Odor pollution in landfill area has attracted more social attention in China. It is very important to control the generation of odor pollutants in situ. Analyzing odorous materials production form buried waste, simula...Odor pollution in landfill area has attracted more social attention in China. It is very important to control the generation of odor pollutants in situ. Analyzing odorous materials production form buried waste, simulated columns of different volatile solid (VS) content and different buried period waste were designed. Gas compounds produced from the columns were collected and analyzed by comprehensive two-dimensional gas chromatography (GC × GC) method. It has remarkable relationship between VS content and concentrations of odorous material. When VS content more than 40%, the total amount of odorous compounds increases remarkably. It can be inferred that reduced VS content of original waste may effective decreasing odorous materials production in landfill area. The old rubbish produced more odorous compounds than that of fresh one in simulated columns.展开更多
Fugitive emission has been becoming an important source of volatile organic compounds(VOCs) in pharmaceutical industry,but the exact contribution of fugitive emission remains incompletely understood.In present study,p...Fugitive emission has been becoming an important source of volatile organic compounds(VOCs) in pharmaceutical industry,but the exact contribution of fugitive emission remains incompletely understood.In present study,pollution characteristics,odorous activity and health risk of stack and fugitive emissions of VOCs from four functional units (e.g.,workshop,sewage treatment station,raw material storage and hazardous waste storage) of three representative pharmaceutical factories were investigated.Workshop was the dominant contributor to VOCs of fugitive emission in comparison with other functional units.Extreme high concentration of VOCs from fugitive emission in unsealed workshop (94.87 mg/m^(3))was observed relative to sealed one (1.18 mg/m^(3)),accounting for 31%and 5%of total VOCs,respectively.Fugitive emission of VOCs in the unsealed workshop mainly consisted of nhexane,1-hexene and dichloromethane.Odorous activity indexes and non-cancer hazard ratios of these VOCs from fugitive emission in the unsealed workshop were as high as that from stack exhaust.Furthermore,cancer risk of dichloromethane from fugitive emission and stack exhaust was up to (1.6-1.8)×10^(-5).Odorous activity or health risk index of the VOCs from fugitive emission was up to 13 or 11 times of the corresponding threshold value,posing remarkable health threat on pharmaceutical workers.Our?ndings highlighted the possibly underestimated contribution of fugitive emission on VOCs in the pharmaceutical industry.展开更多
Manure odor, which results in the increasing complaints and lawsuits, has increased the tension among swine producers and surrounding residents. The effects of Lactobacillus plantarum and different rates of soluble ca...Manure odor, which results in the increasing complaints and lawsuits, has increased the tension among swine producers and surrounding residents. The effects of Lactobacillus plantarum and different rates of soluble carbohydrates additions to swine manure on odorous compounds, chemical compounds and indigenous flora were evaluated. Additions were calculated on dried manure weight basis. Variables monitored included ammonia (NH3), hydrogen sulfide (H2S), odor offensiveness, pH, ammonium nitrogen(NH4^+-N), volatile fatty acids (VFAs), urease and indigenous flora. The results indicated that the combination of L. plantarum and soluble carbohydrates dramatically reduced manure pH. Lower pH resulted in the reduction of NH3 volatilization (34.6%-92.4%, P〈0.01), the increases of H2S (P〈 0.05) and NH4^+-N (5.3%-17.5%, P〈0.05). In addition, L. plantarum and soluble carbohydrates additions significantly reduced odor offensiveness, those VFAs related to malodor indicators(valeric acids, 12.3%-47.7%, P〈 0.05; iso-valeric, 3.5%-23.8%) and the main microorganisms responsible for odor production, with the number of Eubacteria in swine manure reducing by 4.9%, 11.6%, 17.4%, 34.1% and 32.2% respectively.展开更多
UV-induced degradation of odorous dimethyl sulfide (DMS) was carried out in a static White cell chamber with UV irradiation. The combination of in situ Fourier transform infrared (FT-IR) spectrometer, gas chromato...UV-induced degradation of odorous dimethyl sulfide (DMS) was carried out in a static White cell chamber with UV irradiation. The combination of in situ Fourier transform infrared (FT-IR) spectrometer, gas chromatograph-mass spectrometer (GC-MS), wide-range particle spectrometer (WPS) technique, filter sampling and ion chromatographic (IC) analysis was used to monitor the gaseous and potential particulate products. During 240 min of UV irradiation, the degradation efficiency of DMS attained 20.9%, and partially oxidized sulfur-containing gaseous products, such as sulfur dioxide (SO2), carbonyl sulfide (OCS), dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO2) and dimethyl disulfide (DMDS) were identified by in situ FT-IR and GC-MS analysis, respectively. Accompanying with the oxidation of DMS, suspended particles were directly detected to be formed by WPS techniques. These particles were measured mainly in the size range of accumulation mode, and increased their count median diameter throughout the whole removal process. IC analysis of the filter samples revealed that methanesulfonic acid (MSA), sulfuric acid (H2SO4) and other unidentified chemicals accounted for the major non-refractory compositions of these particles. Based on products analysis and possible intermediates formed, the degradation pathways of DMS were proposed as the combination of the O(1D)- and the OH- initiated oxidation mechanisms. A plausible formation mechanism of the suspended particles was also analyzed. It is concluded that UV-induced degradation of odorous DMS is potentially a source of particulate pollutants in the atmosphere.展开更多
Food waste treatment plants (FWTPs) are usually associated with odorous nuisance and health risks, which are partially caused by volatile organic compound (VOC) emissions. This study investigated the VOC emissions...Food waste treatment plants (FWTPs) are usually associated with odorous nuisance and health risks, which are partially caused by volatile organic compound (VOC) emissions. This study investigated the VOC emissions from a selected full-scale FWTP in China. The feedstock used in this plant was mainly collected from local restaurants. For a year, the FWTP was closely monitored on specific days in each season. Four major indoor treatment units of the plant, including the storage room, sorting/crushing room, hydrothermal hydrolysis unit, and aerobic fermentation unit, were chosen as the monitoring locations. The highest mean concentration of total VOC emissions was observed in the aerobic fermentation unit at 21,748.2-31,283.3 μg/m^3, followed by the hydrothermal hydrolysis unit at 10,798.1-23,144.4 μg/m^3. The detected VOC families included biogenic compounds (oxygenated compounds, hydrocarbons, terpenes, and organosulfur compounds) and abiogenic compounds (aromatic hydrocarbons and halocarbons). Oxygenated compounds, particularly alcohols, were the most abundant compounds in all samples. With the use of odor index analysis and principal components analysis, the hydrothermal hydrolysis and aerobic fermentation units were clearly distinguished from the pre-treatment units, as characterized by their higher contributions to odorous nuisance. Methanthiol was the dominant odorant in the hydrothermal hydrolysis unit, whereas aldehyde was the dominant odorant in the aerobic fermentation unit. Terpenes, specifically limonene, had the highest level of propylene equivalent concentration during the monitoring periods. This concentration can contribute to the increase in the atmospheric reactivity and ozone formation potential in the surrounding air.展开更多
Variation in age structure and body size benefits are identified to understand the evolution of life history.Here,we estimated the age structure and body size of two species of odorous frogs(Odorrana margaretae and Od...Variation in age structure and body size benefits are identified to understand the evolution of life history.Here,we estimated the age structure and body size of two species of odorous frogs(Odorrana margaretae and Odorrana grahami)by using skeletochronology.The ages at sexual maturity of O.grahami and O.margaretae in both sexes were 1 and 2 years,respectively.For both sexes,the maximum age observed in O.margaretae was six years.For O.grahami,the maximum age observed in males and females were 4 and 5 years,respectively.Males and females did not differ in mean age in the two species.The average body size of both species considerably differed between sexes,with females being larger than males.The body size of females was also larger than that of males when the effect of age was removed.We also found positive correlations between body size and age within each sex in O.margaretae,but only for female in O.grahami.The female-biased sexual size dimorphism of the two species suggested that fecundity selection for larger female size may increase the reproductive output.展开更多
Odorous compounds in the influent of a reclaimed water treatment plant (RWTP), consisting of coagulation, sedimentation, continuous micro-filtration (CMF), and chlorination in succession, in a north China city, we...Odorous compounds in the influent of a reclaimed water treatment plant (RWTP), consisting of coagulation, sedimentation, continuous micro-filtration (CMF), and chlorination in succession, in a north China city, were identified by combining flavor profile analysis (FPA) with sensory gas chromatograph-mass spectrometry (GC-MS). The sewery/swampy/septic odor with an odor intensity of 6.4 was found to be the major odor group in the RWTP influent, and the existence of well-known odorant including dimethyl disulfide, dimethyl trisulfide, indole and skatole were confirmed using GC-MS. The result of a spiking test showed that the intensity (3.6) of the sewery/swampy/septic odor caused by these four chemicals contributed to over 50% of the odor intensity of the influent. The FPA intensity for sewery/swampy/septic odor in the RWTP effluent was 3.8, showing that the treatment process was not efficient for the removal of odorants, particularly indole and skatole.展开更多
The use of a biotrickling filter was investigated for a pilot field-scale elimination of NH3 gas and other odorous gases from a composting plant in Tongzhou District, Beijing. The inlet gas flow rate was 3500 m3/h and...The use of a biotrickling filter was investigated for a pilot field-scale elimination of NH3 gas and other odorous gases from a composting plant in Tongzhou District, Beijing. The inlet gas flow rate was 3500 m3/h and NH3 concentration fluctuated between 2.76–27.84 mg/m3, while the average outlet concentration was 1.06 mg/m3 with an average of 94.9% removal. Critical volumetric loading (removal efficiency=100%) was 11.22 g-N/(m3·h). The odor concentration removal was 86.7%. NH3 removal efficiency decreased as the free ammonia (FA) in the trickling liquid increased. The pressure drop was maintained at about 50 Pa/m and was never more than 55 Pa/m. During the experiment, there was neither backflushing required nor any indication of clogging. Overall, the biotrickling filter was highly efficient and cost-effective for the simultaneous biodegradation of NH3 and other odorous gases from composting, suggesting the possibility of treating odorous gases at the industrial level.展开更多
In this study, the amounts of odorous carbonyl compounds (OCCs) including acetaldehyde (Acet-A), propionaldehyde (Pron-A), butylaldehyde (Buty-A), iso-valeric aldehyde (Iso-Vale-A) and n-valeric aldehyde (N...In this study, the amounts of odorous carbonyl compounds (OCCs) including acetaldehyde (Acet-A), propionaldehyde (Pron-A), butylaldehyde (Buty-A), iso-valeric aldehyde (Iso-Vale-A) and n-valeric aldehyde (N-Vale-A) emitted from a fishery industrial complex near the exhibition facilities of "Expo 2012 Yeosu Korea" were measured. Acet-A was found to be the most abundant OCC, and the total concentrations of the OCCs were the highest in the summer. However, due to vehicular exhaust and photochemical reactions, the concentrations of some of the OCCs presented their highest levels in the fall. A significant correlation between Acet-A and Buty-A was found at the major fishery facilities (r = 0.816, p = 1.87E-15, n = 60) and at the border areas (r = 0.809, p = 3.40E-12, n = 48) of this fishery industrial complex. The concentrations of OCCs at the border areas were not worse than those at the urban areas in other places, indicating that the concentrations of ambient OCCs at the border areas were not greatly influenced by manmade activities.展开更多
Source separation sanitation systems have attracted more and more attention recently.However, separate urine collection and treatment could induce odor issues, especially in large scale application. In order to avoid ...Source separation sanitation systems have attracted more and more attention recently.However, separate urine collection and treatment could induce odor issues, especially in large scale application. In order to avoid such issues, it is necessary to monitor the odor related compounds that might be generated during urine storage. This study investigated the odorous compounds that emitted from source-separated human urine under different hydrolysis conditions. Batch experiments were conducted to investigate the effect of temperature, stale/fresh urine ratio and urine dilution on odor emissions. It was found that ammonia, dimethyl disulfide, allyl methyl sulfide and 4-heptanone were the main odorous compounds generated from human urine, with headspace concentrations hundreds of times higher than their respective odor thresholds. Furthermore, the high temperature accelerated urine hydrolysis and liquid–gas mass transfer, resulting a remarkable increase of odor emissions from the urine solution. The addition of stale urine enhanced urine hydrolysis and expedited odor emissions. On the contrary, diluted urine emitted less odorous compounds ascribed to reduced concentrations of odorant precursors. In addition,this study quantified the odor emissions and revealed the constraints of urine source separation in real-world applications. To address the odor issue, several control strategies are recommended for odor mitigation or elimination from an engineering perspective.展开更多
The control ofblack and odorous substances in sediments is of crucial importance to improve the urban ecological landscape and to restore water environments accordingly.In this study,chemical oxidation by the oxidants...The control ofblack and odorous substances in sediments is of crucial importance to improve the urban ecological landscape and to restore water environments accordingly.In this study,chemical oxidation by the oxidants NaClO,H2O2,and KMnO4 was proposed to achieve rapid control of black and odorous substances in heavily-polluted sediments.Results indicate that NaClO and KMnO4 are effective at removing Fe(II)and acid volatile sulfides.The removal efficiencies of Fe(II)and AVS were determined to be 45.2%,94.1%,and 93.7%,89.5%after 24-h exposure to NaClO and KMnO4 at 0.2 mmol/g,respectively.Additionally,rapid oxidation might accelerate the release of pollutants from sediment.The release of organic matters and phosphorus with the maximum ratios of 22.1%and 51.2%was observed upon NaClO oxidation at 0.4 mmol/g.Moreover,the introduction of oxidants contributed to changes in the microbial community composition in sediment.After oxidation by NaClO and KMnO4 at 0.4 mmol/g,the Shannon index decreased from 6.72 to 5.19 and 4.95,whereas the OTU numbers decreased from 2904 to 1677 and 1553,respectively.Comparatively,H2O2 showed a lower effect on the removal of black and odorous substances,pollutant release,and changes in sediment microorganisms.This study illustrates the effects of oxidant addition on the characteristics of heavily polluted sediments and shows that chemical oxidants may be an option to achieve rapid control of black and odorous substances prior to remediation of water environments.展开更多
Catalytic purification of sulphur-containing malodorous gases has attracted wide attention because of its advantages of high purification efficiency,low energy consumption and lack of secondary pollution.The selection...Catalytic purification of sulphur-containing malodorous gases has attracted wide attention because of its advantages of high purification efficiency,low energy consumption and lack of secondary pollution.The selection of efficient catalysts is the key to the problem,while the preparation and optimisation of catalysts depend on the analysis of experimental results and in-depth mechanistic analysis.By analysing the published literature,bibliometric analysis can identify existing research hotspots,the areas of interest and predict development trends,which can help to identify hot catalysts in the catalytic purification of sulphurcontaining odours and to investigate their catalytic purification mechanisms.Therefore,this paper uses bibliometric analysis,based on Web Of Science and CNKI databases,CiteSpace and VOS viewer software to collate and analyse the literature on the purification of sulphurcontaining odour pollutants,to identify the current research hotspots,to summarise the progress of research on the catalytic purification of different types of sulphur-containing odours,and to analyse their reaction mechanisms and kinetics.On this basis,the research progress of catalytic purification of different kinds of sulfur odour is summarized,and the reaction mechanism and dynamics are summarized.展开更多
Tea flavor is a comprehensive representation of its aroma and other characteristics.The formation of volatile odor compounds during tea processing depends on a variety of enzymatic and non-enzymatic activities.(Z)-3-h...Tea flavor is a comprehensive representation of its aroma and other characteristics.The formation of volatile odor compounds during tea processing depends on a variety of enzymatic and non-enzymatic activities.(Z)-3-hexenol is considered the primary source of the green odor and is also the most important component in tea aroma,significantly affecting the overall aroma.However,the biosynthesis and accumulation of(Z)-3-hexenol during tea processing have not been fully analyzed.In this study,we found that withering treatment at different times and withering plus shaking treatment at different degrees promoted the accumulation of important volatile components of green tea odor,especially(Z)-3-hexenol by GC-MS.The RNA-seq and qRT-PCR results showed that withering and withering plus shaking treatments enhanced the expression of(Z)-3-hexenol-related genes in tea leaves,including synthetic pathway 1 genes(CsLOX3,CsHPL1,CsADH4,and CsAHD1),synthetic pathway 2 genes(CsGLU),and synthetic pathway 3 genes(CsCXEs).Correlation analysis of the key odorants and important genes in the three synthetic pathways revealed that some CsCXEs were positively correlated with green odor compounds.The in vitro enzyme activity results showed that rCsCXE3(GWHTASIV011658),and rCsCXE6(GWHTASIV031480)exhibited hydrolytic activity against three tea acetate compounds[hexyl acetate,(E)-2-hexyl acetate,and(Z)-3-hexyl acetate],resulting in the production of corresponding alcohol compounds.In summary,withering and shaking treatment during tea processing promoted the expression of CsCXE3 and CsCXE6,thereby enhancing the production of hexenol compounds.These compounds play a crucial role in increasing the green odor of tea.展开更多
Many of us have the feeling: you step out in a T-shirt on a summer day, and within twenty minutes, your underarms feel damp. There are sweat marks on the clothes, and they are clearly visible. While many debate the me...Many of us have the feeling: you step out in a T-shirt on a summer day, and within twenty minutes, your underarms feel damp. There are sweat marks on the clothes, and they are clearly visible. While many debate the merits of polyester fabric with cool-touch feelingversus cotton as temperatures soar, the apparel world is quietly experiencing a "merino wool trend." A lot of major brands are launching merino wool short-sleeve tees.展开更多
Recent advances in our understanding of avian chemical communication have highlighted the importance of olfaction in many aspects of avian life.Prior studies investigating predator avoidance behaviors in response to p...Recent advances in our understanding of avian chemical communication have highlighted the importance of olfaction in many aspects of avian life.Prior studies investigating predator avoidance behaviors in response to predator odor cues have produced mixed results across species and contexts.Here we assess if a community of birds in eastern Pennsylvania displays avoidance behaviors towards predator odor cues in a natural foraging setting.We use clay caterpillars to measure foraging activity by birds in the presence of predator(bobcat)urine,non-predator(rabbit)urine,and water controls in two different environmental contexts(field vs.forest).Although we detected a weak trend for birds to forage less at predator urine-treated sites,we found no significant difference in avian foraging between the site types.We did find that foraging rates between environmental contexts changed significantly over the course of the experiment,with forest sites showing decreasing foraging rates and field sites showing increasing foraging rates.Our results reinforce the published literature that avoidance of predator odors by birds may not be ubiquitous across contexts and species.展开更多
The olfactory bulb(OB)is the first relay station in the olfactory system and functions as a crucial hub.It can represent odor information precisely and accurately in an ever-changing environment.As the only output neu...The olfactory bulb(OB)is the first relay station in the olfactory system and functions as a crucial hub.It can represent odor information precisely and accurately in an ever-changing environment.As the only output neurons in the OB,mitral/tufted cells encode information such as odor identity and concentration.Recently,the neural strategies and mechanisms underlying odor representation and encoding in the OB have been investigated extensively.Here we review the main progress on this topic.We first review the neurons and circuits involved in odor representation,including the different cell types in the OB and the neural circuits within and beyond the OB.We will then discuss how two different coding strategies—spatial coding and temporal coding—work in the rodent OB.Finally,we discuss potential future directions for this research topic.Overall,this review provides a comprehensive description of our current understanding of how odor information is represented and encoded by mitral/tufted cells in the OB.展开更多
A highly sensitive olfactory system allows insects to precisely identify and position volatile compounds from different sources in their habitats,and plays a crucial role in their foraging,mating,and oviposition activ...A highly sensitive olfactory system allows insects to precisely identify and position volatile compounds from different sources in their habitats,and plays a crucial role in their foraging,mating,and oviposition activities.During evolution,insects have successfully developed a large and complex olfactory system to adapt to heterogeneous environments,enabling the maintenance of inset population.A comprehensive examination of the olfactory system of insects may therefore yield novel insights into the development of innovative pest control and prevention strategies,as well as the study of olfactory mechanisms in vertebrates and even humans.This paper outlines the current state of research into the signal transduction mechanism by which insects perceive the olfactory molecules of their habitats.The aim of this review is to provide a reference point for future studies into the olfactory perception mechanism and its potential applications in pest management.展开更多
Chemical communication plays an important role in survival and reproductive success in mammalian species. In the present study, we examined the ontogenetic pattern of behavioral responses of male giant pandas (Ailuro...Chemical communication plays an important role in survival and reproductive success in mammalian species. In the present study, we examined the ontogenetic pattern of behavioral responses of male giant pandas (Ailuropoda melanoleuca ) to urine odors of conspecific individuals. Our data showed that exposure to the urine of adult females induced a significant increase in sniffing and environmental sniffing/licking behaviors, but a decrease in biting behavior, in males. Males of different ages displayed specific behaviors to female urine odors. Adult males spent more time licking than juvenile and sub-adult males. Further, sub-adult and adult males displayed high levels of environmental sniffing/licking, which was absent in the juvenile males. Juvenile males displayed scent rubbing behavior significantly more frequently than sub-adult and adult males, and also spent more time showing biting behavior than sub-adult males. Finally, juvenile and sub-aduh males showed no difference in response to female and male urine odors. Together, these data suggest that chemosensory cues from conspecific urines induce age-specific responses in male giant pandas.展开更多
As a base research on intelligentized search technique in seismic ruins,we study on human odor by a portable GC-MS.Qualitative analysis experiment demonstrate that isoprene,acetone and 6-methyl-5-heptene-2-one are sym...As a base research on intelligentized search technique in seismic ruins,we study on human odor by a portable GC-MS.Qualitative analysis experiment demonstrate that isoprene,acetone and 6-methyl-5-heptene-2-one are symbol of human odor.This research give important data to search survival base on artificial olfaction technique in seismic ruins.展开更多
[Objective] The paper was to study adsorption dynamics of calyx aroma onto basic tea in scenting process of calyx-scented tea, so as to increase aroma and quality of products. [Method] Adsorption experiment was carrie...[Objective] The paper was to study adsorption dynamics of calyx aroma onto basic tea in scenting process of calyx-scented tea, so as to increase aroma and quality of products. [Method] Adsorption experiment was carried out in a hermetic container, and the effect of calyx amount, contact time, moisture content of basic tea and temperature on the scenting process was studied. [Result] The optimal moisture and temperature for scenting process was 4% and 10 ℃, respectively. [Conclusion] The scenting process accorded pseudo-first-order kinetic model, and the adsorption dynamic data of total process could better fit pseudo-second-order kinetic model.展开更多
文摘Odor pollution in landfill area has attracted more social attention in China. It is very important to control the generation of odor pollutants in situ. Analyzing odorous materials production form buried waste, simulated columns of different volatile solid (VS) content and different buried period waste were designed. Gas compounds produced from the columns were collected and analyzed by comprehensive two-dimensional gas chromatography (GC × GC) method. It has remarkable relationship between VS content and concentrations of odorous material. When VS content more than 40%, the total amount of odorous compounds increases remarkably. It can be inferred that reduced VS content of original waste may effective decreasing odorous materials production in landfill area. The old rubbish produced more odorous compounds than that of fresh one in simulated columns.
基金supported by the National Key R&D Program of China (No. 2019YFC0214402)the National Nature Science Foundation of China (Nos. 41805103, 42177354, and 21777032)+1 种基金the Natural Science Foundation of Guangdong Province (No. 2021A1515011492)the Science and Technology Program of Guangzhou (No. 202102020451)。
文摘Fugitive emission has been becoming an important source of volatile organic compounds(VOCs) in pharmaceutical industry,but the exact contribution of fugitive emission remains incompletely understood.In present study,pollution characteristics,odorous activity and health risk of stack and fugitive emissions of VOCs from four functional units (e.g.,workshop,sewage treatment station,raw material storage and hazardous waste storage) of three representative pharmaceutical factories were investigated.Workshop was the dominant contributor to VOCs of fugitive emission in comparison with other functional units.Extreme high concentration of VOCs from fugitive emission in unsealed workshop (94.87 mg/m^(3))was observed relative to sealed one (1.18 mg/m^(3)),accounting for 31%and 5%of total VOCs,respectively.Fugitive emission of VOCs in the unsealed workshop mainly consisted of nhexane,1-hexene and dichloromethane.Odorous activity indexes and non-cancer hazard ratios of these VOCs from fugitive emission in the unsealed workshop were as high as that from stack exhaust.Furthermore,cancer risk of dichloromethane from fugitive emission and stack exhaust was up to (1.6-1.8)×10^(-5).Odorous activity or health risk index of the VOCs from fugitive emission was up to 13 or 11 times of the corresponding threshold value,posing remarkable health threat on pharmaceutical workers.Our?ndings highlighted the possibly underestimated contribution of fugitive emission on VOCs in the pharmaceutical industry.
文摘Manure odor, which results in the increasing complaints and lawsuits, has increased the tension among swine producers and surrounding residents. The effects of Lactobacillus plantarum and different rates of soluble carbohydrates additions to swine manure on odorous compounds, chemical compounds and indigenous flora were evaluated. Additions were calculated on dried manure weight basis. Variables monitored included ammonia (NH3), hydrogen sulfide (H2S), odor offensiveness, pH, ammonium nitrogen(NH4^+-N), volatile fatty acids (VFAs), urease and indigenous flora. The results indicated that the combination of L. plantarum and soluble carbohydrates dramatically reduced manure pH. Lower pH resulted in the reduction of NH3 volatilization (34.6%-92.4%, P〈0.01), the increases of H2S (P〈 0.05) and NH4^+-N (5.3%-17.5%, P〈0.05). In addition, L. plantarum and soluble carbohydrates additions significantly reduced odor offensiveness, those VFAs related to malodor indicators(valeric acids, 12.3%-47.7%, P〈 0.05; iso-valeric, 3.5%-23.8%) and the main microorganisms responsible for odor production, with the number of Eubacteria in swine manure reducing by 4.9%, 11.6%, 17.4%, 34.1% and 32.2% respectively.
基金supported by the National Natural Science Foundation of China (No.40533017,40728006,40875073,40705045)supported by the 973 Program (No.2008CB417205)from the Ministry of Science and Technology of China
文摘UV-induced degradation of odorous dimethyl sulfide (DMS) was carried out in a static White cell chamber with UV irradiation. The combination of in situ Fourier transform infrared (FT-IR) spectrometer, gas chromatograph-mass spectrometer (GC-MS), wide-range particle spectrometer (WPS) technique, filter sampling and ion chromatographic (IC) analysis was used to monitor the gaseous and potential particulate products. During 240 min of UV irradiation, the degradation efficiency of DMS attained 20.9%, and partially oxidized sulfur-containing gaseous products, such as sulfur dioxide (SO2), carbonyl sulfide (OCS), dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO2) and dimethyl disulfide (DMDS) were identified by in situ FT-IR and GC-MS analysis, respectively. Accompanying with the oxidation of DMS, suspended particles were directly detected to be formed by WPS techniques. These particles were measured mainly in the size range of accumulation mode, and increased their count median diameter throughout the whole removal process. IC analysis of the filter samples revealed that methanesulfonic acid (MSA), sulfuric acid (H2SO4) and other unidentified chemicals accounted for the major non-refractory compositions of these particles. Based on products analysis and possible intermediates formed, the degradation pathways of DMS were proposed as the combination of the O(1D)- and the OH- initiated oxidation mechanisms. A plausible formation mechanism of the suspended particles was also analyzed. It is concluded that UV-induced degradation of odorous DMS is potentially a source of particulate pollutants in the atmosphere.
基金supported by the Environmental Protection Public Welfare Project (No. 201109035)
文摘Food waste treatment plants (FWTPs) are usually associated with odorous nuisance and health risks, which are partially caused by volatile organic compound (VOC) emissions. This study investigated the VOC emissions from a selected full-scale FWTP in China. The feedstock used in this plant was mainly collected from local restaurants. For a year, the FWTP was closely monitored on specific days in each season. Four major indoor treatment units of the plant, including the storage room, sorting/crushing room, hydrothermal hydrolysis unit, and aerobic fermentation unit, were chosen as the monitoring locations. The highest mean concentration of total VOC emissions was observed in the aerobic fermentation unit at 21,748.2-31,283.3 μg/m^3, followed by the hydrothermal hydrolysis unit at 10,798.1-23,144.4 μg/m^3. The detected VOC families included biogenic compounds (oxygenated compounds, hydrocarbons, terpenes, and organosulfur compounds) and abiogenic compounds (aromatic hydrocarbons and halocarbons). Oxygenated compounds, particularly alcohols, were the most abundant compounds in all samples. With the use of odor index analysis and principal components analysis, the hydrothermal hydrolysis and aerobic fermentation units were clearly distinguished from the pre-treatment units, as characterized by their higher contributions to odorous nuisance. Methanthiol was the dominant odorant in the hydrothermal hydrolysis unit, whereas aldehyde was the dominant odorant in the aerobic fermentation unit. Terpenes, specifically limonene, had the highest level of propylene equivalent concentration during the monitoring periods. This concentration can contribute to the increase in the atmospheric reactivity and ozone formation potential in the surrounding air.
基金Financial support was provided by the National Natural Sciences Foundation of China(Nos.31772451,31970393)the Science and Technology Youth Innovation Team of Sichuan Province(2019JDTD0012)。
文摘Variation in age structure and body size benefits are identified to understand the evolution of life history.Here,we estimated the age structure and body size of two species of odorous frogs(Odorrana margaretae and Odorrana grahami)by using skeletochronology.The ages at sexual maturity of O.grahami and O.margaretae in both sexes were 1 and 2 years,respectively.For both sexes,the maximum age observed in O.margaretae was six years.For O.grahami,the maximum age observed in males and females were 4 and 5 years,respectively.Males and females did not differ in mean age in the two species.The average body size of both species considerably differed between sexes,with females being larger than males.The body size of females was also larger than that of males when the effect of age was removed.We also found positive correlations between body size and age within each sex in O.margaretae,but only for female in O.grahami.The female-biased sexual size dimorphism of the two species suggested that fecundity selection for larger female size may increase the reproductive output.
基金supported by the National Water Project of China (No. 2008ZX07314-003)the National Natural Science Foundation of China (No. 50808171)+1 种基金the Chinese Academy of Sciences (No. KZCX1-YW-06)the Research Fund of Tianjin Key Laboratory of Aquatic Science and Technology
文摘Odorous compounds in the influent of a reclaimed water treatment plant (RWTP), consisting of coagulation, sedimentation, continuous micro-filtration (CMF), and chlorination in succession, in a north China city, were identified by combining flavor profile analysis (FPA) with sensory gas chromatograph-mass spectrometry (GC-MS). The sewery/swampy/septic odor with an odor intensity of 6.4 was found to be the major odor group in the RWTP influent, and the existence of well-known odorant including dimethyl disulfide, dimethyl trisulfide, indole and skatole were confirmed using GC-MS. The result of a spiking test showed that the intensity (3.6) of the sewery/swampy/septic odor caused by these four chemicals contributed to over 50% of the odor intensity of the influent. The FPA intensity for sewery/swampy/septic odor in the RWTP effluent was 3.8, showing that the treatment process was not efficient for the removal of odorants, particularly indole and skatole.
基金Project supported by the National Natural Science and Technology Pillar Program in the Eleventh Five-year Plan Period (No. 2006BAJ04A06)the Special Item of System Reformation of the Beijing Municipal Science and Technology Commission, China
文摘The use of a biotrickling filter was investigated for a pilot field-scale elimination of NH3 gas and other odorous gases from a composting plant in Tongzhou District, Beijing. The inlet gas flow rate was 3500 m3/h and NH3 concentration fluctuated between 2.76–27.84 mg/m3, while the average outlet concentration was 1.06 mg/m3 with an average of 94.9% removal. Critical volumetric loading (removal efficiency=100%) was 11.22 g-N/(m3·h). The odor concentration removal was 86.7%. NH3 removal efficiency decreased as the free ammonia (FA) in the trickling liquid increased. The pressure drop was maintained at about 50 Pa/m and was never more than 55 Pa/m. During the experiment, there was neither backflushing required nor any indication of clogging. Overall, the biotrickling filter was highly efficient and cost-effective for the simultaneous biodegradation of NH3 and other odorous gases from composting, suggesting the possibility of treating odorous gases at the industrial level.
基金support of this research program from the Jeonnam Green Environment Center (JNGEC),Korea
文摘In this study, the amounts of odorous carbonyl compounds (OCCs) including acetaldehyde (Acet-A), propionaldehyde (Pron-A), butylaldehyde (Buty-A), iso-valeric aldehyde (Iso-Vale-A) and n-valeric aldehyde (N-Vale-A) emitted from a fishery industrial complex near the exhibition facilities of "Expo 2012 Yeosu Korea" were measured. Acet-A was found to be the most abundant OCC, and the total concentrations of the OCCs were the highest in the summer. However, due to vehicular exhaust and photochemical reactions, the concentrations of some of the OCCs presented their highest levels in the fall. A significant correlation between Acet-A and Buty-A was found at the major fishery facilities (r = 0.816, p = 1.87E-15, n = 60) and at the border areas (r = 0.809, p = 3.40E-12, n = 48) of this fishery industrial complex. The concentrations of OCCs at the border areas were not worse than those at the urban areas in other places, indicating that the concentrations of ambient OCCs at the border areas were not greatly influenced by manmade activities.
基金supported by the National Research Foundation,Singaporeprogram number NRF-CRP5-2009-02,for the School of Civil and Environmental Engineering/Residues and Resource Reclamation Centre,Nanyang Technological University,Singapore
文摘Source separation sanitation systems have attracted more and more attention recently.However, separate urine collection and treatment could induce odor issues, especially in large scale application. In order to avoid such issues, it is necessary to monitor the odor related compounds that might be generated during urine storage. This study investigated the odorous compounds that emitted from source-separated human urine under different hydrolysis conditions. Batch experiments were conducted to investigate the effect of temperature, stale/fresh urine ratio and urine dilution on odor emissions. It was found that ammonia, dimethyl disulfide, allyl methyl sulfide and 4-heptanone were the main odorous compounds generated from human urine, with headspace concentrations hundreds of times higher than their respective odor thresholds. Furthermore, the high temperature accelerated urine hydrolysis and liquid–gas mass transfer, resulting a remarkable increase of odor emissions from the urine solution. The addition of stale urine enhanced urine hydrolysis and expedited odor emissions. On the contrary, diluted urine emitted less odorous compounds ascribed to reduced concentrations of odorant precursors. In addition,this study quantified the odor emissions and revealed the constraints of urine source separation in real-world applications. To address the odor issue, several control strategies are recommended for odor mitigation or elimination from an engineering perspective.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51820105011,51578537 and 51778603)the Chinese Academy of Sciences(No.QYZDY-SSWDQC004).
文摘The control ofblack and odorous substances in sediments is of crucial importance to improve the urban ecological landscape and to restore water environments accordingly.In this study,chemical oxidation by the oxidants NaClO,H2O2,and KMnO4 was proposed to achieve rapid control of black and odorous substances in heavily-polluted sediments.Results indicate that NaClO and KMnO4 are effective at removing Fe(II)and acid volatile sulfides.The removal efficiencies of Fe(II)and AVS were determined to be 45.2%,94.1%,and 93.7%,89.5%after 24-h exposure to NaClO and KMnO4 at 0.2 mmol/g,respectively.Additionally,rapid oxidation might accelerate the release of pollutants from sediment.The release of organic matters and phosphorus with the maximum ratios of 22.1%and 51.2%was observed upon NaClO oxidation at 0.4 mmol/g.Moreover,the introduction of oxidants contributed to changes in the microbial community composition in sediment.After oxidation by NaClO and KMnO4 at 0.4 mmol/g,the Shannon index decreased from 6.72 to 5.19 and 4.95,whereas the OTU numbers decreased from 2904 to 1677 and 1553,respectively.Comparatively,H2O2 showed a lower effect on the removal of black and odorous substances,pollutant release,and changes in sediment microorganisms.This study illustrates the effects of oxidant addition on the characteristics of heavily polluted sediments and shows that chemical oxidants may be an option to achieve rapid control of black and odorous substances prior to remediation of water environments.
基金supported by the National Natural Science Foundation of China(Nos.21677010 and 51808037)the National Key R&D Program of China(No.2021YFB3500702)the Special fund of Beijing Key Laboratory of Indoor Air Quality Evaluation and Control(No.BZ0344KF21-04).
文摘Catalytic purification of sulphur-containing malodorous gases has attracted wide attention because of its advantages of high purification efficiency,low energy consumption and lack of secondary pollution.The selection of efficient catalysts is the key to the problem,while the preparation and optimisation of catalysts depend on the analysis of experimental results and in-depth mechanistic analysis.By analysing the published literature,bibliometric analysis can identify existing research hotspots,the areas of interest and predict development trends,which can help to identify hot catalysts in the catalytic purification of sulphurcontaining odours and to investigate their catalytic purification mechanisms.Therefore,this paper uses bibliometric analysis,based on Web Of Science and CNKI databases,CiteSpace and VOS viewer software to collate and analyse the literature on the purification of sulphurcontaining odour pollutants,to identify the current research hotspots,to summarise the progress of research on the catalytic purification of different types of sulphur-containing odours,and to analyse their reaction mechanisms and kinetics.On this basis,the research progress of catalytic purification of different kinds of sulfur odour is summarized,and the reaction mechanism and dynamics are summarized.
基金supported by the Natural Science Foundation of China(Grant Nos.U21A2023 and 32072621)the earmarked fund for CARS-19 and the Youth Science and Technology Talents Support Program(2020)by Anhui Association for Science and Technology(Grant No.RCTJ202010).
文摘Tea flavor is a comprehensive representation of its aroma and other characteristics.The formation of volatile odor compounds during tea processing depends on a variety of enzymatic and non-enzymatic activities.(Z)-3-hexenol is considered the primary source of the green odor and is also the most important component in tea aroma,significantly affecting the overall aroma.However,the biosynthesis and accumulation of(Z)-3-hexenol during tea processing have not been fully analyzed.In this study,we found that withering treatment at different times and withering plus shaking treatment at different degrees promoted the accumulation of important volatile components of green tea odor,especially(Z)-3-hexenol by GC-MS.The RNA-seq and qRT-PCR results showed that withering and withering plus shaking treatments enhanced the expression of(Z)-3-hexenol-related genes in tea leaves,including synthetic pathway 1 genes(CsLOX3,CsHPL1,CsADH4,and CsAHD1),synthetic pathway 2 genes(CsGLU),and synthetic pathway 3 genes(CsCXEs).Correlation analysis of the key odorants and important genes in the three synthetic pathways revealed that some CsCXEs were positively correlated with green odor compounds.The in vitro enzyme activity results showed that rCsCXE3(GWHTASIV011658),and rCsCXE6(GWHTASIV031480)exhibited hydrolytic activity against three tea acetate compounds[hexyl acetate,(E)-2-hexyl acetate,and(Z)-3-hexyl acetate],resulting in the production of corresponding alcohol compounds.In summary,withering and shaking treatment during tea processing promoted the expression of CsCXE3 and CsCXE6,thereby enhancing the production of hexenol compounds.These compounds play a crucial role in increasing the green odor of tea.
文摘Many of us have the feeling: you step out in a T-shirt on a summer day, and within twenty minutes, your underarms feel damp. There are sweat marks on the clothes, and they are clearly visible. While many debate the merits of polyester fabric with cool-touch feelingversus cotton as temperatures soar, the apparel world is quietly experiencing a "merino wool trend." A lot of major brands are launching merino wool short-sleeve tees.
文摘Recent advances in our understanding of avian chemical communication have highlighted the importance of olfaction in many aspects of avian life.Prior studies investigating predator avoidance behaviors in response to predator odor cues have produced mixed results across species and contexts.Here we assess if a community of birds in eastern Pennsylvania displays avoidance behaviors towards predator odor cues in a natural foraging setting.We use clay caterpillars to measure foraging activity by birds in the presence of predator(bobcat)urine,non-predator(rabbit)urine,and water controls in two different environmental contexts(field vs.forest).Although we detected a weak trend for birds to forage less at predator urine-treated sites,we found no significant difference in avian foraging between the site types.We did find that foraging rates between environmental contexts changed significantly over the course of the experiment,with forest sites showing decreasing foraging rates and field sites showing increasing foraging rates.Our results reinforce the published literature that avoidance of predator odors by birds may not be ubiquitous across contexts and species.
基金supported by the National Natural Science Foundation of China(Nos.32271055 and 32070995)the Jiangsu Province Innovative and Entrepreneurial Team Program,and the Guangdong Medical University(No.GDMUB2022048),China.
文摘The olfactory bulb(OB)is the first relay station in the olfactory system and functions as a crucial hub.It can represent odor information precisely and accurately in an ever-changing environment.As the only output neurons in the OB,mitral/tufted cells encode information such as odor identity and concentration.Recently,the neural strategies and mechanisms underlying odor representation and encoding in the OB have been investigated extensively.Here we review the main progress on this topic.We first review the neurons and circuits involved in odor representation,including the different cell types in the OB and the neural circuits within and beyond the OB.We will then discuss how two different coding strategies—spatial coding and temporal coding—work in the rodent OB.Finally,we discuss potential future directions for this research topic.Overall,this review provides a comprehensive description of our current understanding of how odor information is represented and encoded by mitral/tufted cells in the OB.
基金Supported by China Agriculture Research System of MOF and MARA(CARS-26)Innovation Platform Construction Project of Zhaoqing University(202413004)+1 种基金Innovation and Entrepreneurship Training Program Project of Guangdong Province College Student(X202310580113)Scientific Research Fund Funding Project of Zhaoqing University in 2023(QN202331).
文摘A highly sensitive olfactory system allows insects to precisely identify and position volatile compounds from different sources in their habitats,and plays a crucial role in their foraging,mating,and oviposition activities.During evolution,insects have successfully developed a large and complex olfactory system to adapt to heterogeneous environments,enabling the maintenance of inset population.A comprehensive examination of the olfactory system of insects may therefore yield novel insights into the development of innovative pest control and prevention strategies,as well as the study of olfactory mechanisms in vertebrates and even humans.This paper outlines the current state of research into the signal transduction mechanism by which insects perceive the olfactory molecules of their habitats.The aim of this review is to provide a reference point for future studies into the olfactory perception mechanism and its potential applications in pest management.
文摘Chemical communication plays an important role in survival and reproductive success in mammalian species. In the present study, we examined the ontogenetic pattern of behavioral responses of male giant pandas (Ailuropoda melanoleuca ) to urine odors of conspecific individuals. Our data showed that exposure to the urine of adult females induced a significant increase in sniffing and environmental sniffing/licking behaviors, but a decrease in biting behavior, in males. Males of different ages displayed specific behaviors to female urine odors. Adult males spent more time licking than juvenile and sub-adult males. Further, sub-adult and adult males displayed high levels of environmental sniffing/licking, which was absent in the juvenile males. Juvenile males displayed scent rubbing behavior significantly more frequently than sub-adult and adult males, and also spent more time showing biting behavior than sub-adult males. Finally, juvenile and sub-aduh males showed no difference in response to female and male urine odors. Together, these data suggest that chemosensory cues from conspecific urines induce age-specific responses in male giant pandas.
文摘As a base research on intelligentized search technique in seismic ruins,we study on human odor by a portable GC-MS.Qualitative analysis experiment demonstrate that isoprene,acetone and 6-methyl-5-heptene-2-one are symbol of human odor.This research give important data to search survival base on artificial olfaction technique in seismic ruins.
基金Supported by Special Major Build of China and Nature Science Research Foundations of Sichuan Agricultural University(06370101)~~
文摘[Objective] The paper was to study adsorption dynamics of calyx aroma onto basic tea in scenting process of calyx-scented tea, so as to increase aroma and quality of products. [Method] Adsorption experiment was carried out in a hermetic container, and the effect of calyx amount, contact time, moisture content of basic tea and temperature on the scenting process was studied. [Result] The optimal moisture and temperature for scenting process was 4% and 10 ℃, respectively. [Conclusion] The scenting process accorded pseudo-first-order kinetic model, and the adsorption dynamic data of total process could better fit pseudo-second-order kinetic model.