期刊文献+
共找到70篇文章
< 1 2 4 >
每页显示 20 50 100
Cross-Domain Spatial-Temporal GCN Model for Micro-Expression Recognition
1
作者 Minghui Su Chenwen Ma +3 位作者 Tianhuan Huang Lei Chen Hongchao Zhou Xianye Ben 《Journal of Beijing Institute of Technology》 2025年第5期496-509,共14页
Although significant progress has been made in micro-expression recognition,effectively modeling the intricate spatial-temporal dynamics remains a persistent challenge owing to their brief duration and complex facial ... Although significant progress has been made in micro-expression recognition,effectively modeling the intricate spatial-temporal dynamics remains a persistent challenge owing to their brief duration and complex facial dynamics.Furthermore,existing methods often suffer from limited gen-eralization,as they primarily focus on single-dataset tasks with small sample sizes.To address these two issues,this paper proposes the cross-domain spatial-temporal graph convolutional network(GCN)(CDST-GCN)model,which comprises two primary components:a siamese attention spa-tial-temporal branch(SASTB)and a global-aware dynamic spatial-temporal branch(GDSTB).Specifically,SASTB utilizes a contrastive learning strategy to project macro-and micro-expressions into a shared,aligned feature space,actively addressing cross-domain discrepancies.Additionally,it integrates an attention-gated mechanism that generates adaptive adjacency matrices to flexibly model collaborative patterns among facial landmarks.While largely preserving the structural paradigm of SASTB,GDSTB enhances the feature representation by integrating global context extracted from a pretrained model.Through this dual-branch architecture,CDST-GCN success-fully models both the global and local spatial-temporal features.The experimental results on CASME II and SAMM datasets demonstrate that the proposed model achieves competitive perfor-mance.Especially in more challenging 5-class tasks,the accuracy of the model on CASME II dataset is as high as 80.5%. 展开更多
关键词 micro-expression recognition attention mechanism cross-domain dynamic spatial-tem-poral graph convolutional neural network
在线阅读 下载PDF
Device-edge collaborative occluded face recognition method based on cross-domain feature fusion
2
作者 Puning Zhang Lei Tan +3 位作者 Zhigang Yang Fengyi Huang Lijun Sun Haiying Peng 《Digital Communications and Networks》 2025年第2期482-492,共11页
The lack of facial features caused by wearing masks degrades the performance of facial recognition systems.Traditional occluded face recognition methods cannot integrate the computational resources of the edge layer a... The lack of facial features caused by wearing masks degrades the performance of facial recognition systems.Traditional occluded face recognition methods cannot integrate the computational resources of the edge layer and the device layer.Besides,previous research fails to consider the facial characteristics including occluded and unoccluded parts.To solve the above problems,we put forward a device-edge collaborative occluded face recognition method based on cross-domain feature fusion.Specifically,the device-edge collaborative face recognition architecture gets the utmost out of maximizes device and edge resources for real-time occluded face recognition.Then,a cross-domain facial feature fusion method is presented which combines both the explicit domain and the implicit domain facial.Furthermore,a delay-optimized edge recognition task scheduling method is developed that comprehensively considers the task load,computational power,bandwidth,and delay tolerance constraints of the edge.This method can dynamically schedule face recognition tasks and minimize recognition delay while ensuring recognition accuracy.The experimental results show that the proposed method achieves an average gain of about 21%in recognition latency,while the accuracy of the face recognition task is basically the same compared to the baseline method. 展开更多
关键词 occluded face recognition Cross-domain feature fusion Device-edge collaboration
在线阅读 下载PDF
Micro-expression recognition algorithm based on graph convolutional network and Transformer model 被引量:1
3
作者 吴进 PANG Wenting +1 位作者 WANG Lei ZHAO Bo 《High Technology Letters》 EI CAS 2023年第2期213-222,共10页
Micro-expressions are spontaneous, unconscious movements that reveal true emotions.Accurate facial movement information and network training learning methods are crucial for micro-expression recognition.However, most ... Micro-expressions are spontaneous, unconscious movements that reveal true emotions.Accurate facial movement information and network training learning methods are crucial for micro-expression recognition.However, most existing micro-expression recognition technologies so far focus on modeling the single category of micro-expression images and neural network structure.Aiming at the problems of low recognition rate and weak model generalization ability in micro-expression recognition, a micro-expression recognition algorithm is proposed based on graph convolution network(GCN) and Transformer model.Firstly, action unit(AU) feature detection is extracted and facial muscle nodes in the neighborhood are divided into three subsets for recognition.Then, graph convolution layer is used to find the layout of dependencies between AU nodes of micro-expression classification.Finally, multiple attentional features of each facial action are enriched with Transformer model to include more sequence information before calculating the overall correlation of each region.The proposed method is validated in CASME II and CAS(ME)^2 datasets, and the recognition rate reached 69.85%. 展开更多
关键词 micro-expression recognition graph convolutional network(GCN) action unit(AU)detection Transformer model
在线阅读 下载PDF
Review of micro-expression spotting and recognition in video sequences 被引量:2
4
作者 Hang PAN Lun XIE +3 位作者 Zhiliang WANG Bin LIU Minghao YANG Jianhua TAO 《Virtual Reality & Intelligent Hardware》 2021年第1期1-17,共17页
Facial micro-expressions are short and imperceptible expressions that involuntarily reveal the true emotions that a person may be attempting to suppress,hide,disguise,or conceal.Such expressions can reflect a person&#... Facial micro-expressions are short and imperceptible expressions that involuntarily reveal the true emotions that a person may be attempting to suppress,hide,disguise,or conceal.Such expressions can reflect a person's real emotions and have a wide range of application in public safety and clinical diagnosis.The analysis of facial micro-expressions in video sequences through computer vision is still relatively recent.In this research,a comprehensive review on the topic of spotting and recognition used in micro expression analysis databases and methods,is conducted,and advanced technologies in this area are summarized.In addition,we discuss challenges that remain unresolved alongside future work to be completed in the field of micro-expression analysis. 展开更多
关键词 Facial expression micro-expression spotting micro-expression recognition DATABASE REVIEW
在线阅读 下载PDF
Gender-Specific Multi-Task Micro-Expression Recognition Using Pyramid CGBP-TOP Feature
5
作者 Chunlong Hu Jianjun Chen +3 位作者 Xin Zuo Haitao Zou Xing Deng Yucheng Shu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第3期547-559,共13页
Micro-expression recognition has attracted growing research interests in the field of compute vision.However,micro-expression usually lasts a few seconds,thus it is difficult to detect.This paper presents a new framew... Micro-expression recognition has attracted growing research interests in the field of compute vision.However,micro-expression usually lasts a few seconds,thus it is difficult to detect.This paper presents a new framework to recognize micro-expression using pyramid histogram of Centralized Gabor Binary Pattern from Three Orthogonal Panels(CGBP-TOP)which is an extension of Local Gabor Binary Pattern from Three Orthogonal Panels feature.CGBP-TOP performs spatial and temporal analysis to capture the local facial characteristics of micro-expression image sequences.In order to keep more local information of the face,CGBP-TOP is extracted based on pyramid subregions of the micro-expression video frame.The combination of CGBP-TOP and spatial pyramid can represent well and truly the facial movements of the micro-expression image sequences.However,the dimension of our pyramid CGBP-TOP tends to be very high,which may lead to high data redundancy problem.In addition,it is clear that people of different genders usually have different ways of micro-expression.Therefore,in this paper,in order to select the relevant features of micro-expression,the gender-specific sparse multi-task learning method with adaptive regularization term is adopted to learn a compact subset of pyramid CGBP-TOP feature for micro-expression classification of different sexes.Finally,extensive experiments on widely used CASME II and SMIC databases demonstrate that our method can efficiently extract micro-expression motion features in the micro-expression video clip.Moreover,our proposed approach achieves comparable results with the state-of-the-art methods. 展开更多
关键词 micro-expression recognition FEATURE extraction spatial PYRAMID MULTI-TASK learning REGULARIZATION
在线阅读 下载PDF
Micro-Expression Recognition Based on Spatio-Temporal Feature Extraction of Key Regions
6
作者 Wenqiu Zhu Yongsheng Li +1 位作者 Qiang Liu Zhigao Zeng 《Computers, Materials & Continua》 SCIE EI 2023年第10期1373-1392,共20页
Aiming at the problems of short duration,low intensity,and difficult detection of micro-expressions(MEs),the global and local features of ME video frames are extracted by combining spatial feature extraction and tempo... Aiming at the problems of short duration,low intensity,and difficult detection of micro-expressions(MEs),the global and local features of ME video frames are extracted by combining spatial feature extraction and temporal feature extraction.Based on traditional convolution neural network(CNN)and long short-term memory(LSTM),a recognition method combining global identification attention network(GIA),block identification attention network(BIA)and bi-directional long short-term memory(Bi-LSTM)is proposed.In the BIA,the ME video frame will be cropped,and the training will be carried out by cropping into 24 identification blocks(IBs),10 IBs and uncropped IBs.To alleviate the overfitting problem in training,we first extract the basic features of the preprocessed sequence through the transfer learning layer,and then extract the global and local spatial features of the output data through the GIA layer and the BIA layer,respectively.In the BIA layer,the input data will be cropped into local feature vectors with attention weights to extract the local features of the ME frames;in the GIA layer,the global features of the ME frames will be extracted.Finally,after fusing the global and local feature vectors,the ME time-series information is extracted by Bi-LSTM.The experimental results show that using IBs can significantly improve the model’s ability to extract subtle facial features,and the model works best when 10 IBs are used. 展开更多
关键词 micro-expression recognition attention mechanism long and short-term memory network transfer learning identification block
在线阅读 下载PDF
Micro-expression recognition algorithm based on the combination of spatial and temporal domains
7
作者 Wu Jin Xi Meng +2 位作者 Dai Wei Wang Lei Wang Xinran 《High Technology Letters》 EI CAS 2021年第3期303-309,共7页
Aiming at the problem of unsatisfactory effects of traditional micro-expression recognition algorithms,an efficient micro-expression recognition algorithm is proposed,which uses convolutional neural networks(CNN)to ex... Aiming at the problem of unsatisfactory effects of traditional micro-expression recognition algorithms,an efficient micro-expression recognition algorithm is proposed,which uses convolutional neural networks(CNN)to extract spatial features of micro-expressions,and long short-term memory network(LSTM)to extract time domain features.CNN and LSTM are combined as the basis of micro-expression recognition.In many CNN structures,the visual geometry group(VGG)using a small convolution kernel is finally selected as the pre-network through comparison.Due to the difficulty of deep learning training and over-fitting,the dropout method and batch normalization method are used to solve the problem in the VGG network.Two data sets CASME and CASME II are used for test comparison,in order to solve the problem of insufficient data sets,randomly determine the starting frame,and a fixedlength frame sequence is used as the standard,and repeatedly read all sample frames of the entire data set to achieve trayersal and data amplification.Finallv.a hieh recognition rate of 67.48% is achieved. 展开更多
关键词 micro-expression recognition convolutional neural network(CNN) long short-term memory(LSTM) batch normalization algorithm DROPOUT
在线阅读 下载PDF
Micro-Expression Recognition Algorithm Based on Information Entropy Feature
8
作者 WU Jin MIN Yu +1 位作者 YANG Xiaodie MA Simin 《Journal of Shanghai Jiaotong university(Science)》 EI 2020年第5期589-599,共11页
The intensity of the micro-expression is weak,although the directional low frequency components in the image are preserved by many algorithms,the extracted micro-expression ft^ature information is not sufficient to ac... The intensity of the micro-expression is weak,although the directional low frequency components in the image are preserved by many algorithms,the extracted micro-expression ft^ature information is not sufficient to accurately represent its sequences.In order to improve the accuracy of micro-expression recognition,first,each frame image is extracted from,its sequences,and the image frame is pre-processed by using gray normalization,size normalization,and two-dimensional principal component analysis(2DPCA);then,the optical flow method is used to extract the motion characteristics of the reduced-dimensional image,the information entropy value of the optical flow characteristic image is calculated by the information entropy principle,and the information entropy value is analyzed to obtain the eigenvalue.Therefore,more micro-expression feature information is extracted,including more important information,which can further improve the accuracy of micro-expression classification and recognition;finally,the feature images are classified by using the support vector machine(SVM).The experimental results show that the micro-expression feature image obtained by the information entropy statistics can effectively improve the accuracy of micro-expression recognition. 展开更多
关键词 micro-expression recognition two-dimensional principal component analysis(2DPCA) optical flow information entropy statistics support vector machine(SVM)
原文传递
An improved micro-expression recognition algorithm of 3D convolutional neural network
9
作者 WU Jin SHI Qianwen +2 位作者 XI Meng WANG Lei ZENG Huadie 《High Technology Letters》 EI CAS 2022年第1期63-71,共9页
The micro-expression lasts for a very short time and the intensity is very subtle.Aiming at the problem of its low recognition rate,this paper proposes a new micro-expression recognition algorithm based on a three-dim... The micro-expression lasts for a very short time and the intensity is very subtle.Aiming at the problem of its low recognition rate,this paper proposes a new micro-expression recognition algorithm based on a three-dimensional convolutional neural network(3D-CNN),which can extract two-di-mensional features in spatial domain and one-dimensional features in time domain,simultaneously.The network structure design is based on the deep learning framework Keras,and the discarding method and batch normalization(BN)algorithm are effectively combined with three-dimensional vis-ual geometry group block(3D-VGG-Block)to reduce the risk of overfitting while improving training speed.Aiming at the problem of the lack of samples in the data set,two methods of image flipping and small amplitude flipping are used for data amplification.Finally,the recognition rate on the data set is as high as 69.11%.Compared with the current international average micro-expression recog-nition rate of about 67%,the proposed algorithm has obvious advantages in recognition rate. 展开更多
关键词 micro-expression recognition deep learning three-dimensional convolutional neural network(3D-CNN) batch normalization(BN)algorithm DROPOUT
在线阅读 下载PDF
Adaptive spatio-temporal attention neural network for cross-database micro-expression recognition
10
作者 Yuhan RAN 《Virtual Reality & Intelligent Hardware》 2023年第2期142-156,共15页
Background The use of micro-expression recognition to recognize human emotions is one of the most critical challenges in human-computer interaction applications. In recent years, cross-database micro-expression recogn... Background The use of micro-expression recognition to recognize human emotions is one of the most critical challenges in human-computer interaction applications. In recent years, cross-database micro-expression recognition(CDMER) has emerged as a significant challenge in micro-expression recognition and analysis. Because the training and testing data in CDMER come from different micro-expression databases, CDMER is more challenging than conventional micro-expression recognition. Methods In this paper, an adaptive spatio-temporal attention neural network(ASTANN) using an attention mechanism is presented to address this challenge. To this end, the micro-expression databases SMIC and CASME II are first preprocessed using an optical flow approach,which extracts motion information among video frames that represent discriminative features of micro-expression.After preprocessing, a novel adaptive framework with a spatiotemporal attention module was designed to assign spatial and temporal weights to enhance the most discriminative features. The deep neural network then extracts the cross-domain feature, in which the second-order statistics of the sample features in the source domain are aligned with those in the target domain by minimizing the correlation alignment(CORAL) loss such that the source and target databases share similar distributions. Results To evaluate the performance of ASTANN, experiments were conducted based on the SMIC and CASME II databases under the standard experimental evaluation protocol of CDMER. The experimental results demonstrate that ASTANN outperformed other methods in relevant crossdatabase tasks. Conclusions Extensive experiments were conducted on benchmark tasks, and the results show that ASTANN has superior performance compared with other approaches. This demonstrates the superiority of our method in solving the CDMER problem. 展开更多
关键词 Cross-database micro-expression recognition Deep learning Attention mechanism Domain adaption
在线阅读 下载PDF
Dynamic Audio-Visual Biometric Fusion for Person Recognition 被引量:1
11
作者 Najlaa Hindi Alsaedi Emad Sami Jaha 《Computers, Materials & Continua》 SCIE EI 2022年第4期1283-1311,共29页
Biometric recognition refers to the process of recognizing a person’s identity using physiological or behavioral modalities,such as face,voice,fingerprint,gait,etc.Such biometric modalities are mostly used in recogni... Biometric recognition refers to the process of recognizing a person’s identity using physiological or behavioral modalities,such as face,voice,fingerprint,gait,etc.Such biometric modalities are mostly used in recognition tasks separately as in unimodal systems,or jointly with two or more as in multimodal systems.However,multimodal systems can usually enhance the recognition performance over unimodal systems by integrating the biometric data of multiple modalities at different fusion levels.Despite this enhancement,in real-life applications some factors degrade multimodal systems’performance,such as occlusion,face poses,and noise in voice data.In this paper,we propose two algorithms that effectively apply dynamic fusion at feature level based on the data quality of multimodal biometrics.The proposed algorithms attempt to minimize the negative influence of confusing and low-quality features by either exclusion or weight reduction to achieve better recognition performance.The proposed dynamic fusion was achieved using face and voice biometrics,where face features were extracted using principal component analysis(PCA),and Gabor filters separately,whilst voice features were extracted using Mel-Frequency Cepstral Coefficients(MFCCs).Here,the facial data quality assessment of face images is mainly based on the existence of occlusion,whereas the assessment of voice data quality is substantially based on the calculation of signal to noise ratio(SNR)as per the existence of noise.To evaluate the performance of the proposed algorithms,several experiments were conducted using two combinations of three different databases,AR database,and the extended Yale Face Database B for face images,in addition to VOiCES database for voice data.The obtained results show that both proposed dynamic fusion algorithms attain improved performance and offer more advantages in identification and verification over not only the standard unimodal algorithms but also the multimodal algorithms using standard fusion methods. 展开更多
关键词 BIOMETRICS dynamic fusion feature fusion identification multimodal biometrics occluded face recognition quality-based recognition verification voice recognition
在线阅读 下载PDF
Objective Class-Based Micro-Expression Recognition Through Simultaneous Action Unit Detection and Feature Aggregation
12
作者 Ling Zhou Qirong Mao Ming Dong 《Tsinghua Science and Technology》 2025年第5期2114-2132,共19页
Micro-Expression Recognition(MER)is a challenging task as the subtle changes occur over different action regions of a face.Changes in facial action regions are formed as Action Units(AUs),and AUs in micro-expressions ... Micro-Expression Recognition(MER)is a challenging task as the subtle changes occur over different action regions of a face.Changes in facial action regions are formed as Action Units(AUs),and AUs in micro-expressions can be seen as the actors in cooperative group activities.In this paper,we propose a novel deep neural network model for objective class-based MER,which simultaneously detects AUs and aggregates AU-level features into micro-expression-level representation through Graph Convolutional Networks(GCN).Specifically,we propose two new strategies in our AU detection module for more effective AU feature learning:the attention mechanism and the balanced detection loss function.With these two strategies,features are learned for all the AUs in a unified model,eliminating the error-prune landmark detection process and tedious separate training for each AU.Moreover,our model incorporates a tailored objective class-based AU knowledge-graph,which facilitates the GCN to aggregate the AU-level features into a micro-expression-level feature representation.Extensive experiments on two tasks in MEGC 2018 show that our approach outperforms the current state-of-the-art methods in MER.Additionally,we also report our single model-based micro-expression AU detection results. 展开更多
关键词 micro-expression recognition(MER) action unit detection self-attention Graph Convolutional Network(GCN)
原文传递
Towards Federated Learning Driving Technology for Privacy-Preserving Micro-Expression Recognition
13
作者 Mingpei Wang Ling Zhou +1 位作者 Xiaohua Huang Wenming Zheng 《Tsinghua Science and Technology》 2025年第5期2169-2183,共15页
As mobile devices and sensor technology advance,their role in communication becomes increasingly indispensable.Micro-expression recognition,an invaluable non-verbal communication method,has been extensively studied in... As mobile devices and sensor technology advance,their role in communication becomes increasingly indispensable.Micro-expression recognition,an invaluable non-verbal communication method,has been extensively studied in human-computer interaction,sentiment analysis,and security fields.However,the sensitivity and privacy implications of micro-expression data pose significant challenges for centralized machine learning methods,raising concerns about serious privacy leakage and data sharing.To address these limitations,we investigate a federated learning scheme tailored specifically for this task.Our approach prioritizes user privacy by employing federated optimization techniques,enabling the aggregation of clients’knowledge in an encrypted space without compromising data privacy.By integrating established micro-expression recognition methods into our framework,we demonstrate that our approach not only ensures robust data protection but also maintains high recognition performance comparable to non-privacy-preserving mechanisms.To our knowledge,this marks the first application of federated learning to the micro-expression recognition task. 展开更多
关键词 micro-expression recognition(MER) Federated Learning(FL) privacy protection deep learning Feature Representation Learning(FRL)
原文传递
Multi-scale joint feature network for micro-expression recognition 被引量:5
14
作者 Xinyu Li Guangshun Wei +1 位作者 Jie Wang Yuanfeng Zhou 《Computational Visual Media》 EI CSCD 2021年第3期407-417,共11页
Micro-expression recognition is a substantive cross-study of psychology and computer science,and it has a wide range of applications(e.g.,psychological and clinical diagnosis,emotional analysis,criminal investigation,... Micro-expression recognition is a substantive cross-study of psychology and computer science,and it has a wide range of applications(e.g.,psychological and clinical diagnosis,emotional analysis,criminal investigation,etc.).However,the subtle and diverse changes in facial muscles make it difficult for existing methods to extract effective features,which limits the improvement of micro-expression recognition accuracy.Therefore,we propose a multi-scale joint feature network based on optical flow images for micro-expression recognition.First,we generate an optical flow image that reflects subtle facial motion information.The optical flow image is then fed into the multi-scale joint network for feature extraction and classification.The proposed joint feature module(JFM)integrates features from different layers,which is beneficial for the capture of micro-expression features with different amplitudes.To improve the recognition ability of the model,we also adopt a strategy for fusing the feature prediction results of the three JFMs with the backbone network.Our experimental results show that our method is superior to state-of-the-art methods on three benchmark datasets(SMIC,CASME II,and SAMM)and a combined dataset(3 DB). 展开更多
关键词 micro-expression recognition multi-scale feature optical flow deep learning
原文传递
Counterfactual discriminative micro-expression recognition
15
作者 Yong Li Menglin Liu +2 位作者 Lingjie Lao Yuanzhi Wang Zhen Cui 《Visual Intelligence》 2024年第1期350-359,共10页
Micro-expressions are spontaneous,rapid and subtle facial movements that can hardly be suppressed or fabricated.Micro-expression recognition(MER)is one of the most challenging topics in affective computing.It aims to ... Micro-expressions are spontaneous,rapid and subtle facial movements that can hardly be suppressed or fabricated.Micro-expression recognition(MER)is one of the most challenging topics in affective computing.It aims to recognize subtle facial movements which are quite difficult for humans to perceive in a fleeting period.Recently,many deep learning-based MER methods have been developed.However,how to effectively capture subtle temporal variations for robust MER still perplexes us.We propose a counterfactual discriminative micro-expression recognition(CoDER)method to effectively learn the slight temporal variations for video-based MER.To explicitly capture the causality from temporal dynamics hidden in the micro-expression(ME)sequence,we propose ME counterfactual reasoning by comparing the effects of the facts w.r.t.original ME sequences and the counterfactuals w.r.t.counterfactually-revised ME sequences,and then perform causality-aware prediction to encourage the model to learn those latent ME temporal cues.Extensive experiments on four widely-used ME databases demonstrate the effectiveness of CoDER,which results in comparable and superior MER performance compared with that of the state-of-the-art methods.The visualization results show that CoDER successfully perceives the meaningful temporal variations in sequential faces. 展开更多
关键词 Affective computing micro-expression recognition Temporal variation Counterfactual reasoning Causal graph
在线阅读 下载PDF
基于量子化降噪自编码器的遮挡微表情重建方法研究
16
作者 刘慧 郭特 +1 位作者 刘栋 李颖颖 《计算机工程》 北大核心 2025年第5期288-304,共17页
微表情是一种心理健康诊断的重要依据,眼镜、口罩等物体造成的遮挡会导致微表情识别困难。现有遮挡微表情重建方法以RGB纹理信息重建为主,存在信息大量冗余、难以实现对纹理的精确重建等问题。此外,重建方法采用的模型多为基于U-Net的... 微表情是一种心理健康诊断的重要依据,眼镜、口罩等物体造成的遮挡会导致微表情识别困难。现有遮挡微表情重建方法以RGB纹理信息重建为主,存在信息大量冗余、难以实现对纹理的精确重建等问题。此外,重建方法采用的模型多为基于U-Net的对称自编码器和生成对抗网络(GAN)等,存在浅层的对称结构重建能力有限、对抗损失收敛困难等问题。为此,提出一种基于量子化降噪自编码器的微表情遮挡区域动态流特征重建方法。首先,基于光流和动态图像提出光照能量鲁棒的动态流特征表示,有效聚合所有TVL1光流中的运动信息,并简化纹理信息;其次,基于离散编码的变分自编码器(VQ-VAE)提出一种双层结构向量量子化降噪自编码器(VQ-DAE),用于微表情的遮挡区域动态流特征重建,以进行遮挡微表情的识别。实验结果表明,该方法能较好地重建遮挡区域的运动信息,在CASME、CAS(ME)2、CASMEⅡ这3个数据集上的准确率分别达到77.89%、72.02%、61.04%。与传统方法、基于空间注意力及自注意力方法相比,所提方法在准确率、未加权平均召回率(UAR)、Macro-F1等指标上均有显著的性能提升。 展开更多
关键词 遮挡微表情识别 特征重建 光流 动态图像 降噪自编码器
在线阅读 下载PDF
细粒度深度特征掩码估计的遮挡人脸识别算法 被引量:1
17
作者 王富平 王定莎 +2 位作者 李藕 刘卫华 刘鸿玮 《西安交通大学学报》 北大核心 2025年第2期170-179,共10页
针对人脸遮挡产生面部结构信息丢失,从而导致人脸识别准确率降低的问题,提出了一种细粒度深度特征掩码估计的遮挡人脸识别算法。首先,将人脸图像输入特征金字塔网络中,从而得到多尺度深度语义特征;其次,将从特征金字塔网络提取的特征经... 针对人脸遮挡产生面部结构信息丢失,从而导致人脸识别准确率降低的问题,提出了一种细粒度深度特征掩码估计的遮挡人脸识别算法。首先,将人脸图像输入特征金字塔网络中,从而得到多尺度深度语义特征;其次,将从特征金字塔网络提取的特征经过空洞卷积处理后,与MobileNetV3网络提取的精细浅层特征进行融合,并以像素级二值掩码为标签训练网络以获得细粒度特征掩码;进而,利用该深度特征掩码与深层特征相乘,以抑制由遮挡产生的干扰特征,获得更准确的人脸表征;最后,采用余弦损失和掩码估计损失联合训练网络,提高遮挡人脸识别算法的性能。在LFW数据集基础上创建了口罩、围巾和中心遮挡3种类型的人脸遮挡数据集,实验结果表明:在不同的数据集上,所提算法与现有算法相比均具有更高的识别准确率,并在不同类型遮挡情况下均能获得十分稳定的人脸识别结果;所提算法在数据集LFW和LFW口罩遮挡上的识别准确率分别达到了99.38%和98.42%,在数据集LFW围巾遮挡和LFW中心遮挡上的识别准确率分别达到了98.72%和98.65%,均优于对比算法。 展开更多
关键词 人脸识别 细粒度 掩码估计 遮挡 特征掩码
在线阅读 下载PDF
融合注意力机制的遮挡人脸识别系统应用
18
作者 戎真真 任奥林 杜帅兵 《计算机应用文摘》 2025年第18期100-102,共3页
近年来,人脸识别一直是计算机视觉领域的热门研究方向,在安防监控和身份认证等场景中具有广泛应用。然而,由于流行性感冒等疾病,人们普遍佩戴口罩,这导致面部关键特征信息缺失,使得基于深度学习的人脸识别准确率显著下降。为此,文章采... 近年来,人脸识别一直是计算机视觉领域的热门研究方向,在安防监控和身份认证等场景中具有广泛应用。然而,由于流行性感冒等疾病,人们普遍佩戴口罩,这导致面部关键特征信息缺失,使得基于深度学习的人脸识别准确率显著下降。为此,文章采用轻量级的MobileFaceNet网络模型,并融合CBAM注意力机制,使模型能够重点提取眼部及其周围特征,从而提高遮挡人脸的识别准确率。实验中,利用Face-Zoo方法在LFW数据集的人脸图像上模拟添加口罩。实验结果表明,融合CBAM注意力机制的模型在无遮挡人脸识别中表现优异,同时在遮挡人脸识别任务中具有较高的准确率。 展开更多
关键词 深度学习 面部特征 CBAM注意力机制 MobileFaceNet-A网络模型 鲁棒性 遮挡人脸识别
在线阅读 下载PDF
基于稀疏表示的遮挡人脸表情识别方法 被引量:17
19
作者 朱明旱 李树涛 叶华 《模式识别与人工智能》 EI CSCD 北大核心 2014年第8期708-712,共5页
用基于稀疏表示的分类方法识别遮挡人脸表情时,遮挡字典不具有冗余度且身份特征易干扰表情分类.针对此问题,文中提出一种基于稀疏表示的遮挡人脸表情识别方法.该方法首先通过对图像多级分块得到具有冗余度的遮挡字典,然后通过稀疏分解... 用基于稀疏表示的分类方法识别遮挡人脸表情时,遮挡字典不具有冗余度且身份特征易干扰表情分类.针对此问题,文中提出一种基于稀疏表示的遮挡人脸表情识别方法.该方法首先通过对图像多级分块得到具有冗余度的遮挡字典,然后通过稀疏分解求出待测图像的稀疏表示系数,最后在待测图像所在的子空间内实现表情类别判断.该方法使待测图像的分解系数变得更稀疏,同时避免身份特征对表情分类的干扰.在Cohn-Kanade和JAFFE人脸库上的遮挡表情识别实验表明,该方法对遮挡人脸的表情识别具有较强的鲁棒性. 展开更多
关键词 稀疏表示 遮挡字典 遮挡表情识别
在线阅读 下载PDF
基于凸壳理论的遮挡苹果目标识别与定位方法 被引量:35
20
作者 宋怀波 何东健 潘景朋 《农业工程学报》 EI CAS CSCD 北大核心 2012年第22期174-180,共7页
为实现受果树枝叶遮挡、果实间相互遮挡的果实目标识别,该文提出了一种基于凸壳理论的遮挡苹果目标识别方法。该方法首先将图像由RGB颜色空间转换至L*a*b*颜色空间,并利用K-means聚类算法将图像分为树叶、枝条和果实3个类别,然后利用形... 为实现受果树枝叶遮挡、果实间相互遮挡的果实目标识别,该文提出了一种基于凸壳理论的遮挡苹果目标识别方法。该方法首先将图像由RGB颜色空间转换至L*a*b*颜色空间,并利用K-means聚类算法将图像分为树叶、枝条和果实3个类别,然后利用形态学方法对果实目标进行处理,得到目标边缘并进行轮廓跟踪,接着利用目标边缘的凸壳提取连续光滑的轮廓曲线,最后估计该光滑曲线段的圆心及半径参数,实现遮挡果实的定位。为了验证该算法的有效性,利用Hough圆拟合算法进行了对比试验,试验结果表明,该方法的平均定位误差为4.28%,低于Hough圆拟合方法的平均定位误差16.3%,该方法显著提高了目标定位的精度,能够有效识别遮挡苹果。 展开更多
关键词 果实 图像识别 定位 凸壳理论 K-MEANS聚类 遮挡果实
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部