jointing,heading,and mature stages of wheat plants under field-plot conditions.A hydroponic experiment showed that the MR treatment significantly decreased the above-ground tissue Cd content compared with theM14 or R27 treatment.The BC+MRtreatment reduced the grain Cd content by 51.5%-67.7%and Cd translocation factor at the mature stage of wheat plants and increased the organic matter-bound Cd content by 31%-75%in the rhizosphere soils compared with the BC or MR treatment.Compared with the BC or MR treatment,the relative abundances of the biomarkers associated with Gemmatimonas,Altererythrobacter,Gammaproteobacteria,Xanthomonadaceae,Phenylobacterium,and Nocardioides in the BC+MR-treated rhizosphere microbiome decreased and negatively correlated with the organic matter-bound Cd contents.In the BC+MR-treated root interior microbiome,the relative abundance of the biomarker belonging to Exiguobacterium increased and negatively correlated with the Cd translocation factor,while the relative abundance of the biomarker belonging to Pseudonocardiaceae decreased and positively correlated with the Cd translocation factor.Our findings suggested that the BC+MR treatment reduced Cd availability and Cd transfer through affecting the abundances of these specific biomarkers in the rhizosphere soil and root interior microbiomes,leading to decreased wheat grain Cd uptake in the contaminated soil.展开更多
Diel investigations of water environments are one means to holistically understand the dynamics and functional roles of phytoplankton,bacteria and viruses in these ecosystems.They have the potential to substantially i...Diel investigations of water environments are one means to holistically understand the dynamics and functional roles of phytoplankton,bacteria and viruses in these ecosystems.They have the potential to substantially impact carbon(C),nitrogen(N)and phosphorus(P)biogeochemistry through their respective roles.This study characterizes the phytoplankton,bacteria and virus communities and the elemental composition of various C,N and P nutrients flow over three diel cycles in tropical urban lake.Our results show that ratios of C:N:P fluctuated strongly from the lack of dissolved organic phosphorus(DOP)and PO_(4).Specifically,green algae peaked during day time and exudate dissolved organic matter(DOM)that strongly modulate dissolved organic carbon(DOC):DOP ratio to diel DOP limitation.Multiple linear regression and Stella modelling emphasize the roles of viruses together with Synechococcus as important nutrient recyclers of NH_(4)and PO_(4)in nutrients-limited waters.Respective normalised surface PO_(4)and combined surface and bottom NH_(4)concentration selected both viruses and Synechococcus as important drivers.Process model of N and P biogeochemical cycles can achieve 69%and 57%similar to observed concentration of NH_(4)and PO_(4),respectively.A short latent period of 9 hr was calculated,in addition to the calibrated high infectivity of viruses to Synechococcus.Taken together,the rapid turn-over between Synechococcus and viruses has biogeochemical significance,where the rapid recycling of essential nutrients allows for shortcuts in the N and P cycle,supporting a wide range of microbes.展开更多
Because of the recent widespread usage of antibiotics,the acquisition and dissemination of antibiotic-resistance genes(ARGs)were prevalent in the majority of habitats.Generally,the biological wastewater treatment proc...Because of the recent widespread usage of antibiotics,the acquisition and dissemination of antibiotic-resistance genes(ARGs)were prevalent in the majority of habitats.Generally,the biological wastewater treatment processes used in wastewater treatment plants have a limited efficiencies of antibiotics resistant bacteria(ARB)disinfection and ARGs degradation and even promote the proliferation of ARGs.Problematically,ARB and ARGs in effluent pose potential risks if they are not further treated.Photocatalytic oxidation is considered a promising disinfection technology,where the photocatalytic process generates many free radicals that enhance the interaction between light and deoxyribonucleic acid(DNA)for ARB elimination and subsequent degradation of ARGs.This reviewaims to illustrate the progress of photocatalytic oxidation technology for removing antibiotics resistant(AR)from wastewater in recent years.We discuss the sources and transfer of ARGs in wastewater.The overall removal efficiencies of ultraviolet radiation(UV)/chlorination,UV/ozone,UV/H_(2)O_(2),and UV/sulfate-radical based system for ARB and ARGs,as well as the experimental parameters and removal mechanisms,are systematically discussed.The contribution of photocatalytic materials based on TiO_(2) and g-C_(3)N_(4) to the inactivation of ARB and degradation of ARGs is highlighted,producingmany free radicals to attack ARB and ARGs while effectively limiting the horizontal gene transfer(HGT)in wastewater.Finally,based on the reviewed studies,future research directions are proposed to realize specific photocatalytic oxidation technology applications and overcome current challenges.展开更多
Plate culture counting and strain isolation methods were utilized to assess the species richness and abundance of planktonic and attached bacteria on glass plates in the surface and bottom seawater of Qingdao Middle H...Plate culture counting and strain isolation methods were utilized to assess the species richness and abundance of planktonic and attached bacteria on glass plates in the surface and bottom seawater of Qingdao Middle Harbor over a year,with monthly and quarterly sampling.Both species richness and bacterial numbers exhibited seasonal variations.Specifically,the abundance of attached bacteria and bacterioplankton peaked in June and July,corresponding to higher water temperatures in summer and autumn,while lower abundances were noted in January and December during cooler periods.Throughout the year,the species richness of attached bacteria consistently exceeded that of planktonic bacteria in both shallow and deep waters.Pseudoalteromonas emerged as the most prevalent genus among both planktonic and attached bacteria in surface and bottom seawater samples.Furthermore,the magnitude of changes in species richness and abundance for attached bacteria(0.66×10^(5)-15.85×10^(5)CFU/cm^(2))was greater than that observed for planktonic bacteria(0.58×10^(8)-5.33×10^(8)CFU/L).We propose that the attached bacterial populations,situated in limited microenvironments within the larger seawater ecosystem,exhibit heightened sensitivity to environmental fluctuations,resulting in more rapid shifts in population dynamics and lower ecological stability.The theoretical implications and potential applications of these findings warrant further investigation.展开更多
Salt-tolerant bacteria associated with halophytes enhance plant resistance and adaptation to environmental stress.The purpose of this study was to investigate the diversity and plant-beneficial traits of bacteria asso...Salt-tolerant bacteria associated with halophytes enhance plant resistance and adaptation to environmental stress.The purpose of this study was to investigate the diversity and plant-beneficial traits of bacteria associated with three halophytes in an arid land,Northwest China.The bacterial strains were isolated from the roots,shoots,rhizosphere,and bulk soil of three halophytes,i.e.,Salicornia europaea L.,Kalidium foliatum(Pall.)Moq.,and Suaeda aralocaspica(Bunge)Freitag&Schütze,collected from the saline soils near to the Wujiaqu City,Xinjiang,Northwest China.A total of 567 strains were isolated and identified from these three halophytes belonging to 4 phyla,6 classes,25 orders,36 families,and 66 genera,including 147 potential novel species.A total of 213 strains exhibited one or more plant growthpromoting properties,while 20 strains demonstrated multiple in vitro plant growth-promoting activities,including phosphate solubilization,nitrogen fixation,siderophore production,and production of hydrolytic enzymes such as protease and cellulase.Our findings showed that halophytes in the arid land harbor diverse bacteria with the potential to enhance plant growth and adaptability under challenging environmental conditions.展开更多
Objective: This study assessed the effects of consuming acetic acid bacteria (Gluconacetobacter hansenii GK-1) for 12 weeks on fatigue induced by temporary mental stress. Methods: This randomized, double-blind, placeb...Objective: This study assessed the effects of consuming acetic acid bacteria (Gluconacetobacter hansenii GK-1) for 12 weeks on fatigue induced by temporary mental stress. Methods: This randomized, double-blind, placebo-controlled, parallel-group study included 100 healthy male and female adults aged 20 - 64 years. Participants consumed either the G. hansenii GK-1 supplement (9 × 10⁹ cells/day) or a placebo daily for 12 weeks. The impact of temporary mental stress on fatigue in G. hansenii GK-1 was assessed using a Visual Analog Scale (VAS) before the study began and after 12 weeks of supplementation. Results: Subjective fatigue measured by Visual Analog Scale (VAS) showed a significant decrease in fatigue induced by temporary mental stress after 12 weeks of consumption in the G. hansenii GK-1 group compared with the placebo group. No adverse events were attributed to G. hansenii GK-1. These findings confirm that continuous oral ingestion of G. hansenii GK-1 by healthy Japanese adults reduces feelings of fatigue caused by temporary mental stress.展开更多
Both the broad-spectrum bactericidal properties of disinfectants and the inhibitory effects of antibiotics pose potential threats to the activity,functionality,and probiotic properties of Lactid acid bacteria(LAB).The...Both the broad-spectrum bactericidal properties of disinfectants and the inhibitory effects of antibiotics pose potential threats to the activity,functionality,and probiotic properties of Lactid acid bacteria(LAB).Therefore,it is essential to systematically evaluate the tolerance of lactic acid bacteria to common disinfectants and antibiotics.This study assessed 60 LAB strains isolated from the fermented foods for their tolerance to seven disinfectants and nine antibiotics.The results indicated that,compared to pathogenic bacteria,most LAB exhibited stronger tolerance to disinfectants.Sub-inhibitory concentrations of disinfectants inhibited biofilm formation in most LAB,while sub-inhibitory concentrations of glutaraldehyde tended to promote biofilm formation.This suggests that commonly used disinfectants can eliminate pathogenic bacteria without killing LAB,providing guidance for disinfectant use.LAB were highly sensitive to ampicillin and chloramphenicol,while showing some tolerance to norfloxacin,polymyxin,and sulfamethoxazole.This indicates LAB have a notable antibiotic resistance profile,which includes both natural resistance characteristics and instances of acquired resistance,along with multiple drug resistance and cross-resistance between antibiotics and disinfectants.This study provides an important guidance for disinfection practices in industrial utilizing LAB,such as food and biomedicine,and offers a reference for the use of antibiotics.展开更多
The Makran Sea is a complex marine environment.The purpose of this research is screening of emulsifier-producing bacteria in this marine environment and optimization of emulsifier production by the best-producing stra...The Makran Sea is a complex marine environment.The purpose of this research is screening of emulsifier-producing bacteria in this marine environment and optimization of emulsifier production by the best-producing strain.Marine samples(seawater and sediments)were collected from four different zones in the Makran Sea.The emulsification activity index(E_(24))and Bacterial Ad-hesion To Hydrocarbons(BATH)were used to select the best emulsifier-producing strains.The prevalent strains were identified by PCR.The optimization of the emulsifier production medium by the best strain was done by two-level factorial design.Seventeen emulsifier-producing strains were isolated from sediments and seawater in the Makran Sea.The strains M6,BS-2,and J6 were select-ed between all isolates because they have 83%,91%,and 85%emulsification activity(E_(24))respectively.The results of sequencing confirmed that these three strains(M6,BS-2,and J6)belong to Cobetia marina,Shewanella alga,and Thalassospira permensis re-spectively.Maximum emulsifier production occurred at crude oil concentration(4%,v/v),peptone(2.5 g/L),yeast extract(1.5 g/L),molasses(2%),and at a temperature of 25℃.The results of this research confirmed that the Makran Sea has the potential to reach ro-bust marine bacteria with different biotechnological applications.展开更多
This study examined the effects of pasteurization(PAS),ultrasonic sterilization(ULS),and microwave sterilization(MWS)on the quality and storage characteristics of brine-fermented tofu(BFT)and fermented tofu(FT).Compar...This study examined the effects of pasteurization(PAS),ultrasonic sterilization(ULS),and microwave sterilization(MWS)on the quality and storage characteristics of brine-fermented tofu(BFT)and fermented tofu(FT).Comparative analysis revealed that MWS had a negligible detrimental effect on the structural integrity and organoleptic properties of BFT and FT,while effectively maintaining its water-holding capacity(WHC)and exhibiting the least impact on its texture.In contrast,PAS and ULS increased hardness and chewiness significantly(P<0.05),but ULS also enhanced the brightness of tofu.Throughout the storage period,the WHC,elasticity,and sensory properties of tofu generally decreased,whereas the hardness and chewiness increased.PAS-BFT and MWS-FT maintained sensory quality for the longest periods of 14 and 12 days respectively,and could be decomposed to more small molecule peptides within 0–8 days and 0–6 days,which are more easily to be absorbed by the body.The findings discovered that MWS is the most suitable method for sterilization of tofu,with superior capability in maintaining the quality,extending shelf life,and improving digestibility of tofu.展开更多
Deep learning neural network incorporating surface enhancement Raman scattering technique(SERS)is becoming as a powerful tool for the precise classifications and diagnosis of bacterial infections.However,the large amo...Deep learning neural network incorporating surface enhancement Raman scattering technique(SERS)is becoming as a powerful tool for the precise classifications and diagnosis of bacterial infections.However,the large amount of sample requirement and time-consuming sample collection severely hinder its applications.We herein propose a spectral concatenation strategy for residual neural network using nonspecific and specific SERS spectra for the training data augmentation,which is accessible to acquiring larger training dataset with same number of SERS spectra or same size of training dataset with fewer SERS spectra,compared with pure non-specific SERS spectra.With this strategy,the training loss exhibit rapid convergence,and an average accuracy up to 100%in bacteria classifications was achieved with50 SERS spectra for each kind of bacterium;even reduced to 20 SERS spectra per kind of bacterium,classification accuracy is still>95%,demonstrating marked advantage over the results without spectra concatenation.This method can markedly improve the classification accuracy under fewer samples and reduce the data collection workload,and can evidently enhance the performance when used in different machine learning models with high generalization ability.Therefore,this strategy is beneficial for rapid and accurate bacteria classifications with residual neural network.展开更多
Mariculture tailwater poses significant environmental challenges such as water pollution and eutrophication.Photosynthetic bacteria(PSB)have been widely used for pollutant treatment.The integrated aquaculture wastewat...Mariculture tailwater poses significant environmental challenges such as water pollution and eutrophication.Photosynthetic bacteria(PSB)have been widely used for pollutant treatment.The integrated aquaculture wastewater bioremediation system(IAWBS)consists of four key components:sedimentation,biofilm,shellfish,and macro-algae.However,there is still some room for improvement in the treatment efficiency of the IAWBS.In this study,PSB(Rhodopseudomonos,Rhodobacteria,Rhodococcus)were added to the system.High-throughput amplicon of 16S rRNA,PERMANOVA,NMDS and other statistical analyses were used to investigate the impacts of PSB.The results showed that significant removal efficiencies of CODMn,NH_(4)^(+)-N,NO_(3)^(-)-N,NO_(2)^(-)-N,PO_(4)^(3-)-P were 71.42%,91.37%,91.72%,87.20%,and 88.80%,respectively.The impact of PSB on bacterioplankton community(BC)was not affected by the time interval but affected by different units,Proteobacteria,Bacteriodia and Actinobacteria were the most abundant phyla in all the units.Alpha diversity underscored a significant decrease in bacterial community diversity due to the PSB.Notably,the PERMANOVA analysis highlighted a significant interaction between the time interval and treated unit,influencing the composition of the microbial community(R^(2)=0.152;P=0.001).This study provides a better understanding of the role of photosynthetic bacteria in an integrated bioremediation system that can effectively treat mariculture tailwater,which is of great significance for the sustainable development of aquaculture.展开更多
Hyperuricemia(HUA)is characterized by elevated levels of uric acid(UA)in the bloodstream,resulting from either excessive production or insufficient excretion of UA within the body.If left untreated,progressive or pers...Hyperuricemia(HUA)is characterized by elevated levels of uric acid(UA)in the bloodstream,resulting from either excessive production or insufficient excretion of UA within the body.If left untreated,progressive or persistent HUA can lead to gout,causing significant harm to human health.Lactic acid bacteria(LAB),generally recognized as safe(GRAS)probiotics,have been shown to alleviate symptoms associated with gastrointestinal disorders such as irritable bowel syndrome and inflammatory bowel disease while supporting overall bodily functions and health.Recently,LAB has emerged as a potentially safe,cost-effective and efficient treatment for HUA.This comprehensive review aims to explore the current literature on the mechanisms through which LAB controls HUA.These mechanisms include suppressing purine metabolism,absorbing purine compounds,modulating microbiota to maintain host global purine homeostasis,reducing intestinal permeability,producing metabolites that alleviate HUA symptoms,promoting the expression of urate excretory proteins and inhibiting the expression of urate reabsorption proteins.The findings presented in this review provide a framework for further investigation into how probiotic LAB can alleviate HUA by influencing UA metabolism and elucidating their underlying action mechanisms.展开更多
This article discusses the original article published by Lu et al in the latest issue.The article confirmed through a cohort study the clinical efficacy of the triple live bacteria of Bifidobacterium combined with mir...This article discusses the original article published by Lu et al in the latest issue.The article confirmed through a cohort study the clinical efficacy of the triple live bacteria of Bifidobacterium combined with mirtazapine in treating postoperative depression of gastric cancer patients,also explored the multi-target therapeutic mechanisms of Bifidobacterium triple viable bacteria combined with mirtazapine in managing depression in patients after radical gastrectomy for gastric cancer for the first time.The results indicated that Bifidobacterium could alleviate depression in patients after radical gastrectomy for gastric cancer.Gastric cancer patients undergoing surgery frequently experience postoperative psychological disorders,notably depression.These conditions not only impair quality of life but also negatively impact disease-free and overall survival.This editorial explores the underestimated psychological challenges following gastric cancer surgery,including depression,anxiety,adjustment disorders,and post-traumatic stress disorder.It further examines the therapeutic potential of Bifidobacterium triple viable probiotics,combined with mirtazapine,in alleviating postoperative depression through microbiological,immunological,and neurological mechanisms.Clinical evidence highlights additional benefits,such as improved gastrointestinal function,enhanced immunity,and better nutritional status,underscoring a holistic approach to postoperative care.While promising,further large-scale trials are needed to optimize and personalize probiotic-based interventions.展开更多
Oryza longistaminata is an African wild rice species with valuable agronomic traits and the donor parent of perennial rice.Endophytic bacteria play an important role in host health,adaptive evolution and stress tolera...Oryza longistaminata is an African wild rice species with valuable agronomic traits and the donor parent of perennial rice.Endophytic bacteria play an important role in host health,adaptive evolution and stress tolerance.However,endophytic bacterial communities in O.longistaminata and their plant growth-promoting(PGP)effects on the perennial rice of O.longistaminata offspring are poorly understood.In this study,the endophytic bacterial diversity,composition and network structures in the root,stem,and leaf tissues of O.longistaminata were characterized using Illumina sequencing of the 16S rRNA gene.The results suggested that O.longistaminata contains a multitude of niches for different endophytic bacteria,among which the root endosphere is more complex and functionally diverse than the stem and leaf endospheres.Tissue-specific biomarkers were identified,including Paludibaculum,Pseudactinotalea and Roseimarinus and others,for roots,Blautia for stems and Lachnospiraceae NK4A136 for leaves.The endophytic bacterial network of O.longistaminata was reassembled for various functions,including degradation/utilization/assimilation,detoxification,generation of precursor metabolites and energy,glycan pathways,macromolecule modification and metabolism.A total of 163 endophytic bacterial strains with PGP traits of potassium release,phosphate solubilization,nitrogen fixation,siderophore activity,indole-3-acetic acid(IAA)production,and 1-aminocyclopropane-1-carboxylate(ACC)deaminase activity were isolated from O.longistaminata.Eleven strains identified as Enterobacter cloacae,Enterobacter ludwigii,Stenotrophomonas maltophilia,Serratia fonticola,and Bacillus velezensis showed stable colonization abilities and PGP effects on perennial rice seedlings.Inoculated plants generally exhibited an enhanced root system and greater photosynthesis,biomass accumulation and nutrient uptake.Interestingly,two strains of E.cloacae have host genotype-dependent effects on perennial rice growth.The results of this study provide insights into the endophytic bacterial ecosystems of O.longistaminata,which can potentially be used as biofertilizers for sustainable perennial rice productivity.展开更多
Rapid and robust identification of bacteria is crucial for environmental monitoring and clinical diagnosis.Herein,a bioinspired interface-mediated multichannel sensor array was developed based on three-coloremitting a...Rapid and robust identification of bacteria is crucial for environmental monitoring and clinical diagnosis.Herein,a bioinspired interface-mediated multichannel sensor array was developed based on three-coloremitting antimicrobial functional carbon dots(FCDs)and concanavalin A doped polydopamine nanoparticles(Con A-PDA)for identification of bacteria.In this sensor,the fluorescence intensity of the three FCDs was quenched by the Con A-PDA.Upon addition different types of bacteria,the fluorescence intensity of the three FCDs was restored or further quenched.Recur to statistical analysis methods,it is employed to accurately discriminate 10 types of bacteria(including three probiotics and seven pathogenic bacteria)in natural water samples and human urine samples.The discrimination ability of the sensor array was highly enhanced via different competing binding of the FCDs and the bacteria toward Con A-PDA.The proposed array-based method offers a rapid,high-throughput,and reliable sensing platform for pathogen diagnosis in the field of environmental monitoring and clinical diagnosis.展开更多
Radical anions of electron-deficient perylene diimides(PDI)are attractive near-infrared(NIR)absorbers for photothermal conversion;however,their stability is often compromised by strong aggregation and reoxidation in a...Radical anions of electron-deficient perylene diimides(PDI)are attractive near-infrared(NIR)absorbers for photothermal conversion;however,their stability is often compromised by strong aggregation and reoxidation in air.Herein,we present a class of bacterial composites hybridized with a newly synthesized doubly-strapped PDI cyclophane,termed“Gemini Box”(GBox-3^(4+)),which features air-stable PDI radicals for NIR photothermal conversion.The effective spatial isolation provided by the double-sided cationic molecular straps allows GBox-3^(4+)to completely suppress chromophore aggregation,even in concentrated aqueous solutions up to 2 mmol/L,thereby preserving its characteristic fluorescence for live-cell imaging.After incubation of bacteria with GBox-3^(4+),the radical species PDI·-have been found to stably exist in the bacterial composites under ambient conditions,both in aqueous suspension and solid forms.Further experiments demonstrate that the air stability of the radical species relies on the simultaneous presence of the doubly-strapped PDI dye and the bacteria.Moreover,the dye-bacterial composites exhibited an high-efficiency NIR photothermal effect with high durability,enabling their application as photothermal agents for seawater desalination.This work provides a new access to the in situ fabrication of photothermal materials from biomass,relying on the rational molecular design and the unique microenvironment of bacteria.展开更多
Immunotherapy offers the promise of a potential cure for cancer,yet achieving the desired therapeutic effect can be challenging due to the immunosuppressive tumor microenvironments(TMEs) present in some tumors.Therefo...Immunotherapy offers the promise of a potential cure for cancer,yet achieving the desired therapeutic effect can be challenging due to the immunosuppressive tumor microenvironments(TMEs) present in some tumors.Therefore,robust immune system activation is crucial to enhance the efficacy of cancer immunotherapy in clinical applications.Bacteria have shown the ability to target the hypoxic TMEs while activating both innate and adaptive immune responses.Engineered bacteria,modified through chemical or biological methods,can be endowed with specific physiological properties,such as diverse surface antigens,metabolites,and improved biocompatibility.These unique characteristics give engineered bacteria distinct advantages in stimulating anti-cancer immune responses.This review explores the potential regulatory mechanisms of engineered bacteria in modulating both innate and adaptive immunity while also forecasting the future development and challenges of using engineered bacteria in clinical cancer immunotherapy.展开更多
This study aimed to explore the effect of different proportions of organic fertilizer replacing chemical fertilizer on the bacterial community and metabolic function in paddy fields.The 16S rRNA absolute quantitative ...This study aimed to explore the effect of different proportions of organic fertilizer replacing chemical fertilizer on the bacterial community and metabolic function in paddy fields.The 16S rRNA absolute quantitative sequencing method was employed to study the response characteristics of soil bacterial community composition and species absolute abundance to environmental factors under three fertilization treatments[chemical fertilizer(NPK),organic fertilizer replacing 30%of chemical fertilizer(30M,estimated in terms of pure nitrogen,same below),and organic fertilizer replacing 60%of chemical fertilizer(60M)]for two consecutive years.Furthermore,the changes of bacterial metabolic functions of different fertilization treatments were predicted by PICRUSt2.The results showed that replacing chemical fertilizer with organic fertilizer at different proportions significantly increased the total nitrogen(TN),total potassium(TK),hydrolyzable nitrogen(HN),soil organic carbon(SOC),and significantly decreased the soil bulk density(SBD).Moreover,60M demonstrated better performance than 30M.Different fertilization treatments did not cause significant difference in soil bacterial richness index(Chao1)or diversity index(Shannon)but significantly affected bacterial community composition and species abundance.Particularly,60M significantly increased the abundance of 227 species,and it increased the total bacterial abundance by 25.30%and 56.58%compared with NPK and 30M,respectively.Redundancy analysis and Spearman correlation analysis revealed that SOC,TN,and AK were the key factors for shaping specific bacterial community structures under different fertilization treatments.The 60M treatment significantly increased the abundance of bacterial species involved in xenobiotic biodegradation and metabolism,amino acid metabolism,and lipid metabolism,thus improving the metabolic functions of soil microorganisms.展开更多
The Tibetan Plateau has a large number of hot springs with varying temperatures and hydrochemistry,high elevation,and limited nitrogenous nutrition.Nitrogen-fixing bacteria(NFB)can fix N_(2)to form ammonia and thus pr...The Tibetan Plateau has a large number of hot springs with varying temperatures and hydrochemistry,high elevation,and limited nitrogenous nutrition.Nitrogen-fixing bacteria(NFB)can fix N_(2)to form ammonia and thus provide bioavailable nitrogen.However,there is limited knowledge about the distribution of NFB and its influencing factors in Tibetan hot springs.Here,we measured hydrochemical variables of the hot springs with a wide temperature range(32–77°C)in the Qucai and Daggyai geothermal zones on the Tibetan Plateau and investigated the composition of NFB using high-throughput sequencing of 16SrRNA and nif H genes.The Cl^(-)/SO_(4)^(2-)ratio in Qucai hot springs was higher than that in Daggyai,indicating that Qucai and Daggyai hot springs were more affected by the supply of liquid and gaseous phases,respectively.The NFB communities consisted predominantly of Nirtospirae,Chloroflexi,Deltaproteobacteria and an unidentified clade,with the last three acting as the main NFB with over 42%of the communities(the proportions are significantly larger than those found in hot springs of other geothermal regions).This demonstrates the uniqueness of NFB communities in Tibetan hot springs.NFB richness was limited by temperature in the studied Tibetan hot springs and was significantly lower than in low-elevation geothermal regions.The NFB community was predominantly affected by hydrochemistry,in contrast to the entire prokaryotic community,which was primarily influenced by temperature.This study expands our current understanding of NFB distribution and diversity as well as biogeochemical process in geothermal spring environments.展开更多
基金funded by the Deanship of Scientific Research (DSR) at King Abdulaziz UniversityJeddah+1 种基金Saudi Arabiaunder grant number G-150-248-1443。
文摘BACKGROUND: Sepsis is a life-threatening inflammatory condition in which the invading pathogen avoids the host's defense mechanisms and continuously stimulates and damages host cells. Consequently, many immune responses initially triggered for protection become harmful because of the failure to restore homeostasis, resulting in ongoing hyperinflammation and immunosuppression. METHODS: A literature review was conducted to address bacterial sepsis, describe advances in understanding complex immunological reactions, critically assess diagnostic approaches, and emphasize the importance of studying bacterial bottlenecks in the detection and treatment of sepsis.RESULTS: Diagnosing sepsis via a single laboratory test is not feasible;therefore, multiple key biomarkers are typically monitored, with a focus on trends rather than absolute values. The immediate interpretation of sepsis-associated clinical signs and symptoms, along with the use of specific and sensitive laboratory tests, is crucial for the survival of patients in the early stages. However, long-term mortality associated with sepsis is now recognized, and alongside the progression of this condition, there is an in vivo selection of adapted pathogens.CONCLUSION: Bacterial sepsis remains a significant cause of mortality across all ages and societies. While substantial progress has been made in understanding the immunological mechanisms underlying the inflammatory response, there is growing recognition that the ongoing host-pathogen interactions, including the emergence of adapted virulent strains, shape both the acute and long-term outcomes in sepsis. This underscores the urgent need for novel high-throughput diagnostic methods and a shift toward more pre-emptive, rather than reactive, treatment strategies in sepsis care.
基金supported by the National Natural Science Foundation of China(No.41977199).
文摘In this study,two wheat-derived cadmium(Cd)-immobilizing endophytic Pseudomonas paralactis M14 and Priestia megaterium R27 were evaluated for their effects on wheat tissue Cd uptake under hydroponic conditions.Then,the impacts of the biochar(BC),M14+R27(MR),and BC+MR treatments on wheat Cd uptake and the mechanisms involved were investigated at the jointing,heading,and mature stages of wheat plants under field-plot conditions.A hydroponic experiment showed that the MR treatment significantly decreased the above-ground tissue Cd content compared with theM14 or R27 treatment.The BC+MRtreatment reduced the grain Cd content by 51.5%-67.7%and Cd translocation factor at the mature stage of wheat plants and increased the organic matter-bound Cd content by 31%-75%in the rhizosphere soils compared with the BC or MR treatment.Compared with the BC or MR treatment,the relative abundances of the biomarkers associated with Gemmatimonas,Altererythrobacter,Gammaproteobacteria,Xanthomonadaceae,Phenylobacterium,and Nocardioides in the BC+MR-treated rhizosphere microbiome decreased and negatively correlated with the organic matter-bound Cd contents.In the BC+MR-treated root interior microbiome,the relative abundance of the biomarker belonging to Exiguobacterium increased and negatively correlated with the Cd translocation factor,while the relative abundance of the biomarker belonging to Pseudonocardiaceae decreased and positively correlated with the Cd translocation factor.Our findings suggested that the BC+MR treatment reduced Cd availability and Cd transfer through affecting the abundances of these specific biomarkers in the rhizosphere soil and root interior microbiomes,leading to decreased wheat grain Cd uptake in the contaminated soil.
文摘Diel investigations of water environments are one means to holistically understand the dynamics and functional roles of phytoplankton,bacteria and viruses in these ecosystems.They have the potential to substantially impact carbon(C),nitrogen(N)and phosphorus(P)biogeochemistry through their respective roles.This study characterizes the phytoplankton,bacteria and virus communities and the elemental composition of various C,N and P nutrients flow over three diel cycles in tropical urban lake.Our results show that ratios of C:N:P fluctuated strongly from the lack of dissolved organic phosphorus(DOP)and PO_(4).Specifically,green algae peaked during day time and exudate dissolved organic matter(DOM)that strongly modulate dissolved organic carbon(DOC):DOP ratio to diel DOP limitation.Multiple linear regression and Stella modelling emphasize the roles of viruses together with Synechococcus as important nutrient recyclers of NH_(4)and PO_(4)in nutrients-limited waters.Respective normalised surface PO_(4)and combined surface and bottom NH_(4)concentration selected both viruses and Synechococcus as important drivers.Process model of N and P biogeochemical cycles can achieve 69%and 57%similar to observed concentration of NH_(4)and PO_(4),respectively.A short latent period of 9 hr was calculated,in addition to the calibrated high infectivity of viruses to Synechococcus.Taken together,the rapid turn-over between Synechococcus and viruses has biogeochemical significance,where the rapid recycling of essential nutrients allows for shortcuts in the N and P cycle,supporting a wide range of microbes.
基金supported by the National Natural Science Foundation of China (Nos.52100182 and 52300204)the the Science and Technology Innovation Program of Hunan Province (No.2023RC3122).
文摘Because of the recent widespread usage of antibiotics,the acquisition and dissemination of antibiotic-resistance genes(ARGs)were prevalent in the majority of habitats.Generally,the biological wastewater treatment processes used in wastewater treatment plants have a limited efficiencies of antibiotics resistant bacteria(ARB)disinfection and ARGs degradation and even promote the proliferation of ARGs.Problematically,ARB and ARGs in effluent pose potential risks if they are not further treated.Photocatalytic oxidation is considered a promising disinfection technology,where the photocatalytic process generates many free radicals that enhance the interaction between light and deoxyribonucleic acid(DNA)for ARB elimination and subsequent degradation of ARGs.This reviewaims to illustrate the progress of photocatalytic oxidation technology for removing antibiotics resistant(AR)from wastewater in recent years.We discuss the sources and transfer of ARGs in wastewater.The overall removal efficiencies of ultraviolet radiation(UV)/chlorination,UV/ozone,UV/H_(2)O_(2),and UV/sulfate-radical based system for ARB and ARGs,as well as the experimental parameters and removal mechanisms,are systematically discussed.The contribution of photocatalytic materials based on TiO_(2) and g-C_(3)N_(4) to the inactivation of ARB and degradation of ARGs is highlighted,producingmany free radicals to attack ARB and ARGs while effectively limiting the horizontal gene transfer(HGT)in wastewater.Finally,based on the reviewed studies,future research directions are proposed to realize specific photocatalytic oxidation technology applications and overcome current challenges.
基金The National Natural Science Foundation of China under contract Nos 42206126 and 42076044the Natural Science Foundation of Shandong Province under contract No.ZR2021QD099.
文摘Plate culture counting and strain isolation methods were utilized to assess the species richness and abundance of planktonic and attached bacteria on glass plates in the surface and bottom seawater of Qingdao Middle Harbor over a year,with monthly and quarterly sampling.Both species richness and bacterial numbers exhibited seasonal variations.Specifically,the abundance of attached bacteria and bacterioplankton peaked in June and July,corresponding to higher water temperatures in summer and autumn,while lower abundances were noted in January and December during cooler periods.Throughout the year,the species richness of attached bacteria consistently exceeded that of planktonic bacteria in both shallow and deep waters.Pseudoalteromonas emerged as the most prevalent genus among both planktonic and attached bacteria in surface and bottom seawater samples.Furthermore,the magnitude of changes in species richness and abundance for attached bacteria(0.66×10^(5)-15.85×10^(5)CFU/cm^(2))was greater than that observed for planktonic bacteria(0.58×10^(8)-5.33×10^(8)CFU/L).We propose that the attached bacterial populations,situated in limited microenvironments within the larger seawater ecosystem,exhibit heightened sensitivity to environmental fluctuations,resulting in more rapid shifts in population dynamics and lower ecological stability.The theoretical implications and potential applications of these findings warrant further investigation.
基金funded by the Key Research and Development Project of Xinjiang Uygur Autonomous Region (2024B02015-3)the Regional Coordinated Innovation Project (Shanghai Cooperation Organization Science and Technology Partnership Program) of Xinjiang Uygur Autonomous Region (2025E01024)
文摘Salt-tolerant bacteria associated with halophytes enhance plant resistance and adaptation to environmental stress.The purpose of this study was to investigate the diversity and plant-beneficial traits of bacteria associated with three halophytes in an arid land,Northwest China.The bacterial strains were isolated from the roots,shoots,rhizosphere,and bulk soil of three halophytes,i.e.,Salicornia europaea L.,Kalidium foliatum(Pall.)Moq.,and Suaeda aralocaspica(Bunge)Freitag&Schütze,collected from the saline soils near to the Wujiaqu City,Xinjiang,Northwest China.A total of 567 strains were isolated and identified from these three halophytes belonging to 4 phyla,6 classes,25 orders,36 families,and 66 genera,including 147 potential novel species.A total of 213 strains exhibited one or more plant growthpromoting properties,while 20 strains demonstrated multiple in vitro plant growth-promoting activities,including phosphate solubilization,nitrogen fixation,siderophore production,and production of hydrolytic enzymes such as protease and cellulase.Our findings showed that halophytes in the arid land harbor diverse bacteria with the potential to enhance plant growth and adaptability under challenging environmental conditions.
文摘Objective: This study assessed the effects of consuming acetic acid bacteria (Gluconacetobacter hansenii GK-1) for 12 weeks on fatigue induced by temporary mental stress. Methods: This randomized, double-blind, placebo-controlled, parallel-group study included 100 healthy male and female adults aged 20 - 64 years. Participants consumed either the G. hansenii GK-1 supplement (9 × 10⁹ cells/day) or a placebo daily for 12 weeks. The impact of temporary mental stress on fatigue in G. hansenii GK-1 was assessed using a Visual Analog Scale (VAS) before the study began and after 12 weeks of supplementation. Results: Subjective fatigue measured by Visual Analog Scale (VAS) showed a significant decrease in fatigue induced by temporary mental stress after 12 weeks of consumption in the G. hansenii GK-1 group compared with the placebo group. No adverse events were attributed to G. hansenii GK-1. These findings confirm that continuous oral ingestion of G. hansenii GK-1 by healthy Japanese adults reduces feelings of fatigue caused by temporary mental stress.
基金supported by the National Science Foundation of China (32001663)。
文摘Both the broad-spectrum bactericidal properties of disinfectants and the inhibitory effects of antibiotics pose potential threats to the activity,functionality,and probiotic properties of Lactid acid bacteria(LAB).Therefore,it is essential to systematically evaluate the tolerance of lactic acid bacteria to common disinfectants and antibiotics.This study assessed 60 LAB strains isolated from the fermented foods for their tolerance to seven disinfectants and nine antibiotics.The results indicated that,compared to pathogenic bacteria,most LAB exhibited stronger tolerance to disinfectants.Sub-inhibitory concentrations of disinfectants inhibited biofilm formation in most LAB,while sub-inhibitory concentrations of glutaraldehyde tended to promote biofilm formation.This suggests that commonly used disinfectants can eliminate pathogenic bacteria without killing LAB,providing guidance for disinfectant use.LAB were highly sensitive to ampicillin and chloramphenicol,while showing some tolerance to norfloxacin,polymyxin,and sulfamethoxazole.This indicates LAB have a notable antibiotic resistance profile,which includes both natural resistance characteristics and instances of acquired resistance,along with multiple drug resistance and cross-resistance between antibiotics and disinfectants.This study provides an important guidance for disinfection practices in industrial utilizing LAB,such as food and biomedicine,and offers a reference for the use of antibiotics.
基金supported by Shahid Bahonar Universi-ty of Kerman.
文摘The Makran Sea is a complex marine environment.The purpose of this research is screening of emulsifier-producing bacteria in this marine environment and optimization of emulsifier production by the best-producing strain.Marine samples(seawater and sediments)were collected from four different zones in the Makran Sea.The emulsification activity index(E_(24))and Bacterial Ad-hesion To Hydrocarbons(BATH)were used to select the best emulsifier-producing strains.The prevalent strains were identified by PCR.The optimization of the emulsifier production medium by the best strain was done by two-level factorial design.Seventeen emulsifier-producing strains were isolated from sediments and seawater in the Makran Sea.The strains M6,BS-2,and J6 were select-ed between all isolates because they have 83%,91%,and 85%emulsification activity(E_(24))respectively.The results of sequencing confirmed that these three strains(M6,BS-2,and J6)belong to Cobetia marina,Shewanella alga,and Thalassospira permensis re-spectively.Maximum emulsifier production occurred at crude oil concentration(4%,v/v),peptone(2.5 g/L),yeast extract(1.5 g/L),molasses(2%),and at a temperature of 25℃.The results of this research confirmed that the Makran Sea has the potential to reach ro-bust marine bacteria with different biotechnological applications.
基金supported by the Innovation Talents Project of Harbin Science and Technology Bureau(2022CXRCCGO11)。
文摘This study examined the effects of pasteurization(PAS),ultrasonic sterilization(ULS),and microwave sterilization(MWS)on the quality and storage characteristics of brine-fermented tofu(BFT)and fermented tofu(FT).Comparative analysis revealed that MWS had a negligible detrimental effect on the structural integrity and organoleptic properties of BFT and FT,while effectively maintaining its water-holding capacity(WHC)and exhibiting the least impact on its texture.In contrast,PAS and ULS increased hardness and chewiness significantly(P<0.05),but ULS also enhanced the brightness of tofu.Throughout the storage period,the WHC,elasticity,and sensory properties of tofu generally decreased,whereas the hardness and chewiness increased.PAS-BFT and MWS-FT maintained sensory quality for the longest periods of 14 and 12 days respectively,and could be decomposed to more small molecule peptides within 0–8 days and 0–6 days,which are more easily to be absorbed by the body.The findings discovered that MWS is the most suitable method for sterilization of tofu,with superior capability in maintaining the quality,extending shelf life,and improving digestibility of tofu.
基金supported by the National Key Research and Development Program of China(No.2023YFC3402900)the National Nature Science of Foundation(No.61875131)+1 种基金Shenzhen Key Laboratory of Photonics and Biophotonics(No.ZDSYS20210623092006020)Shenzhen Science and Technology Innovation Program(No.20231120175730001)。
文摘Deep learning neural network incorporating surface enhancement Raman scattering technique(SERS)is becoming as a powerful tool for the precise classifications and diagnosis of bacterial infections.However,the large amount of sample requirement and time-consuming sample collection severely hinder its applications.We herein propose a spectral concatenation strategy for residual neural network using nonspecific and specific SERS spectra for the training data augmentation,which is accessible to acquiring larger training dataset with same number of SERS spectra or same size of training dataset with fewer SERS spectra,compared with pure non-specific SERS spectra.With this strategy,the training loss exhibit rapid convergence,and an average accuracy up to 100%in bacteria classifications was achieved with50 SERS spectra for each kind of bacterium;even reduced to 20 SERS spectra per kind of bacterium,classification accuracy is still>95%,demonstrating marked advantage over the results without spectra concatenation.This method can markedly improve the classification accuracy under fewer samples and reduce the data collection workload,and can evidently enhance the performance when used in different machine learning models with high generalization ability.Therefore,this strategy is beneficial for rapid and accurate bacteria classifications with residual neural network.
基金financially supported by the National Key R&D Program of China(No.2020YFD0900201)the Ningbo Public Welfare Technology Application Research Project(No.2022S164)the K.C.Wong Magna Fund in Ningbo University。
文摘Mariculture tailwater poses significant environmental challenges such as water pollution and eutrophication.Photosynthetic bacteria(PSB)have been widely used for pollutant treatment.The integrated aquaculture wastewater bioremediation system(IAWBS)consists of four key components:sedimentation,biofilm,shellfish,and macro-algae.However,there is still some room for improvement in the treatment efficiency of the IAWBS.In this study,PSB(Rhodopseudomonos,Rhodobacteria,Rhodococcus)were added to the system.High-throughput amplicon of 16S rRNA,PERMANOVA,NMDS and other statistical analyses were used to investigate the impacts of PSB.The results showed that significant removal efficiencies of CODMn,NH_(4)^(+)-N,NO_(3)^(-)-N,NO_(2)^(-)-N,PO_(4)^(3-)-P were 71.42%,91.37%,91.72%,87.20%,and 88.80%,respectively.The impact of PSB on bacterioplankton community(BC)was not affected by the time interval but affected by different units,Proteobacteria,Bacteriodia and Actinobacteria were the most abundant phyla in all the units.Alpha diversity underscored a significant decrease in bacterial community diversity due to the PSB.Notably,the PERMANOVA analysis highlighted a significant interaction between the time interval and treated unit,influencing the composition of the microbial community(R^(2)=0.152;P=0.001).This study provides a better understanding of the role of photosynthetic bacteria in an integrated bioremediation system that can effectively treat mariculture tailwater,which is of great significance for the sustainable development of aquaculture.
基金funded by National Natural Science Foundation of China(32360564)the Natural Science and Technology Innovation Development Multiplication Plan of Guangxi University(2022BZRC010)。
文摘Hyperuricemia(HUA)is characterized by elevated levels of uric acid(UA)in the bloodstream,resulting from either excessive production or insufficient excretion of UA within the body.If left untreated,progressive or persistent HUA can lead to gout,causing significant harm to human health.Lactic acid bacteria(LAB),generally recognized as safe(GRAS)probiotics,have been shown to alleviate symptoms associated with gastrointestinal disorders such as irritable bowel syndrome and inflammatory bowel disease while supporting overall bodily functions and health.Recently,LAB has emerged as a potentially safe,cost-effective and efficient treatment for HUA.This comprehensive review aims to explore the current literature on the mechanisms through which LAB controls HUA.These mechanisms include suppressing purine metabolism,absorbing purine compounds,modulating microbiota to maintain host global purine homeostasis,reducing intestinal permeability,producing metabolites that alleviate HUA symptoms,promoting the expression of urate excretory proteins and inhibiting the expression of urate reabsorption proteins.The findings presented in this review provide a framework for further investigation into how probiotic LAB can alleviate HUA by influencing UA metabolism and elucidating their underlying action mechanisms.
文摘This article discusses the original article published by Lu et al in the latest issue.The article confirmed through a cohort study the clinical efficacy of the triple live bacteria of Bifidobacterium combined with mirtazapine in treating postoperative depression of gastric cancer patients,also explored the multi-target therapeutic mechanisms of Bifidobacterium triple viable bacteria combined with mirtazapine in managing depression in patients after radical gastrectomy for gastric cancer for the first time.The results indicated that Bifidobacterium could alleviate depression in patients after radical gastrectomy for gastric cancer.Gastric cancer patients undergoing surgery frequently experience postoperative psychological disorders,notably depression.These conditions not only impair quality of life but also negatively impact disease-free and overall survival.This editorial explores the underestimated psychological challenges following gastric cancer surgery,including depression,anxiety,adjustment disorders,and post-traumatic stress disorder.It further examines the therapeutic potential of Bifidobacterium triple viable probiotics,combined with mirtazapine,in alleviating postoperative depression through microbiological,immunological,and neurological mechanisms.Clinical evidence highlights additional benefits,such as improved gastrointestinal function,enhanced immunity,and better nutritional status,underscoring a holistic approach to postoperative care.While promising,further large-scale trials are needed to optimize and personalize probiotic-based interventions.
基金supported by funding from the National Natural Science Foundation of China(32060593 and 32060474)the Yunnan Provincial Science and Technology Department+4 种基金China(202101AT070021 and 202101AS070001)the Yunnan Provincial Department of Education Science Research Fund ProjectChina(2023J0006)the Graduate Innovation Project of Yunnan UniversityChina(KC-22223012 and ZC-22222760)。
文摘Oryza longistaminata is an African wild rice species with valuable agronomic traits and the donor parent of perennial rice.Endophytic bacteria play an important role in host health,adaptive evolution and stress tolerance.However,endophytic bacterial communities in O.longistaminata and their plant growth-promoting(PGP)effects on the perennial rice of O.longistaminata offspring are poorly understood.In this study,the endophytic bacterial diversity,composition and network structures in the root,stem,and leaf tissues of O.longistaminata were characterized using Illumina sequencing of the 16S rRNA gene.The results suggested that O.longistaminata contains a multitude of niches for different endophytic bacteria,among which the root endosphere is more complex and functionally diverse than the stem and leaf endospheres.Tissue-specific biomarkers were identified,including Paludibaculum,Pseudactinotalea and Roseimarinus and others,for roots,Blautia for stems and Lachnospiraceae NK4A136 for leaves.The endophytic bacterial network of O.longistaminata was reassembled for various functions,including degradation/utilization/assimilation,detoxification,generation of precursor metabolites and energy,glycan pathways,macromolecule modification and metabolism.A total of 163 endophytic bacterial strains with PGP traits of potassium release,phosphate solubilization,nitrogen fixation,siderophore activity,indole-3-acetic acid(IAA)production,and 1-aminocyclopropane-1-carboxylate(ACC)deaminase activity were isolated from O.longistaminata.Eleven strains identified as Enterobacter cloacae,Enterobacter ludwigii,Stenotrophomonas maltophilia,Serratia fonticola,and Bacillus velezensis showed stable colonization abilities and PGP effects on perennial rice seedlings.Inoculated plants generally exhibited an enhanced root system and greater photosynthesis,biomass accumulation and nutrient uptake.Interestingly,two strains of E.cloacae have host genotype-dependent effects on perennial rice growth.The results of this study provide insights into the endophytic bacterial ecosystems of O.longistaminata,which can potentially be used as biofertilizers for sustainable perennial rice productivity.
基金supported by National Natural Science Foundation of China(Nos.22376057,22174048,22274048,22274045,22274047,and 21904039)the Foundation of the Science&Technology Department of Hunan Province(Nos.2023JJ30394 and2023ZJ1123)。
文摘Rapid and robust identification of bacteria is crucial for environmental monitoring and clinical diagnosis.Herein,a bioinspired interface-mediated multichannel sensor array was developed based on three-coloremitting antimicrobial functional carbon dots(FCDs)and concanavalin A doped polydopamine nanoparticles(Con A-PDA)for identification of bacteria.In this sensor,the fluorescence intensity of the three FCDs was quenched by the Con A-PDA.Upon addition different types of bacteria,the fluorescence intensity of the three FCDs was restored or further quenched.Recur to statistical analysis methods,it is employed to accurately discriminate 10 types of bacteria(including three probiotics and seven pathogenic bacteria)in natural water samples and human urine samples.The discrimination ability of the sensor array was highly enhanced via different competing binding of the FCDs and the bacteria toward Con A-PDA.The proposed array-based method offers a rapid,high-throughput,and reliable sensing platform for pathogen diagnosis in the field of environmental monitoring and clinical diagnosis.
基金supported by the Beijing Natural Science Foundation(Nos.2242004 and 2232027)the National Natural Science Foundation of China(No.22171021)the China Postdoctoral Science Foundation(No.2023M730245).
文摘Radical anions of electron-deficient perylene diimides(PDI)are attractive near-infrared(NIR)absorbers for photothermal conversion;however,their stability is often compromised by strong aggregation and reoxidation in air.Herein,we present a class of bacterial composites hybridized with a newly synthesized doubly-strapped PDI cyclophane,termed“Gemini Box”(GBox-3^(4+)),which features air-stable PDI radicals for NIR photothermal conversion.The effective spatial isolation provided by the double-sided cationic molecular straps allows GBox-3^(4+)to completely suppress chromophore aggregation,even in concentrated aqueous solutions up to 2 mmol/L,thereby preserving its characteristic fluorescence for live-cell imaging.After incubation of bacteria with GBox-3^(4+),the radical species PDI·-have been found to stably exist in the bacterial composites under ambient conditions,both in aqueous suspension and solid forms.Further experiments demonstrate that the air stability of the radical species relies on the simultaneous presence of the doubly-strapped PDI dye and the bacteria.Moreover,the dye-bacterial composites exhibited an high-efficiency NIR photothermal effect with high durability,enabling their application as photothermal agents for seawater desalination.This work provides a new access to the in situ fabrication of photothermal materials from biomass,relying on the rational molecular design and the unique microenvironment of bacteria.
基金supported by the Science and Technology Research Project of Jilin Education Bureau(No.JJKH20230804KJ)。
文摘Immunotherapy offers the promise of a potential cure for cancer,yet achieving the desired therapeutic effect can be challenging due to the immunosuppressive tumor microenvironments(TMEs) present in some tumors.Therefore,robust immune system activation is crucial to enhance the efficacy of cancer immunotherapy in clinical applications.Bacteria have shown the ability to target the hypoxic TMEs while activating both innate and adaptive immune responses.Engineered bacteria,modified through chemical or biological methods,can be endowed with specific physiological properties,such as diverse surface antigens,metabolites,and improved biocompatibility.These unique characteristics give engineered bacteria distinct advantages in stimulating anti-cancer immune responses.This review explores the potential regulatory mechanisms of engineered bacteria in modulating both innate and adaptive immunity while also forecasting the future development and challenges of using engineered bacteria in clinical cancer immunotherapy.
文摘This study aimed to explore the effect of different proportions of organic fertilizer replacing chemical fertilizer on the bacterial community and metabolic function in paddy fields.The 16S rRNA absolute quantitative sequencing method was employed to study the response characteristics of soil bacterial community composition and species absolute abundance to environmental factors under three fertilization treatments[chemical fertilizer(NPK),organic fertilizer replacing 30%of chemical fertilizer(30M,estimated in terms of pure nitrogen,same below),and organic fertilizer replacing 60%of chemical fertilizer(60M)]for two consecutive years.Furthermore,the changes of bacterial metabolic functions of different fertilization treatments were predicted by PICRUSt2.The results showed that replacing chemical fertilizer with organic fertilizer at different proportions significantly increased the total nitrogen(TN),total potassium(TK),hydrolyzable nitrogen(HN),soil organic carbon(SOC),and significantly decreased the soil bulk density(SBD).Moreover,60M demonstrated better performance than 30M.Different fertilization treatments did not cause significant difference in soil bacterial richness index(Chao1)or diversity index(Shannon)but significantly affected bacterial community composition and species abundance.Particularly,60M significantly increased the abundance of 227 species,and it increased the total bacterial abundance by 25.30%and 56.58%compared with NPK and 30M,respectively.Redundancy analysis and Spearman correlation analysis revealed that SOC,TN,and AK were the key factors for shaping specific bacterial community structures under different fertilization treatments.The 60M treatment significantly increased the abundance of bacterial species involved in xenobiotic biodegradation and metabolism,amino acid metabolism,and lipid metabolism,thus improving the metabolic functions of soil microorganisms.
基金supported by the National Natural Science Foundation of China(Nos.31300430,42172339,91951205)Key Scientific Research Project Plan of Colleges and Universities in Henan Province(No.18A180002)Science and Technology Research Project of Henan Province(No.152102310352)。
文摘The Tibetan Plateau has a large number of hot springs with varying temperatures and hydrochemistry,high elevation,and limited nitrogenous nutrition.Nitrogen-fixing bacteria(NFB)can fix N_(2)to form ammonia and thus provide bioavailable nitrogen.However,there is limited knowledge about the distribution of NFB and its influencing factors in Tibetan hot springs.Here,we measured hydrochemical variables of the hot springs with a wide temperature range(32–77°C)in the Qucai and Daggyai geothermal zones on the Tibetan Plateau and investigated the composition of NFB using high-throughput sequencing of 16SrRNA and nif H genes.The Cl^(-)/SO_(4)^(2-)ratio in Qucai hot springs was higher than that in Daggyai,indicating that Qucai and Daggyai hot springs were more affected by the supply of liquid and gaseous phases,respectively.The NFB communities consisted predominantly of Nirtospirae,Chloroflexi,Deltaproteobacteria and an unidentified clade,with the last three acting as the main NFB with over 42%of the communities(the proportions are significantly larger than those found in hot springs of other geothermal regions).This demonstrates the uniqueness of NFB communities in Tibetan hot springs.NFB richness was limited by temperature in the studied Tibetan hot springs and was significantly lower than in low-elevation geothermal regions.The NFB community was predominantly affected by hydrochemistry,in contrast to the entire prokaryotic community,which was primarily influenced by temperature.This study expands our current understanding of NFB distribution and diversity as well as biogeochemical process in geothermal spring environments.