The lithospheric magnetic field is an important component of the geomagnetic field,and the oceanic lithosphere exhibits distinct characteristics.Because of its formation mechanisms,evolutionary history,and geomagnetic...The lithospheric magnetic field is an important component of the geomagnetic field,and the oceanic lithosphere exhibits distinct characteristics.Because of its formation mechanisms,evolutionary history,and geomagnetic field polarity reversals,the oceanic lithosphere has significant remanent magnetization,which causes magnetic anomaly stripes parallel to the mid-ocean ridges.However,it is difficult to construct a high-resolution lithospheric magnetic field model in oceanic regions with relatively sparse data or no data.Using forward calculated lithospheric magnetic field data based on an oceanic remanent magnetization(ORM) model with physical and geological foundations as a supplement is a feasible approach.We first collect the latest available oceanic crust age grid,plate motion model,geomagnetic polarity timescale,and oceanic lithosphere thermal structure.Combining the assumptions that the paleo geomagnetic field is a geocentric axial dipole field and that the normal oceanic crust moves only in the horizontal direction,we construct a vertically integrated ORM model of the normal oceanic crust with a known age,including the intensity,inclination,and declination.Both the ORM model and the global induced magnetization(GIM) model are then scaled from two aspects between their forward calculated results and the lithospheric magnetic field model LCS-1.One aspect is the difference in their spherical harmonic power spectra,and the other is the misfit between the grid data over the oceans.We last compare the forward calculated lithospheric magnetic anomaly from the scaled ORM and GIM models with the Macao Science Satellite-1(MSS-1) observed data.The comparison results show that the magnetic anomalies over the normal oceanic crust regions at satellite altitude are mainly contributed by the high-intensity remanent magnetization corresponding to the Cretaceous magnetic quiet period.In these regions,the predicted and observed anomalies show good consistency in spatial distribution,whereas their amplitude differences vary across regions.This result suggests that regional ORM construction should be attempted in future work to address these amplitude discrepancies.展开更多
The Middle to Late Jurassic,high-pressure metamorphic ophiolites of Inzecca Unit are well exposed in the Noceta-Vezzani area of Alpine Corsica.These metaophiolites were studied by using a multidisciplinary approach to...The Middle to Late Jurassic,high-pressure metamorphic ophiolites of Inzecca Unit are well exposed in the Noceta-Vezzani area of Alpine Corsica.These metaophiolites were studied by using a multidisciplinary approach to reconstruct the architecture of the oceanic sector from which they derived.The collected data indicate that this oceanic crust consists of a mantle metaperidotites and metaophicalcites,both covered by massive or pillow metabasalts with or without a layer of ophiolite-bearing metabreccias.展开更多
The oceanic mixed layer in the Southern Ocean is characterized by numerous fronts due to the stirring of freshwater influxes arising from ice melting.The interaction of these fronts with winds modulates the evolution ...The oceanic mixed layer in the Southern Ocean is characterized by numerous fronts due to the stirring of freshwater influxes arising from ice melting.The interaction of these fronts with winds modulates the evolution of the mixed layer and affects atmosphere−ocean energy exchanges.However,the underlying mechanism behind the wind-front interaction remains obscure due to a lack of three-dimensional observations of the ocean,particularly in terms of velocities.To address this issue,this study investigates the dynamics of fronts within the mixed layer during a storm by employing a subset of the global submesoscale-permitting simulation,Northeast Weddell Sea Pre-SWOT Level-4 Hourly MITgcm LLC4320 Native Grid 2km Oceanographic Dataset(ROAM_MIZ).We first compare the ROAM_MIZ data to glider data to assess the performance of the model simulation and find that the ROAM_MIZ can,to a large degree,capture sub-mesoscale features within a mixed layer.Subsequent analyses based on a subset of ROAM_MIZ show that lateral density gradients within the mixed layer rapidly decrease during high winds associated with the storm.Down-front winds accelerate this process as the Ekman buoyancy transport responsible for enhancing the instability of the fronts is primarily dominated by horizontal baroclinic components.After the storm,the fronts strengthen again in the presence of weaker winds due to the frontogenesis by the larger-scale strain.Moreover,the non-geostrophic turbulence induces a modification of the relative vorticity,affecting the instability within the mixed layer.These findings offer valuable guidance for the deployment of observational instruments and subsequent analysis,as well as deepen the understanding of air−sea interactions in the Southern Ocean.展开更多
High-Mg andesite/diorite(HMA)is useful for identifying subduction-related processes in orogenic belts,including the identification of ophiolites formed in suprasubduction zone(SSZ)environments.The E'rentaolegai hi...High-Mg andesite/diorite(HMA)is useful for identifying subduction-related processes in orogenic belts,including the identification of ophiolites formed in suprasubduction zone(SSZ)environments.The E'rentaolegai high-Mg diorite from the Diyanmiao ophiolite in central Inner Mongolia,North China,has been investigated revealing low-K tholeiitic-calc-alkaline characteristics and have SiO_(2)contents of 53.44-54.92 wt%,MgO contents of 8.44-9.54 wt%,and Mg~#of 54.35-57.60,with variable Fe_(2)O_(3)(7.51-8.61 wt%),Al_(2)O_(3)(11.95-15.09 wt%),and Na_(2)O(3.42-3.94 wt%)contents,low K_(2)O(0.34-0.97 wt%),TiO_(2)(0.35-0.67 wt%),and P2O5(0.12-0.15 wt%)contents,and high Ni(43-193 ppm)and Cr(189-556 ppm)contents.Samples collected have low total rare earth element(REE)contents(30.58-77.80 ppm),with flat or slightly right-dipping REE patterns(La_(N)/Yb_(N)=2.19-3.11)and a lack of pronounced Eu anomalies.The samples are also enriched in large-ion lithophile elements(LILEs,e.g.,K,Rb,Ba,U,and Sr)and depleted in high field strength elements(e.g.,Ta,Nb,Ti,and P).The E'rentaolegai high-Mg diorite has characteristics typical of HMA,and are similar to those of sanukites from the Setouchi Arc in SW Japan.They also display high positiveε_(Nd)(t)values(+6.32 to+7.80),comparable to the values of their host rocks.Petrogenetic analyses suggest that the E'rentaolegai HMA was probably formed by the interaction of partial melts and aqueous fluids from subducted sediments with mantle peridotite.Zircon U-Pb dating reveals that the high-Mg diorite crystallized at 313.6±2.4 Ma,i.e.,late Carboniferous.Combining our data with the temporal and spatial distribution of the Diyanmiao SSZ-type ophiolite,we propose that the eastern Paleo-Asian Ocean had not closed by the late Carboniferous,but intra-oceanic subduction was ongoing.A new model of the initiation of subduction in the eastern PAO during the late Paleozoic.展开更多
The Madden-Julian Oscillation(MJO)is a key atmospheric component connecting global weather and climate.It func-tions as a primary source for subseasonal forecasts.Previous studies have highlighted the vital impact of ...The Madden-Julian Oscillation(MJO)is a key atmospheric component connecting global weather and climate.It func-tions as a primary source for subseasonal forecasts.Previous studies have highlighted the vital impact of oceanic processes on MJO propagation.However,few existing MJO prediction approaches adequately consider these factors.This study determines the critical region for the oceanic processes affecting MJO propagation by utilizing 22-year Climate Forecast System Reanalysis data.By intro-ducing surface and subsurface oceanic temperature within this critical region into a lagged multiple linear regression model,the MJO forecasting skill is considerably optimized.This optimization leads to a 12 h enhancement in the forecasting skill of the first principal component and efficiently decreases prediction errors for the total predictions.Further analysis suggests that,during the years in which MJO events propagate across the Maritime Continent over a more southerly path,the optimized statistical forecasting model obtains better improvements in MJO prediction.展开更多
The accelerated pace of natural and human-driven climate change presents profound challenges for Earth's systems.Oceans and ice sheets are critical regulators of climate systems,functioning as carbon sinks and the...The accelerated pace of natural and human-driven climate change presents profound challenges for Earth's systems.Oceans and ice sheets are critical regulators of climate systems,functioning as carbon sinks and thermal reservoirs.However,they are increasingly vulnerable to warming and greenhouse gas emissions.展开更多
The multiscale variability in summer extreme persistent precipitation(SEPP)in China from 1961 to 2020 was investigated via three extreme precipitation indices:consecutive wet days,total precipitation amount,and daily ...The multiscale variability in summer extreme persistent precipitation(SEPP)in China from 1961 to 2020 was investigated via three extreme precipitation indices:consecutive wet days,total precipitation amount,and daily precipitation intensity.The relationships between precursory and concurrent global oceanic modes and SEPP were identified via a generalized linear model(GLM).The influence of oceanic modes on SEPP was finally investigated via numerical simulations.The results revealed that the climatological SEPP(≥14 days)mainly appears across the Tibetan Plateau,Yunnan–Guizhou Plateau,and South China coast.The first EOF mode for all three indices showed strong signals over the Yangtze River.Further analysis via the GLM suggested that the positive phases of the tropical North Atlantic(TNA)in autumn,ENSO in winter,the Indian Ocean Basin(IOB)in spring,and the western North Pacific(WNP)in summer emerged as the most effective precursory factors of SEPP,which could serve as preceding signals for future predictions,contributing 30.2%,36.4%,38.0%,and 55.6%,respectively,to the GLM.Sensitivity experiments revealed that SST forcing in all four seasons contributes to SEPP over China,whereas the winter and summer SST warming over the Pacific and Indian Ocean(IO)contributes the most.Diagnosis of the hydrological cycle suggested that water vapor advection predominantly originates from the western Pacific and IO in summer,driven by the strengthened subtropical high and Asian summer monsoon(ASM).The enhanced vertical water vapor transport is attributed to stronger upward motion across all four seasons.These findings are helpful for better understanding SEPP variabilities and their prediction under SST warming.展开更多
In November 1984,China launched its first expedition to the Southern Ocean and the Antarctic continent,culminating in the establishment of its first year-round research station—Great Wall Station—on the Antarctic Pe...In November 1984,China launched its first expedition to the Southern Ocean and the Antarctic continent,culminating in the establishment of its first year-round research station—Great Wall Station—on the Antarctic Peninsula in February 1985.Forty years later,in February 2024,China’s fifth research station,Qinling Station,commenced operations on Inexpress-ible Island near Terra Nova Bay.展开更多
Recently, during the investigations on planetary oceans, Hirota-Satsuma-Ito-type models have been developed. In this paper, for a(2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito system describing ...Recently, during the investigations on planetary oceans, Hirota-Satsuma-Ito-type models have been developed. In this paper, for a(2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito system describing the fluid dynamics of shallow-water waves in an open ocean, non-characteristic movable singular manifold and symbolic computation enable an oceanic auto-B?cklund transformation with three sets of the oceanic solitonic solutions. The results rely on the oceanic variable coefficients in that system. Future oceanic observations might detect some nonlinear features predicted in this paper, and relevant oceanographic insights might be expected.展开更多
Mid-ocean ridge and oceanic transforms are among the most prominent features on the seafloor surface and are crucial for understanding seafloor spreading and plate tectonic dynamics,but the deep structure of the ocean...Mid-ocean ridge and oceanic transforms are among the most prominent features on the seafloor surface and are crucial for understanding seafloor spreading and plate tectonic dynamics,but the deep structure of the oceanic lithosphere remains poorly understood.The large number of microearthquakes occurring along ridges and transforms provide valuable information for gaining an indepth view of the underlying detailed seismic structures,contributing to understanding geodynamic processes within the oceanic lithosphere.Previous studies have indicated that the maximum depth of microseismicity is controlled by the 600-℃isotherm.However,this perspective is being challenged due to increasing observations of deep earthquakes that far exceed this suggested isotherm along mid-ocean ridges and oceanic transform faults.Several mechanisms have been proposed to explain these deep events,and we suggest that local geodynamic processes(e.g.,magma supply,mylonite shear zone,longlived faults,hydrothermal vents,etc.)likely play a more important role than previously thought.展开更多
Identification and anatomy of oceanic arcs within ancient orogenic belt are significant for better understanding the tectonic framework and closure process of paleo-ocean basin.This article summarizes the geological,g...Identification and anatomy of oceanic arcs within ancient orogenic belt are significant for better understanding the tectonic framework and closure process of paleo-ocean basin.This article summarizes the geological,geochemical,and geochronological characteristics of upper crust of Proto-Tethyan Lajishan intra-oceanic arc and provides new data to constrain the subduction evolution of the South Qilian Ocean.The intra-oceanic arc volcanic rocks,including intermediate-mafic lava,breccia,tuff,and minor felsic rocks,are distributed along southern part of the Lajishan ophiolite belt.Geochemical and isotopic compositions indicate that the intermediate-mafic lava were originated from depleted mantle contaminated by sediment melts or hydrous fluids,whereas the felsic rocks were likely generated by partial melting of juvenile mafic crust in intra-oceanic arc setting.Zircons from felsic rocks yield consistent and concordant ages ranging from 506 to 523 Ma,suggesting these volcanic rocks represent the relicts of upper crust of the Cambrian intra-oceanic arc.Combined with the Cambrian forearc ophiolite and accretionary complex,we suggest that the Cambrian intra-oceanic arc in the Lajishan ophiolite belt is belonging to the intra-oceanic arc system which was generated by south-directed subduction in the South Qilian Ocean at a relatively short interval between approximately 530 and 480 Ma.展开更多
Oceanic plateau accretion and subsequent flat-slab subduction in modern convergent settings have profoundly influenced the nature of subduction and mantle dynamics.However,evaluating similar impacts in ancient converg...Oceanic plateau accretion and subsequent flat-slab subduction in modern convergent settings have profoundly influenced the nature of subduction and mantle dynamics.However,evaluating similar impacts in ancient convergent settings,where oceanic plateaus have been subducted but geological records are limited,remains challenging.In this study,we present geochronological and geochemical data for a suite of ore-associated plutonic rocks from the Gaobaoyue area of northern Xizang.These rocks have zircon U-Pb ages of 152-146 Ma,with high Sr contents and Sr/Y and La/Yb ratios,low MgO,Yb,and Y contents,and depleted Sr-Nd-Hf isotopic compositions,consistent with an adakitic affinity that was generated by the partial melting of subducting oceanic crust.We compare the Late Jurassic adakitic magmatism with the spatiotemporal evolution of magmatism in northern Xizang to infer oceanic plateau subduction and subsequent flat-slab subduction in the Bangong-Nujiang Tethyan Ocean.This tectonic model explains(ⅰ)slab-derived adakitic magmatism,(ⅱ)the observed lull in magmatic activity,(ⅲ)intraplate compression and uplift,and(ⅳ)subduction jump and initiation.We also propose that the subduction of heterogeneous oceanic crust(i.e.,buoyant oceanic plateau subduction)provided favorable conditions for tectonic exhumation,vertical slab tearing,and the formation of Cu-Au deposits.Our findings not only have implications for establishing the fundamental process of oceanic plateau accretion in ancient subduction zones but also provide an alternative explanation for Late Jurassic complex tectonomagmatic activity in northern Xizang.展开更多
In 2018 and 2021,the Drift-Towing Ocean Profilers(DTOP)provided extensive temperature and salinity data on the upper 120m ocean through their drifts over the Alpha Ridge north of the Canada Basin.The thickness and tem...In 2018 and 2021,the Drift-Towing Ocean Profilers(DTOP)provided extensive temperature and salinity data on the upper 120m ocean through their drifts over the Alpha Ridge north of the Canada Basin.The thickness and temperature maximum of Alaska Coastal Water(ACW)ranged from 20m to 40m and-1.5℃to-0.8℃,respectively,and the salinity generally maintained from 30.2 to 32.5.Comparison with World Ocean Atlas 2018’s climatology manifested a 40m-thick and warm ACW roughly ex-ceeding the temperature maximum by 0.4–0.5℃in June–August 2021.This anomalously warm ACW was highly related to the ex-pansion of the Beaufort Gyre in the negative Arctic Oscillation phase.During summer,the under-ice oceanic heat flux F_(w)^(OHF)was elevated,with a maximum value of above 25Wm^(-2).F_(w)^(OHF)was typically low in the freezing season,with an average value of 1.2Wm^(-2).The estimates of upward heat flux contributed by ACW to the sea ice bottom F_(w)^(OHF)were in the range of 3–4Wm^(-2)in June–August 2021,when ACW contained a heat content of more than 80MJm^(-2).The heat loss over this period was driven by a weak stratification upon the ACW layer associated with a surface mixed layer(SML)approaching the ACW core.After autumn,F_(w)^(OHF)was reduced(<2 Wm^(-2))except during rare events when it elevated F_(w)^(OHF)slightly.In addition,the intensive and widespread Ekman suction,which created a violent upwelling north of the Canada Basin,was largely responsible for the substantial cooling and thinning of the ACW layer in the summer of 2021.展开更多
The movement of global ocean circulation in the Earth’s main magnetic field generates a measurable induced magnetic field(about 2 nT at geomagnetic satellite altitudes).However,this ocean circulation-induced magnetic...The movement of global ocean circulation in the Earth’s main magnetic field generates a measurable induced magnetic field(about 2 nT at geomagnetic satellite altitudes).However,this ocean circulation-induced magnetic field has not been previously estimated or incorporated into geomagnetic field models,potentially causing leakage into the core field model.Here,we present a method to account for the circulation-induced magnetic field during geomagnetic field modeling.First,a forward model of the circulation-induced magnetic field is constructed by numerically solving electromagnetic induction equations based on a realistic ocean circulation model.Then,this forward model is subtracted from the observed data.Finally,the core and lithospheric fields,magnetospheric and Earth’s mantle-induced fields,and the ocean tide-induced magnetic field are co-estimated.Applying our method to over 20 years of MSS-1,Swarm,CryoSat-2,and CHAMP satellite magnetic data,we derive a new multisource geomagnetic field model(MGFM).We find that incorporating a forward model of the circulation-induced magnetic field marginally improves the fit to the data.Furthermore,we demonstrate that neglecting the circulation-induced magnetic field in geomagnetic field modeling results in leakage into the core field model.The highlights of the MGFM model include:(i)a good agreement with the widely used CHAOS model series;(ii)the incorporation of magnetic fields induced by both ocean tides and circulation;and(iii)the suppression of leakage of the circulation-induced magnetic field into the core field model.展开更多
Mesoscale eddies play a central role in the poleward oceanic heat flux in the Southern Ocean.Previous studies have documented changes in the location of temperature fronts in the Southern Ocean,but little attention ha...Mesoscale eddies play a central role in the poleward oceanic heat flux in the Southern Ocean.Previous studies have documented changes in the location of temperature fronts in the Southern Ocean,but little attention has been paid to changes in the genesis locations of mesoscale eddies.Here,we provide evidence from three decades of satellite altimetry observations for the heterogeneity of the poleward shift of mesoscale activities,with the largest trend of~0.23°±0.05°(10 yr)^(-1) over the Atlantic sector and a moderate trend of~0.1°±0.03°(10 yr)^(-1) over the Indian sector,but no significant trend in the Pacific sector.The poleward shift of mesoscale eddies is associated with a southward shift of the local westerly winds while being constrained by the major topographies.As the poleward shift of westerly winds is projected to persist,the poleward oceanic heat flux from mesoscale eddies may influence future ice melt.展开更多
The Earth's crust,the outer shell of the Earth,consists of continental crust and oceanic crust.Oceanic crust is created at the mid-oceanic ridge,where it is magnetized in the ambient field of the Earth.As new mate...The Earth's crust,the outer shell of the Earth,consists of continental crust and oceanic crust.Oceanic crust is created at the mid-oceanic ridge,where it is magnetized in the ambient field of the Earth.As new material is extruded,the crust spreads outward,retaining its magnetization.The reversal of the polarity of the Earth's magnetic field over geologic time leads to a pattern of striped magnetic anomalies.In this study,we carry out a preliminary evaluation on how data from the Macao Science Satellite-1(MSS-1),which has a low orbital inclination,influences inversion models of the oceanic crustal magnetic field when combined with data from the Swarm mission.For our modeling we use an equivalent source method based on a cubed-sphere grid.Our model captures the broad magnetic structure over the North Atlantic Ocean and demonstrates that the trend of magnetic stripes is consistent with the age frame of the oceanic crust.The amplitude of the radial magnetic field at 450 km the North Atlantic Ocean ranges from–11 nT to+8 nT.The addition of MSS-1 observations to Swarm data generates results consistent with the overall magnetic stripe pattern.The lack of short-wavelength scale structure reveals the limitation of high-altitude satellites in portraying fine features and hence lower-altitude observations would be required to delineate a more detailed crustal signature.It is expected to obtain a finer structure of oceanic magnetic stripes by combining low-altitude CHAMP field data and east-west gradient data derived from MSS-1 in future work.展开更多
A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study em...A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study employed two assimilation schemes based on the global Climate Forecast System of Nanjing University of Information Science(NUIST-CFS 1.0)to investigate the impact of ocean data assimilation on the seasonal prediction of this extreme marine heatwave.The sea surface temperature(SST)nudging scheme assimilates SST only,while the deterministic ensemble Kalman filter(EnKF)scheme assimilates observations from the surface to the deep ocean.The latter notably improves the forecasting skill for subsurface temperature anomalies,especially at the depth of 100-300 m(the lower layer),outperforming the SST nudging scheme.It excels in predicting both horizontal and vertical heat transport in the lower layer,contributing to improved forecasts of the lower-layer warming during the Blob.These improvements stem from the assimilation of subsurface observational data,which are important in predicting the upper-ocean conditions.The results suggest that assimilating ocean data with the EnKF scheme significantly enhances the accuracy in predicting subsurface temperature anomalies during the Blob and offers better understanding of its underlying mechanisms.展开更多
The Indonesian Throughflow(ITF)plays important roles in global ocean circulation and climate systems.Previous studies suggested the ITF interannual variability is driven by both the El Niño-Southern Oscillation(E...The Indonesian Throughflow(ITF)plays important roles in global ocean circulation and climate systems.Previous studies suggested the ITF interannual variability is driven by both the El Niño-Southern Oscillation(ENSO)and the Indian Ocean Dipole(IOD)events.The detailed processes of ENSO and/or IOD induced anomalies impacting on the ITF,however,are still not clear.In this study,this issue is investigated through causal relation,statistical,and dynamical analyses based on satellite observation.The results show that the driven mechanisms of ENSO on the ITF include two aspects.Firstly,the ENSO related wind field anomalies driven anomalous cyclonic ocean circulation in the western Pacific,and off equatorial upwelling Rossby waves propagating westward to arrive at the western boundary of the Pacific,both tend to induce negative sea surface height anomalies(SSHA)in the western Pacific,favoring ITF reduction since the develop of the El Niño through the following year.Secondly,the ENSO events modulate equatorial Indian Ocean zonal winds through Walker Circulation,which in turn trigger eastward propagating upwelling Kelvin waves and westward propagating downwelling Rossby waves.The Rossby waves are reflected into downwelling Kelvin waves,which then propagate eastward along the equator and the Sumatra-Java coast in the Indian Ocean.As a result,the wave dynamics tend to generate negative(positive)SSHA in the eastern Indian Ocean,and thus enhance(reduce)the ITF transport with time lag of 0-6 months(9-12 months),respectively.Under the IOD condition,the wave dynamics also tend to enhance the ITF in the positive IOD year,and reduce the ITF in the following year.展开更多
Because of their effect on climate,carbon dioxide(CO_(2)),methane(CH_(4)),nitrous oxide(N_(2)O),and dimethylsulfide(DMS)are collectively designated as climate-relevant gases(CRGs).CO_(2),CH_(4),and N_(2)O are greenhou...Because of their effect on climate,carbon dioxide(CO_(2)),methane(CH_(4)),nitrous oxide(N_(2)O),and dimethylsulfide(DMS)are collectively designated as climate-relevant gases(CRGs).CO_(2),CH_(4),and N_(2)O are greenhouse gases contributing to global warming(positive climate feedback).Conversely,DMS is involved in the generation of cloud condensation nuclei,thus in the formation of clouds that cool the boundary layer by reflecting incoming solar radiation(negative climate feedback).Despite their scarcity,field observations and model results have demonstrated the essential role of polar oceans in the budget of CRGs.For example,the Southern Ocean represents a substantial CO_(2)sink but a source of N_(2)O and DMS,thereby exerting variable feedback on climate change.Unfortunately,because of the severe environmental conditions at polar latitudes,substantial knowledge gaps remain,for example on the mechanisms underlying CRGs formation or on the strength and distribution of their sources and sinks in the Southern and Arctic Oceans.Here,we review the most recent research results on the distribution,production-loss processes,and abundance variations of CRGs in the polar oceans.We list the remaining knowledge gaps and propose future directions of research on CRGs in the polar oceans,as a useful reference for future studies.展开更多
With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic...With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic computation,we find out,on one hand,a set of bilinear auto-Backlund transformations,which could connect certain solutions of that equation with other solutions of that equation itself,and on the other hand,a set of similarity reductions,which could go from that equation to a known ordinary differential equation.The results in this paper depend on all the oceanic variable coefficients in that equation.展开更多
基金supported by the National Natural Science Foundation of China (41804067, 42174090, 42250101, and 42250103)the Science Research Project of the Hebei Education Department (BJK2024107)+3 种基金the Hebei Natural Science Foundation (D2022403044)the Opening Fund of the Key Laboratory of Geological Survey and Evaluation of the Ministry of Education (GLAB2023ZR02)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources (MSFGPMR2022-4)the Excellent Young Scientist Fund of Hebei GEO University (YQ202403)。
文摘The lithospheric magnetic field is an important component of the geomagnetic field,and the oceanic lithosphere exhibits distinct characteristics.Because of its formation mechanisms,evolutionary history,and geomagnetic field polarity reversals,the oceanic lithosphere has significant remanent magnetization,which causes magnetic anomaly stripes parallel to the mid-ocean ridges.However,it is difficult to construct a high-resolution lithospheric magnetic field model in oceanic regions with relatively sparse data or no data.Using forward calculated lithospheric magnetic field data based on an oceanic remanent magnetization(ORM) model with physical and geological foundations as a supplement is a feasible approach.We first collect the latest available oceanic crust age grid,plate motion model,geomagnetic polarity timescale,and oceanic lithosphere thermal structure.Combining the assumptions that the paleo geomagnetic field is a geocentric axial dipole field and that the normal oceanic crust moves only in the horizontal direction,we construct a vertically integrated ORM model of the normal oceanic crust with a known age,including the intensity,inclination,and declination.Both the ORM model and the global induced magnetization(GIM) model are then scaled from two aspects between their forward calculated results and the lithospheric magnetic field model LCS-1.One aspect is the difference in their spherical harmonic power spectra,and the other is the misfit between the grid data over the oceans.We last compare the forward calculated lithospheric magnetic anomaly from the scaled ORM and GIM models with the Macao Science Satellite-1(MSS-1) observed data.The comparison results show that the magnetic anomalies over the normal oceanic crust regions at satellite altitude are mainly contributed by the high-intensity remanent magnetization corresponding to the Cretaceous magnetic quiet period.In these regions,the predicted and observed anomalies show good consistency in spatial distribution,whereas their amplitude differences vary across regions.This result suggests that regional ORM construction should be attempted in future work to address these amplitude discrepancies.
基金supported by PRIN 2020 project(Resp.Michele Marroni)Claudia D’Oriano(INGV)Matteo Masotta and Danis Filimon(Earth Science Dept)are also thanked for analytical support in the laboratoriesThis work benefited from the PRA 2022 project handled by Francesca Meneghini.
文摘The Middle to Late Jurassic,high-pressure metamorphic ophiolites of Inzecca Unit are well exposed in the Noceta-Vezzani area of Alpine Corsica.These metaophiolites were studied by using a multidisciplinary approach to reconstruct the architecture of the oceanic sector from which they derived.The collected data indicate that this oceanic crust consists of a mantle metaperidotites and metaophicalcites,both covered by massive or pillow metabasalts with or without a layer of ophiolite-bearing metabreccias.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42406241,42325604,42227901)the Ministry of Science and Technology of China (No. 2021YFC2803304)+2 种基金the Program of Shanghai Academic/Technology Research Leader (22XD1403600)supported by the Swedish Research Council (Nos. 2020–03190 and 2024-04209)the Swedish Research Council for the Environment, Agricultural Sciences and Spatial Planning (No. 202400375)
文摘The oceanic mixed layer in the Southern Ocean is characterized by numerous fronts due to the stirring of freshwater influxes arising from ice melting.The interaction of these fronts with winds modulates the evolution of the mixed layer and affects atmosphere−ocean energy exchanges.However,the underlying mechanism behind the wind-front interaction remains obscure due to a lack of three-dimensional observations of the ocean,particularly in terms of velocities.To address this issue,this study investigates the dynamics of fronts within the mixed layer during a storm by employing a subset of the global submesoscale-permitting simulation,Northeast Weddell Sea Pre-SWOT Level-4 Hourly MITgcm LLC4320 Native Grid 2km Oceanographic Dataset(ROAM_MIZ).We first compare the ROAM_MIZ data to glider data to assess the performance of the model simulation and find that the ROAM_MIZ can,to a large degree,capture sub-mesoscale features within a mixed layer.Subsequent analyses based on a subset of ROAM_MIZ show that lateral density gradients within the mixed layer rapidly decrease during high winds associated with the storm.Down-front winds accelerate this process as the Ekman buoyancy transport responsible for enhancing the instability of the fronts is primarily dominated by horizontal baroclinic components.After the storm,the fronts strengthen again in the presence of weaker winds due to the frontogenesis by the larger-scale strain.Moreover,the non-geostrophic turbulence induces a modification of the relative vorticity,affecting the instability within the mixed layer.These findings offer valuable guidance for the deployment of observational instruments and subsequent analysis,as well as deepen the understanding of air−sea interactions in the Southern Ocean.
基金supported by the Ministry of Science and Technology of the People’s Republic of China(Grant No.2022FY101704)the National Natural Science Foundation of China(Grant No.41972061)+1 种基金Science and Technology Innovation Team of Hebei GEO University(30801071)the China Geological Survey(Grant Nos.1212011120701 and 1212011120711)。
文摘High-Mg andesite/diorite(HMA)is useful for identifying subduction-related processes in orogenic belts,including the identification of ophiolites formed in suprasubduction zone(SSZ)environments.The E'rentaolegai high-Mg diorite from the Diyanmiao ophiolite in central Inner Mongolia,North China,has been investigated revealing low-K tholeiitic-calc-alkaline characteristics and have SiO_(2)contents of 53.44-54.92 wt%,MgO contents of 8.44-9.54 wt%,and Mg~#of 54.35-57.60,with variable Fe_(2)O_(3)(7.51-8.61 wt%),Al_(2)O_(3)(11.95-15.09 wt%),and Na_(2)O(3.42-3.94 wt%)contents,low K_(2)O(0.34-0.97 wt%),TiO_(2)(0.35-0.67 wt%),and P2O5(0.12-0.15 wt%)contents,and high Ni(43-193 ppm)and Cr(189-556 ppm)contents.Samples collected have low total rare earth element(REE)contents(30.58-77.80 ppm),with flat or slightly right-dipping REE patterns(La_(N)/Yb_(N)=2.19-3.11)and a lack of pronounced Eu anomalies.The samples are also enriched in large-ion lithophile elements(LILEs,e.g.,K,Rb,Ba,U,and Sr)and depleted in high field strength elements(e.g.,Ta,Nb,Ti,and P).The E'rentaolegai high-Mg diorite has characteristics typical of HMA,and are similar to those of sanukites from the Setouchi Arc in SW Japan.They also display high positiveε_(Nd)(t)values(+6.32 to+7.80),comparable to the values of their host rocks.Petrogenetic analyses suggest that the E'rentaolegai HMA was probably formed by the interaction of partial melts and aqueous fluids from subducted sediments with mantle peridotite.Zircon U-Pb dating reveals that the high-Mg diorite crystallized at 313.6±2.4 Ma,i.e.,late Carboniferous.Combining our data with the temporal and spatial distribution of the Diyanmiao SSZ-type ophiolite,we propose that the eastern Paleo-Asian Ocean had not closed by the late Carboniferous,but intra-oceanic subduction was ongoing.A new model of the initiation of subduction in the eastern PAO during the late Paleozoic.
基金supported by the National Key Program for Developing Basic Science(Nos.2022YFF0801702 and 2022YFE0106600)the National Natural Science Foundation of China(Nos.42175060 and 42175021)the Jiangsu Province Science Foundation(No.BK20250200302).
文摘The Madden-Julian Oscillation(MJO)is a key atmospheric component connecting global weather and climate.It func-tions as a primary source for subseasonal forecasts.Previous studies have highlighted the vital impact of oceanic processes on MJO propagation.However,few existing MJO prediction approaches adequately consider these factors.This study determines the critical region for the oceanic processes affecting MJO propagation by utilizing 22-year Climate Forecast System Reanalysis data.By intro-ducing surface and subsurface oceanic temperature within this critical region into a lagged multiple linear regression model,the MJO forecasting skill is considerably optimized.This optimization leads to a 12 h enhancement in the forecasting skill of the first principal component and efficiently decreases prediction errors for the total predictions.Further analysis suggests that,during the years in which MJO events propagate across the Maritime Continent over a more southerly path,the optimized statistical forecasting model obtains better improvements in MJO prediction.
文摘The accelerated pace of natural and human-driven climate change presents profound challenges for Earth's systems.Oceans and ice sheets are critical regulators of climate systems,functioning as carbon sinks and thermal reservoirs.However,they are increasingly vulnerable to warming and greenhouse gas emissions.
基金jointly funded by the National Natural Science Foundation of China(Grant Nos.42122035,42288101,42130605,72293604,42475179,and 42475020)the support of the Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Waters(GSTOEW)+2 种基金Key Laboratory of Space Ocean Remote Sensing and ApplicationCMAGDOU Joint Laboratory for Marine MeteorologyKey Laboratory of Climate Resources and Environment in Continental Shelf Sea and Deep Ocean(LCRE)。
文摘The multiscale variability in summer extreme persistent precipitation(SEPP)in China from 1961 to 2020 was investigated via three extreme precipitation indices:consecutive wet days,total precipitation amount,and daily precipitation intensity.The relationships between precursory and concurrent global oceanic modes and SEPP were identified via a generalized linear model(GLM).The influence of oceanic modes on SEPP was finally investigated via numerical simulations.The results revealed that the climatological SEPP(≥14 days)mainly appears across the Tibetan Plateau,Yunnan–Guizhou Plateau,and South China coast.The first EOF mode for all three indices showed strong signals over the Yangtze River.Further analysis via the GLM suggested that the positive phases of the tropical North Atlantic(TNA)in autumn,ENSO in winter,the Indian Ocean Basin(IOB)in spring,and the western North Pacific(WNP)in summer emerged as the most effective precursory factors of SEPP,which could serve as preceding signals for future predictions,contributing 30.2%,36.4%,38.0%,and 55.6%,respectively,to the GLM.Sensitivity experiments revealed that SST forcing in all four seasons contributes to SEPP over China,whereas the winter and summer SST warming over the Pacific and Indian Ocean(IO)contributes the most.Diagnosis of the hydrological cycle suggested that water vapor advection predominantly originates from the western Pacific and IO in summer,driven by the strengthened subtropical high and Asian summer monsoon(ASM).The enhanced vertical water vapor transport is attributed to stronger upward motion across all four seasons.These findings are helpful for better understanding SEPP variabilities and their prediction under SST warming.
文摘In November 1984,China launched its first expedition to the Southern Ocean and the Antarctic continent,culminating in the establishment of its first year-round research station—Great Wall Station—on the Antarctic Peninsula in February 1985.Forty years later,in February 2024,China’s fifth research station,Qinling Station,commenced operations on Inexpress-ible Island near Terra Nova Bay.
基金financially supported by the Scientific Research Foundation of North China University of Technology (Grant Nos.11005136024XN147-87 and 110051360024XN151-86)。
文摘Recently, during the investigations on planetary oceans, Hirota-Satsuma-Ito-type models have been developed. In this paper, for a(2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito system describing the fluid dynamics of shallow-water waves in an open ocean, non-characteristic movable singular manifold and symbolic computation enable an oceanic auto-B?cklund transformation with three sets of the oceanic solitonic solutions. The results rely on the oceanic variable coefficients in that system. Future oceanic observations might detect some nonlinear features predicted in this paper, and relevant oceanographic insights might be expected.
基金Supported by the State Key Program of National Natural Science of China(No.42330308)the Project of Donghai Laboratory(No.DH-2022ZY0005)+4 种基金the Scientific Research Fund of the Second Institute of OceanographyMinistry of Natural Resources(No.QHXZ2301)the National Science Foundation for Distinguished Young Scholars of China(No.42025601)for Young Scientists of China(No.41906064)the Zhejiang Provincial Natural Science Foundation of China(No.LDQ24D060001)。
文摘Mid-ocean ridge and oceanic transforms are among the most prominent features on the seafloor surface and are crucial for understanding seafloor spreading and plate tectonic dynamics,but the deep structure of the oceanic lithosphere remains poorly understood.The large number of microearthquakes occurring along ridges and transforms provide valuable information for gaining an indepth view of the underlying detailed seismic structures,contributing to understanding geodynamic processes within the oceanic lithosphere.Previous studies have indicated that the maximum depth of microseismicity is controlled by the 600-℃isotherm.However,this perspective is being challenged due to increasing observations of deep earthquakes that far exceed this suggested isotherm along mid-ocean ridges and oceanic transform faults.Several mechanisms have been proposed to explain these deep events,and we suggest that local geodynamic processes(e.g.,magma supply,mylonite shear zone,longlived faults,hydrothermal vents,etc.)likely play a more important role than previously thought.
基金supported by the China Geological Survey(Grant No.DD20221649)National Natural Science Foundation of China(Grant Nos.42230308,42072266)+3 种基金Bureau of Geological Exploration and Development of Qinghai Province(Grant No.[2022]32)the Xingdian Scholar Fund of Yunnan Province(Grant No.C6213001155)China Postdoctoral Science Foundation(Grant No.2021M691702)High-level Talents Project of Qinghai Province.
文摘Identification and anatomy of oceanic arcs within ancient orogenic belt are significant for better understanding the tectonic framework and closure process of paleo-ocean basin.This article summarizes the geological,geochemical,and geochronological characteristics of upper crust of Proto-Tethyan Lajishan intra-oceanic arc and provides new data to constrain the subduction evolution of the South Qilian Ocean.The intra-oceanic arc volcanic rocks,including intermediate-mafic lava,breccia,tuff,and minor felsic rocks,are distributed along southern part of the Lajishan ophiolite belt.Geochemical and isotopic compositions indicate that the intermediate-mafic lava were originated from depleted mantle contaminated by sediment melts or hydrous fluids,whereas the felsic rocks were likely generated by partial melting of juvenile mafic crust in intra-oceanic arc setting.Zircons from felsic rocks yield consistent and concordant ages ranging from 506 to 523 Ma,suggesting these volcanic rocks represent the relicts of upper crust of the Cambrian intra-oceanic arc.Combined with the Cambrian forearc ophiolite and accretionary complex,we suggest that the Cambrian intra-oceanic arc in the Lajishan ophiolite belt is belonging to the intra-oceanic arc system which was generated by south-directed subduction in the South Qilian Ocean at a relatively short interval between approximately 530 and 480 Ma.
基金funded by the Second Tibetan Plateau Scientific Expedition and Research(STEP)Program(Grant No.2019QZKK0702)National Natural Science Foundation of China(Grant Nos.92055208,42174080)+2 种基金Natural Science Foundation of Guangxi,China(Grant No.AD21220033)Shandong Provincial Natural Science Foundation(Grant No.ZR2020QD045)China Geological Survey(Grant No.DD20190167).
文摘Oceanic plateau accretion and subsequent flat-slab subduction in modern convergent settings have profoundly influenced the nature of subduction and mantle dynamics.However,evaluating similar impacts in ancient convergent settings,where oceanic plateaus have been subducted but geological records are limited,remains challenging.In this study,we present geochronological and geochemical data for a suite of ore-associated plutonic rocks from the Gaobaoyue area of northern Xizang.These rocks have zircon U-Pb ages of 152-146 Ma,with high Sr contents and Sr/Y and La/Yb ratios,low MgO,Yb,and Y contents,and depleted Sr-Nd-Hf isotopic compositions,consistent with an adakitic affinity that was generated by the partial melting of subducting oceanic crust.We compare the Late Jurassic adakitic magmatism with the spatiotemporal evolution of magmatism in northern Xizang to infer oceanic plateau subduction and subsequent flat-slab subduction in the Bangong-Nujiang Tethyan Ocean.This tectonic model explains(ⅰ)slab-derived adakitic magmatism,(ⅱ)the observed lull in magmatic activity,(ⅲ)intraplate compression and uplift,and(ⅳ)subduction jump and initiation.We also propose that the subduction of heterogeneous oceanic crust(i.e.,buoyant oceanic plateau subduction)provided favorable conditions for tectonic exhumation,vertical slab tearing,and the formation of Cu-Au deposits.Our findings not only have implications for establishing the fundamental process of oceanic plateau accretion in ancient subduction zones but also provide an alternative explanation for Late Jurassic complex tectonomagmatic activity in northern Xizang.
基金supported by the National Natural Science Foundation of China(Nos.42276239 and 41941012)the National Key R&D Program of China(No.2019YFC1509101)the Fundamental Research Funds for the Central Universities(No.202165005).
文摘In 2018 and 2021,the Drift-Towing Ocean Profilers(DTOP)provided extensive temperature and salinity data on the upper 120m ocean through their drifts over the Alpha Ridge north of the Canada Basin.The thickness and temperature maximum of Alaska Coastal Water(ACW)ranged from 20m to 40m and-1.5℃to-0.8℃,respectively,and the salinity generally maintained from 30.2 to 32.5.Comparison with World Ocean Atlas 2018’s climatology manifested a 40m-thick and warm ACW roughly ex-ceeding the temperature maximum by 0.4–0.5℃in June–August 2021.This anomalously warm ACW was highly related to the ex-pansion of the Beaufort Gyre in the negative Arctic Oscillation phase.During summer,the under-ice oceanic heat flux F_(w)^(OHF)was elevated,with a maximum value of above 25Wm^(-2).F_(w)^(OHF)was typically low in the freezing season,with an average value of 1.2Wm^(-2).The estimates of upward heat flux contributed by ACW to the sea ice bottom F_(w)^(OHF)were in the range of 3–4Wm^(-2)in June–August 2021,when ACW contained a heat content of more than 80MJm^(-2).The heat loss over this period was driven by a weak stratification upon the ACW layer associated with a surface mixed layer(SML)approaching the ACW core.After autumn,F_(w)^(OHF)was reduced(<2 Wm^(-2))except during rare events when it elevated F_(w)^(OHF)slightly.In addition,the intensive and widespread Ekman suction,which created a violent upwelling north of the Canada Basin,was largely responsible for the substantial cooling and thinning of the ACW layer in the summer of 2021.
基金supported by the National Natural Science Foundation of China(42250101,42250102)the Macao Foundation.
文摘The movement of global ocean circulation in the Earth’s main magnetic field generates a measurable induced magnetic field(about 2 nT at geomagnetic satellite altitudes).However,this ocean circulation-induced magnetic field has not been previously estimated or incorporated into geomagnetic field models,potentially causing leakage into the core field model.Here,we present a method to account for the circulation-induced magnetic field during geomagnetic field modeling.First,a forward model of the circulation-induced magnetic field is constructed by numerically solving electromagnetic induction equations based on a realistic ocean circulation model.Then,this forward model is subtracted from the observed data.Finally,the core and lithospheric fields,magnetospheric and Earth’s mantle-induced fields,and the ocean tide-induced magnetic field are co-estimated.Applying our method to over 20 years of MSS-1,Swarm,CryoSat-2,and CHAMP satellite magnetic data,we derive a new multisource geomagnetic field model(MGFM).We find that incorporating a forward model of the circulation-induced magnetic field marginally improves the fit to the data.Furthermore,we demonstrate that neglecting the circulation-induced magnetic field in geomagnetic field modeling results in leakage into the core field model.The highlights of the MGFM model include:(i)a good agreement with the widely used CHAOS model series;(ii)the incorporation of magnetic fields induced by both ocean tides and circulation;and(iii)the suppression of leakage of the circulation-induced magnetic field into the core field model.
基金supported by the National Natural Science Foundation of China(Grant Nos.42230405,42006029)Science and Technology Plan of Liaoning Province(2024JH2/102400061)+1 种基金Dalian Science and Technology Innovation Fund(2024JJ11PT007)Dalian Science and Technology Pro-gram for Innovation Talents of Dalian(2022RJ06).
文摘Mesoscale eddies play a central role in the poleward oceanic heat flux in the Southern Ocean.Previous studies have documented changes in the location of temperature fronts in the Southern Ocean,but little attention has been paid to changes in the genesis locations of mesoscale eddies.Here,we provide evidence from three decades of satellite altimetry observations for the heterogeneity of the poleward shift of mesoscale activities,with the largest trend of~0.23°±0.05°(10 yr)^(-1) over the Atlantic sector and a moderate trend of~0.1°±0.03°(10 yr)^(-1) over the Indian sector,but no significant trend in the Pacific sector.The poleward shift of mesoscale eddies is associated with a southward shift of the local westerly winds while being constrained by the major topographies.As the poleward shift of westerly winds is projected to persist,the poleward oceanic heat flux from mesoscale eddies may influence future ice melt.
基金supported by the National Natural Science Foundation of China(42250101,42250102,42250103)the Macao Foundation,and the Science and Technology Development Fund,Macao SAR(File No.0002/2019/APD)。
文摘The Earth's crust,the outer shell of the Earth,consists of continental crust and oceanic crust.Oceanic crust is created at the mid-oceanic ridge,where it is magnetized in the ambient field of the Earth.As new material is extruded,the crust spreads outward,retaining its magnetization.The reversal of the polarity of the Earth's magnetic field over geologic time leads to a pattern of striped magnetic anomalies.In this study,we carry out a preliminary evaluation on how data from the Macao Science Satellite-1(MSS-1),which has a low orbital inclination,influences inversion models of the oceanic crustal magnetic field when combined with data from the Swarm mission.For our modeling we use an equivalent source method based on a cubed-sphere grid.Our model captures the broad magnetic structure over the North Atlantic Ocean and demonstrates that the trend of magnetic stripes is consistent with the age frame of the oceanic crust.The amplitude of the radial magnetic field at 450 km the North Atlantic Ocean ranges from–11 nT to+8 nT.The addition of MSS-1 observations to Swarm data generates results consistent with the overall magnetic stripe pattern.The lack of short-wavelength scale structure reveals the limitation of high-altitude satellites in portraying fine features and hence lower-altitude observations would be required to delineate a more detailed crustal signature.It is expected to obtain a finer structure of oceanic magnetic stripes by combining low-altitude CHAMP field data and east-west gradient data derived from MSS-1 in future work.
基金supported by the National Natural Science Foundation of China [grant number 42030605]the National Key R&D Program of China [grant number 2020YFA0608004]。
文摘A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study employed two assimilation schemes based on the global Climate Forecast System of Nanjing University of Information Science(NUIST-CFS 1.0)to investigate the impact of ocean data assimilation on the seasonal prediction of this extreme marine heatwave.The sea surface temperature(SST)nudging scheme assimilates SST only,while the deterministic ensemble Kalman filter(EnKF)scheme assimilates observations from the surface to the deep ocean.The latter notably improves the forecasting skill for subsurface temperature anomalies,especially at the depth of 100-300 m(the lower layer),outperforming the SST nudging scheme.It excels in predicting both horizontal and vertical heat transport in the lower layer,contributing to improved forecasts of the lower-layer warming during the Blob.These improvements stem from the assimilation of subsurface observational data,which are important in predicting the upper-ocean conditions.The results suggest that assimilating ocean data with the EnKF scheme significantly enhances the accuracy in predicting subsurface temperature anomalies during the Blob and offers better understanding of its underlying mechanisms.
基金The Fund of Laoshan Laboratory under contract No.LSKJ202202700the Basic Scientific Fund for National Public Research Institutes of China under contract No.2024Q02+1 种基金the National Natural Science Foundation of China under contract Nos 42076023 and 42430402the Global Change and Air-Sea InteractionⅡProject under contract No.GASI-01-ATP-STwin.
文摘The Indonesian Throughflow(ITF)plays important roles in global ocean circulation and climate systems.Previous studies suggested the ITF interannual variability is driven by both the El Niño-Southern Oscillation(ENSO)and the Indian Ocean Dipole(IOD)events.The detailed processes of ENSO and/or IOD induced anomalies impacting on the ITF,however,are still not clear.In this study,this issue is investigated through causal relation,statistical,and dynamical analyses based on satellite observation.The results show that the driven mechanisms of ENSO on the ITF include two aspects.Firstly,the ENSO related wind field anomalies driven anomalous cyclonic ocean circulation in the western Pacific,and off equatorial upwelling Rossby waves propagating westward to arrive at the western boundary of the Pacific,both tend to induce negative sea surface height anomalies(SSHA)in the western Pacific,favoring ITF reduction since the develop of the El Niño through the following year.Secondly,the ENSO events modulate equatorial Indian Ocean zonal winds through Walker Circulation,which in turn trigger eastward propagating upwelling Kelvin waves and westward propagating downwelling Rossby waves.The Rossby waves are reflected into downwelling Kelvin waves,which then propagate eastward along the equator and the Sumatra-Java coast in the Indian Ocean.As a result,the wave dynamics tend to generate negative(positive)SSHA in the eastern Indian Ocean,and thus enhance(reduce)the ITF transport with time lag of 0-6 months(9-12 months),respectively.Under the IOD condition,the wave dynamics also tend to enhance the ITF in the positive IOD year,and reduce the ITF in the following year.
基金supported the National Natural Science Foundation of China(Grant nos.4227624,42376239 and 42476253)。
文摘Because of their effect on climate,carbon dioxide(CO_(2)),methane(CH_(4)),nitrous oxide(N_(2)O),and dimethylsulfide(DMS)are collectively designated as climate-relevant gases(CRGs).CO_(2),CH_(4),and N_(2)O are greenhouse gases contributing to global warming(positive climate feedback).Conversely,DMS is involved in the generation of cloud condensation nuclei,thus in the formation of clouds that cool the boundary layer by reflecting incoming solar radiation(negative climate feedback).Despite their scarcity,field observations and model results have demonstrated the essential role of polar oceans in the budget of CRGs.For example,the Southern Ocean represents a substantial CO_(2)sink but a source of N_(2)O and DMS,thereby exerting variable feedback on climate change.Unfortunately,because of the severe environmental conditions at polar latitudes,substantial knowledge gaps remain,for example on the mechanisms underlying CRGs formation or on the strength and distribution of their sources and sinks in the Southern and Arctic Oceans.Here,we review the most recent research results on the distribution,production-loss processes,and abundance variations of CRGs in the polar oceans.We list the remaining knowledge gaps and propose future directions of research on CRGs in the polar oceans,as a useful reference for future studies.
基金financially supported by the Scientific Research Foundation of North China University of Technology(Grant Nos.11005136024XN147-87 and 110051360024XN151-86).
文摘With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic computation,we find out,on one hand,a set of bilinear auto-Backlund transformations,which could connect certain solutions of that equation with other solutions of that equation itself,and on the other hand,a set of similarity reductions,which could go from that equation to a known ordinary differential equation.The results in this paper depend on all the oceanic variable coefficients in that equation.