This paper presents an optimisatiombased verification process for obstacle avoidance systems of a unicycle-like mobile robot. It is a novel approach for the collision avoidance verification process. Local and global o...This paper presents an optimisatiombased verification process for obstacle avoidance systems of a unicycle-like mobile robot. It is a novel approach for the collision avoidance verification process. Local and global optimisation based verification processes are developed to find the worst-case parameters and the worst-case distance between the robot and an obstacle. The kinematic and dynamic model of the unicycle-like mobile robot is first introduced with force and torque as the inputs. The design of the control system is split into two parts. One is velocity and rotation using the robot dynamics, and the other is the incremental motion planning for robot kinematics. The artificial potential field method is chosen as a path planning and obstacle avoidance candidate technique for verification study as it is simple and widely used. Different optimisation algorithms are applied and compared for the purpose of verification. It is shown that even for a simple case study where only mass and inertia variations are considered, a local optimization based verification method may fail to identify the worst case. Two global optimisation methods have been investigated: genetic algorithms (GAs) and GLOBAL algorithms. Both of these methods successfully find the worst case. The verification process confirms that the obstacle avoidance algorithm functions correctly in the presence of all the possible parameter variations.展开更多
The forward design of trajectory planning strategies requires preset trajectory optimization functions,resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajecto...The forward design of trajectory planning strategies requires preset trajectory optimization functions,resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajectories that conform to real driver behavior habits.In addition,owing to the strong time-varying dynamic characteristics of obstacle avoidance scenarios,it is necessary to design numerous trajectory optimization functions and adjust the corresponding parameters.Therefore,an anthropomorphic obstacle-avoidance trajectory planning strategy for adaptive driving scenarios is proposed.First,numerous expert-demonstrated trajectories are extracted from the HighD natural driving dataset.Subsequently,a trajectory expectation feature-matching algorithm is proposed that uses maximum entropy inverse reinforcement learning theory to learn the extracted expert-demonstrated trajectories and achieve automatic acquisition of the optimization function of the expert-demonstrated trajectory.Furthermore,a mapping model is constructed by combining the key driving scenario information that affects vehicle obstacle avoidance with the weight of the optimization function,and an anthropomorphic obstacle avoidance trajectory planning strategy for adaptive driving scenarios is proposed.Finally,the proposed strategy is verified based on real driving scenarios.The results show that the strategy can adjust the weight distribution of the trajectory optimization function in real time according to the“emergency degree”of obstacle avoidance and the state of the vehicle.Moreover,this strategy can generate anthropomorphic trajectories that are similar to expert-demonstrated trajectories,effectively improving the adaptability and acceptability of trajectories in driving scenarios.展开更多
This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles in...This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method.展开更多
In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone ...In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone to fall into the trap of local optimization.Therefore,this paper proposes an improved artificial potential field(APF)algorithm,which uses 5G communication technology to communicate between the USV and the control center.The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios.Considering the various scenarios between the USV and other dynamic obstacles such as vessels in the process of performing tasks,the algorithm introduces the concept of dynamic artificial potential field.For the multiple obstacles encountered in the process of USV sailing,based on the International Regulations for Preventing Collisions at Sea(COLREGS),the USV determines whether the next step will fall into local optimization through the discriminationmechanism.The local potential field of the USV will dynamically adjust,and the reverse virtual gravitational potential field will be added to prevent it from falling into the local optimization and avoid collisions.The objective function and cost function are designed at the same time,so that the USV can smoothly switch between the global path and the local obstacle avoidance.The simulation results show that the improved APF algorithm proposed in this paper can successfully avoid various obstacles in the complex marine environment,and take navigation time and economic cost into account.展开更多
The importance of unmanned aerial vehicle(UAV)obstacle avoidance algorithms lies in their ability to ensure flight safety and collision avoidance,thereby protecting people and property.We propose UAD-YOLOv8,a lightwei...The importance of unmanned aerial vehicle(UAV)obstacle avoidance algorithms lies in their ability to ensure flight safety and collision avoidance,thereby protecting people and property.We propose UAD-YOLOv8,a lightweight YOLOv8-based obstacle detection algorithm optimized for UAV obstacle avoidance.The algorithm enhances the detection capability for small and irregular obstacles by removing the P5 feature layer and introducing deformable convolution v2(DCNv2)to optimize the cross stage partial bottleneck with 2 convolutions and fusion(C2f)module.Additionally,it reduces the model’s parameter count and computational load by constructing the unite ghost and depth-wise separable convolution(UGDConv)series of lightweight convolutions and a lightweight detection head.Based on this,we designed a visual obstacle avoidance algorithm that can improve the obstacle avoidance performance of UAVs in different environments.In particular,we propose an adaptive distance detection algorithm based on obstacle attributes to solve the ranging problem for multiple types and irregular obstacles to further enhance the UAV’s obstacle avoidance capability.To verify the effectiveness of the algorithm,the UAV obstacle detection(UAD)dataset was created.The experimental results show that UAD-YOLOv8 improves mAP50 by 3.4%and reduces GFLOPs by 34.5%compared to YOLOv8n while reducing the number of parameters by 77.4%and the model size by 73%.These improvements significantly enhance the UAV’s obstacle avoidance performance in complex environments,demonstrating its wide range of applications.展开更多
Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus...Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus algorithm. A novel distributed control model is proposed for the multi-agent system to form the anticipated formation as well as achieve obstacle avoidance. Based on the consensus algorithm, a distributed control function consisting of three terms (formation control term, velocity matching term, and obstacle avoidance term) is presented. By establishing a novel formation control matrix, a formation control term is constructed such that the agents can converge to consensus and reach the anticipated formation. A new obstacle avoidance function is developed by using the modified potential field approach to make sure that obstacle avoidance can be achieved whether the obstacle is in a dynamic state or a stationary state. A velocity matching term is also put forward to guarantee that the velocities of all agents converge to the same value. Furthermore, stability of the control model is proven. Simulation results are provided to demonstrate the effectiveness of the proposed control.展开更多
In this paper, the fixed-time event-triggered obstacle avoidance consensus control for a multi-AUV time-varying formation system in a 3D environment is presented by using an improved artificial potential field and lea...In this paper, the fixed-time event-triggered obstacle avoidance consensus control for a multi-AUV time-varying formation system in a 3D environment is presented by using an improved artificial potential field and leader-follower strategy(IAPF-LF). Firstly, the proposed fixed-time control can achieve the desired multi-AUV formation within a fixed settling time in any initial system state. Secondly, an event-triggered communication strategy is developed to govern the communication among AUVs, and the communication energy consumption can be decremented. The time-varying formation obstacle avoidance control algorithm based on IAPF-LF is designed to avoid static and dynamic obstacles, the desired formation is maintained in the presence of external disturbances, and there is no Zeno behavior under the fixed-time event-triggered consensus control strategy.The stability of the system is proved by the Lyapunov function and inequality scaling. Finally, simulation examples and water pool experiments are reported to verify the performance of the proposed theoretical algorithms.展开更多
A differential game guidance scheme with obstacle avoidance,based on the formulation of a combined linear quadratic and norm-bounded differential game,is designed for a three-player engagement scenario,which includes ...A differential game guidance scheme with obstacle avoidance,based on the formulation of a combined linear quadratic and norm-bounded differential game,is designed for a three-player engagement scenario,which includes a pursuer,an interceptor,and an evader.The confrontation between the players is divided into four phases(P1-P4)by introducing the switching time,and proposing different guidance strategies according to the phase where the static obstacle is located:the linear quadratic game method is employed to devise the guidance scheme for the energy optimization when the obstacle is located in the P1 and P3 stages;the norm-bounded differential game guidance strategy is presented to satisfy the acceleration constraint under the circumstance that the obstacle is located in the P2 and P4 phases.Furthermore,the radii of the static obstacle and the interceptor are taken as the design parameters to derive the combined guidance strategy through the dead-zone function,which guarantees that the pursuer avoids the static obstacle,and the interceptor,and attacks the evader.Finally,the nonlinear numerical simulations verify the performance of the game guidance strategy.展开更多
This paper considers the problems of target tracking and obstacle avoidance for multi-agent systems. To solve the problem that multiple agents cannot effectively track the target while avoiding obstacle in dynamic env...This paper considers the problems of target tracking and obstacle avoidance for multi-agent systems. To solve the problem that multiple agents cannot effectively track the target while avoiding obstacle in dynamic environment, a novel control algorithm based on potential function and behavior rules is proposed. Meanwhile, the interactions among agents are also considered. According to the state whether an agent is within the area of its neighbors' influence, two kinds of potential functions are presented. Meanwhile, the distributed control input of each agent is determined by relative velocities as well as relative positions among agents, target and obstacle. The maximum linear speed of the agents is also discussed. Finally, simulation studies are given to demonstrate the performance of the proposed algorithm.展开更多
Obstacle detection and platoon control for mixed traffic flows,comprising human-driven vehicles(HDVs)and connected and autonomous vehicles(CAVs),face challenges from uncertain disturbances,such as sensor faults,inaccu...Obstacle detection and platoon control for mixed traffic flows,comprising human-driven vehicles(HDVs)and connected and autonomous vehicles(CAVs),face challenges from uncertain disturbances,such as sensor faults,inaccurate driver operations,and mismatched model errors.Furthermore,misleading sensing information or malicious attacks in vehicular wireless networks can jeopardize CAVs’perception and platoon safety.In this paper,we develop a two-dimensional robust control method for a mixed platoon,including a single leading CAV and multiple following HDVs that incorpo-rate robust information sensing and platoon control.To effectively detect and locate unknown obstacles ahead of the leading CAV,we propose a cooperative vehicle-infrastructure sensing scheme and integrate it with an adaptive model predictive control scheme for the leading CAV.This sensing scheme fuses information from multiple nodes while suppressing malicious data from attackers to enhance robustness and attack resilience in a distributed and adaptive manner.Additionally,we propose a distributed car-following control scheme with robustness to guarantee the following HDVs,considering uncertain disturbances.We also provide theoretical proof of the string stability under this control framework.Finally,extensive simulations are conducted to validate our approach.The simulation results demonstrate that our method can effectively filter out misleading sensing information from malicious attackers,significantly reduce the mean-square deviation in obstacle sensing,and approach the theoretical error lower bound.Moreover,the proposed control method successfully achieves obstacle avoidance for the mixed platoon while ensuring stability and robustness in the face of external attacks and uncertain disturbances.展开更多
Road obstacles that unexpectedly appear due to vehicle breakdowns and accidents are major causes of fatal road accidents.Connected Autonomous Vehicles(CAVs)can be used to avoid collisions to ensure road safety through...Road obstacles that unexpectedly appear due to vehicle breakdowns and accidents are major causes of fatal road accidents.Connected Autonomous Vehicles(CAVs)can be used to avoid collisions to ensure road safety through cooperative sensing and driving.However,the collision avoidance performance of CAVs with unexpected obstacles has not been studied in the existing works.In this paper,we first design a platoon-based collision avoidance framework for CAVs.In this framework,we deploy a Digital Twin(DT)system at the head vehicle in a platoon to reduce communication overhead and decision-making delay based on a proposed trajectory planning scheme.In addition,a DT-assistant system is deployed on the assistant vehicle to monitor vehicles out of the sensing range of the head vehicle for the maintenance of the DT system.In this case,the transmission frequency of kinetic states of platoon members can be reduced to ensure low-overhead communication.Moreover,we design a variable resource reservation interval that can ensure DT synchronization between DT and the assistant system with high reliability.To further improve road safety,an urgency level-based trajectory planning algorithm is proposed to avoid unexpected obstacles considering different levels of emergency risks.Simulation results show that our DT system-based scheme can achieve significant performance gains in unexpected obstacle avoidance.Compared to the existing schemes,it can reduce collisions by 95%and is faster by about 10%passing by the unexpected obstacle.展开更多
Autonomous trucks have the potential to enhance both safety and convenience in intelligent transportation.However,their maximum speed and ability to navigate a variety of driving conditions,particularly uneven roads,a...Autonomous trucks have the potential to enhance both safety and convenience in intelligent transportation.However,their maximum speed and ability to navigate a variety of driving conditions,particularly uneven roads,are limited by a high center of gravity,which increases the risk of rollover.Road bulges,sinkholes,and unexpected debris all present additional challenges for autonomous trucks’operational design,which current perception and decisionmaking algorithms often overlook.To mitigate rollover risks and improve adaptability to damaged roads,this paper presents a novel Road Obstacle-Involved Trajectory Planner(ROITP).The planner categorizes road obstacles using a learning-based algorithm.A discrete optimization algorithm selects a multi-objective optimal trajectory while taking into account constraints and objective functions derived from truck dynamics.Validation across various scenarios on a hardware-in-loop platform demonstrates that the proposed planner is effective and feasible for real-time implementation.展开更多
A robot intelligent path planning system RIPPS is developed, which can be utilized for a robot off line programming tool. The system consists of three parts: geometric modeler, kinematic modeler and path planer. The...A robot intelligent path planning system RIPPS is developed, which can be utilized for a robot off line programming tool. The system consists of three parts: geometric modeler, kinematic modeler and path planer. The geometric modeler is used to construct the robot working environment cluttered with obstacles and the robot kinematic modeler to define robot manipulators by the input parameters. Giving robot start and the goal configurations, the path planer can produce a quasi optimal path. By transforming obstacles into the C space to form C obstacles, the path searching is performed in C space. The planning simulations are performed on a SGI workstation, the future research is to implement the planer on a commercial robot manipulators.展开更多
A distributed coordination algorithm is proposed to enhance the engagement of the multi-missile network in consideration of obstacle avoidance. To achieve a cooperative interception, the guidance law is developed in a...A distributed coordination algorithm is proposed to enhance the engagement of the multi-missile network in consideration of obstacle avoidance. To achieve a cooperative interception, the guidance law is developed in a simple form that consists of three individual components for tar- get capture, time coordination and obstacle avoidance. The distributed coordination algorithm enables a group of interceptor missiles to reach the target simultaneously, even if some member in the multi-missile network can only collect the information from nearest neighbors. The simula- tion results show that the guidance strategy provides a feasible tool to implement obstacle avoid- ance for the multi-missile network with satisfactory accuracy of target capture. The effects of the gain parameters are also discussed to evaluate the proposed approach.展开更多
In this paper,a bio-inspired path planning algorithm in 3 D space is proposed.The algorithm imitates the basic mechanisms of plant growth,including phototropism,negative geotropism and branching.The algorithm proposed...In this paper,a bio-inspired path planning algorithm in 3 D space is proposed.The algorithm imitates the basic mechanisms of plant growth,including phototropism,negative geotropism and branching.The algorithm proposed in this paper solves the dynamic obstacle avoidance path planning problem of Unmanned Aerial Vehicle(UAV)in the case of unknown environment maps.Compared with other path planning algorithms,the algorithm has the advantages of fast path planning speed and fewer route points,and can achieve the effect of low delay real-time path planning.The feasibility of the algorithm is verified in the Gazebo simulator based on the Robot Operating System(ROS)platform.Finally,an actual UAV autonomous obstacle avoidance path planning experimental platform is built,and a UAV obstacle avoidance path planning flight test is carried out based on this actual environment.展开更多
Optimal path planning avoiding obstacles is among the most attractive applications of mobile robots(MRs)in both research and education.In this paper,an optimal collision-free algorithm is designed and implemented prac...Optimal path planning avoiding obstacles is among the most attractive applications of mobile robots(MRs)in both research and education.In this paper,an optimal collision-free algorithm is designed and implemented practically based on an improved Dijkstra algorithm.To achieve this research objectives,first,the MR obstacle-free environment is modeled as a diagraph including nodes,edges and weights.Second,Dijkstra algorithm is used offline to generate the shortest path driving the MR from a starting point to a target point.During its movement,the robot should follow the previously obtained path and stop at each node to test if there is an obstacle between the current node and the immediately following node.For this aim,the MR was equipped with an ultrasonic sensor used as obstacle detector.If an obstacle is found,the MR updates its diagraph by excluding the corresponding node.Then,Dijkstra algorithm runs on the modified diagraph.This procedure is repeated until reaching the target point.To verify the efficiency of the proposed approach,a simulation was carried out on a hand-made MR and an environment including 9 nodes,19 edges and 2 obstacles.The obtained optimal path avoiding obstacles has been transferred into motion control and implemented practically using line tracking sensors.This study has shown that the improved Dijkstra algorithm can efficiently solve optimal path planning in environments including obstacles and that STEAM-based MRs are efficient cost-effective tools to practically implement the designed algorithm.展开更多
This paper deals with the problem of distributed formation tracking control and obstacle avoidance of multivehicle systems(MVSs)in complex obstacle-laden environments.The MVS under consideration consists of a leader v...This paper deals with the problem of distributed formation tracking control and obstacle avoidance of multivehicle systems(MVSs)in complex obstacle-laden environments.The MVS under consideration consists of a leader vehicle with an unknown control input and a group of follower vehicles,connected via a directed interaction topology,subject to simultaneous unknown heterogeneous nonlinearities and external disturbances.The central aim is to achieve effective and collisionfree formation tracking control for the nonlinear and uncertain MVS with obstacles encountered in formation maneuvering,while not demanding global information of the interaction topology.Toward this goal,a radial basis function neural network is used to model the unknown nonlinearity of vehicle dynamics in each vehicle and repulsive potentials are employed for obstacle avoidance.Furthermore,a scalable distributed adaptive formation tracking control protocol with a built-in obstacle avoidance mechanism is developed.It is proved that,with the proposed protocol,the resulting formation tracking errors are uniformly ultimately bounded and obstacle collision avoidance is guaranteed.Comprehensive simulation results are elaborated to substantiate the effectiveness and the promising collision avoidance performance of the proposed scalable adaptive formation control approach.展开更多
The flapping-wing air vehicle(FWAV)is a kind of bio-inspired robot whose wings can flap up and down like bird and insect wings.A vision-based obstacle avoidance method for FWAVs is proposed in this paper.First,the Far...The flapping-wing air vehicle(FWAV)is a kind of bio-inspired robot whose wings can flap up and down like bird and insect wings.A vision-based obstacle avoidance method for FWAVs is proposed in this paper.First,the Farneback algorithm is used to calculate the optical flow field of the first-view video frames taken by the on-board image transmission camera.Based on the optical flow information,a fuzzy obstacle avoidance controller is then designed to generate the FWAV steering commands.Experimental results show that the proposed obstacle avoidance method can accurately identify obstacles and achieve obstacle avoidance for FWAVs.展开更多
A super redundant serpentine manipulator has slender structure and multiple degrees of freedom.It can travel through narrow spaces and move in complex spaces.This manipulator is composed of many modules that can form ...A super redundant serpentine manipulator has slender structure and multiple degrees of freedom.It can travel through narrow spaces and move in complex spaces.This manipulator is composed of many modules that can form different lengths of robot arms for different application sites.The increase in degrees of freedom causes the inverse kinematics of redundant manipulator to be typical and immensely increases the calculation load in the joint space.This paper presents an integrated optimization method to solve the path planning for obstacle avoidance and discrete trajectory tracking of a super redundant manipulator.In this integrated optimization,path planning is established on a Bezier curve,and particle swarm optimization is adopted to adjust the control points of the Bezier curve with the kinematic constraints of manipulator.A feasible obstacle avoidance path is obtained along with a discrete trajectory tracking by using a follow-the-leader strategy.The relative distance between each two discrete path points is limited to reduce the fitting error of the connecting rigid links to the smooth curve.Simulation results show that this integrated optimization method can rapidly search for the appropriate trajectory to guide the manipulator in obtaining the target while achieving obstacle avoidance and meeting joint constraints.The proposed algorithm is suitable for 3D space obstacle avoidance and multitarget path tracking.展开更多
This paper presents a study on bioinspired closed-loop Central Pattern Generator(CPG)based control of a robot fish for obstacle avoidance and direction tracking.The biomimetic robot fish is made of a rigid head with a...This paper presents a study on bioinspired closed-loop Central Pattern Generator(CPG)based control of a robot fish for obstacle avoidance and direction tracking.The biomimetic robot fish is made of a rigid head with a pair of pectoral fins,a wire-driven active body covered with soft skin,and a compliant tail.The CPG model consists of four input parameters:the flapping amplitude,the flapping angular velocity,the flapping offset,and the time ratio between the beat phase and the restore phase in flapping.The robot fish is equipped with three infrared sensors mounted on the left,front and right of the robot fish,as well as an inertial measurement unit,from which the surrounding obstacles and moving direction can be sensed.Based on these sensor signals,the closed-loop CPG-based control can drive the robot fish to avoid obstacles and to track designated directions.Four sets of experiments are presented,including avoiding a static obstacle,avoiding a moving obstacle,tracking a designated direction and tracking a designated direction with an obstacle in the path.The experiment results indicated that the presented control strategy worked well and the robot fish can accomplish the obstacle avoidance and direction tracking effectively.展开更多
文摘This paper presents an optimisatiombased verification process for obstacle avoidance systems of a unicycle-like mobile robot. It is a novel approach for the collision avoidance verification process. Local and global optimisation based verification processes are developed to find the worst-case parameters and the worst-case distance between the robot and an obstacle. The kinematic and dynamic model of the unicycle-like mobile robot is first introduced with force and torque as the inputs. The design of the control system is split into two parts. One is velocity and rotation using the robot dynamics, and the other is the incremental motion planning for robot kinematics. The artificial potential field method is chosen as a path planning and obstacle avoidance candidate technique for verification study as it is simple and widely used. Different optimisation algorithms are applied and compared for the purpose of verification. It is shown that even for a simple case study where only mass and inertia variations are considered, a local optimization based verification method may fail to identify the worst case. Two global optimisation methods have been investigated: genetic algorithms (GAs) and GLOBAL algorithms. Both of these methods successfully find the worst case. The verification process confirms that the obstacle avoidance algorithm functions correctly in the presence of all the possible parameter variations.
基金supported by the National Natural Science Foundation of China(51875302)。
文摘The forward design of trajectory planning strategies requires preset trajectory optimization functions,resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajectories that conform to real driver behavior habits.In addition,owing to the strong time-varying dynamic characteristics of obstacle avoidance scenarios,it is necessary to design numerous trajectory optimization functions and adjust the corresponding parameters.Therefore,an anthropomorphic obstacle-avoidance trajectory planning strategy for adaptive driving scenarios is proposed.First,numerous expert-demonstrated trajectories are extracted from the HighD natural driving dataset.Subsequently,a trajectory expectation feature-matching algorithm is proposed that uses maximum entropy inverse reinforcement learning theory to learn the extracted expert-demonstrated trajectories and achieve automatic acquisition of the optimization function of the expert-demonstrated trajectory.Furthermore,a mapping model is constructed by combining the key driving scenario information that affects vehicle obstacle avoidance with the weight of the optimization function,and an anthropomorphic obstacle avoidance trajectory planning strategy for adaptive driving scenarios is proposed.Finally,the proposed strategy is verified based on real driving scenarios.The results show that the strategy can adjust the weight distribution of the trajectory optimization function in real time according to the“emergency degree”of obstacle avoidance and the state of the vehicle.Moreover,this strategy can generate anthropomorphic trajectories that are similar to expert-demonstrated trajectories,effectively improving the adaptability and acceptability of trajectories in driving scenarios.
基金the National Natural Science Foundation of China(51939001,52171292,51979020,61976033)Dalian Outstanding Young Talents Program(2022RJ05)+1 种基金the Topnotch Young Talents Program of China(36261402)the Liaoning Revitalization Talents Program(XLYC20-07188)。
文摘This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method.
基金This work was supported by the Postdoctoral Fund of FDCT,Macao(Grant No.0003/2021/APD).Any opinions,findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the sponsor.
文摘In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone to fall into the trap of local optimization.Therefore,this paper proposes an improved artificial potential field(APF)algorithm,which uses 5G communication technology to communicate between the USV and the control center.The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios.Considering the various scenarios between the USV and other dynamic obstacles such as vessels in the process of performing tasks,the algorithm introduces the concept of dynamic artificial potential field.For the multiple obstacles encountered in the process of USV sailing,based on the International Regulations for Preventing Collisions at Sea(COLREGS),the USV determines whether the next step will fall into local optimization through the discriminationmechanism.The local potential field of the USV will dynamically adjust,and the reverse virtual gravitational potential field will be added to prevent it from falling into the local optimization and avoid collisions.The objective function and cost function are designed at the same time,so that the USV can smoothly switch between the global path and the local obstacle avoidance.The simulation results show that the improved APF algorithm proposed in this paper can successfully avoid various obstacles in the complex marine environment,and take navigation time and economic cost into account.
基金supported by Xinjiang Uygur Autonomous Region Metrology and Testing Institute Project(Grant No.XJRIMT2022-5)Tianshan Talent Training Project-Xinjiang Science and Technology Innovation Team Program(2023TSYCTD0012).
文摘The importance of unmanned aerial vehicle(UAV)obstacle avoidance algorithms lies in their ability to ensure flight safety and collision avoidance,thereby protecting people and property.We propose UAD-YOLOv8,a lightweight YOLOv8-based obstacle detection algorithm optimized for UAV obstacle avoidance.The algorithm enhances the detection capability for small and irregular obstacles by removing the P5 feature layer and introducing deformable convolution v2(DCNv2)to optimize the cross stage partial bottleneck with 2 convolutions and fusion(C2f)module.Additionally,it reduces the model’s parameter count and computational load by constructing the unite ghost and depth-wise separable convolution(UGDConv)series of lightweight convolutions and a lightweight detection head.Based on this,we designed a visual obstacle avoidance algorithm that can improve the obstacle avoidance performance of UAVs in different environments.In particular,we propose an adaptive distance detection algorithm based on obstacle attributes to solve the ranging problem for multiple types and irregular obstacles to further enhance the UAV’s obstacle avoidance capability.To verify the effectiveness of the algorithm,the UAV obstacle detection(UAD)dataset was created.The experimental results show that UAD-YOLOv8 improves mAP50 by 3.4%and reduces GFLOPs by 34.5%compared to YOLOv8n while reducing the number of parameters by 77.4%and the model size by 73%.These improvements significantly enhance the UAV’s obstacle avoidance performance in complex environments,demonstrating its wide range of applications.
基金supported by the National High Technology Research and Development Program of China(Grant No.2011AA040103)the Research Foundationof Shanghai Institute of Technology,China(Grant No.B504)
文摘Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus algorithm. A novel distributed control model is proposed for the multi-agent system to form the anticipated formation as well as achieve obstacle avoidance. Based on the consensus algorithm, a distributed control function consisting of three terms (formation control term, velocity matching term, and obstacle avoidance term) is presented. By establishing a novel formation control matrix, a formation control term is constructed such that the agents can converge to consensus and reach the anticipated formation. A new obstacle avoidance function is developed by using the modified potential field approach to make sure that obstacle avoidance can be achieved whether the obstacle is in a dynamic state or a stationary state. A velocity matching term is also put forward to guarantee that the velocities of all agents converge to the same value. Furthermore, stability of the control model is proven. Simulation results are provided to demonstrate the effectiveness of the proposed control.
基金supported in part by the National Natural Science Foundation of China (62033009)the Creative Activity Plan for Science and Technology Commission of Shanghai (20510712300,21DZ2293500)the Supported by Science Foundation of Donghai Laboratory。
文摘In this paper, the fixed-time event-triggered obstacle avoidance consensus control for a multi-AUV time-varying formation system in a 3D environment is presented by using an improved artificial potential field and leader-follower strategy(IAPF-LF). Firstly, the proposed fixed-time control can achieve the desired multi-AUV formation within a fixed settling time in any initial system state. Secondly, an event-triggered communication strategy is developed to govern the communication among AUVs, and the communication energy consumption can be decremented. The time-varying formation obstacle avoidance control algorithm based on IAPF-LF is designed to avoid static and dynamic obstacles, the desired formation is maintained in the presence of external disturbances, and there is no Zeno behavior under the fixed-time event-triggered consensus control strategy.The stability of the system is proved by the Lyapunov function and inequality scaling. Finally, simulation examples and water pool experiments are reported to verify the performance of the proposed theoretical algorithms.
基金supported by National Natural Science Foundation(NNSF)of China under(Grant No.62273119)。
文摘A differential game guidance scheme with obstacle avoidance,based on the formulation of a combined linear quadratic and norm-bounded differential game,is designed for a three-player engagement scenario,which includes a pursuer,an interceptor,and an evader.The confrontation between the players is divided into four phases(P1-P4)by introducing the switching time,and proposing different guidance strategies according to the phase where the static obstacle is located:the linear quadratic game method is employed to devise the guidance scheme for the energy optimization when the obstacle is located in the P1 and P3 stages;the norm-bounded differential game guidance strategy is presented to satisfy the acceleration constraint under the circumstance that the obstacle is located in the P2 and P4 phases.Furthermore,the radii of the static obstacle and the interceptor are taken as the design parameters to derive the combined guidance strategy through the dead-zone function,which guarantees that the pursuer avoids the static obstacle,and the interceptor,and attacks the evader.Finally,the nonlinear numerical simulations verify the performance of the game guidance strategy.
基金supported by National Basic Research Program of China (973 Program) (No. 2010CB731800)Key Program of National Natural Science Foundation of China (No. 60934003)Key Project for Natural Science Research of Hebei Education Department(No. ZD200908)
文摘This paper considers the problems of target tracking and obstacle avoidance for multi-agent systems. To solve the problem that multiple agents cannot effectively track the target while avoiding obstacle in dynamic environment, a novel control algorithm based on potential function and behavior rules is proposed. Meanwhile, the interactions among agents are also considered. According to the state whether an agent is within the area of its neighbors' influence, two kinds of potential functions are presented. Meanwhile, the distributed control input of each agent is determined by relative velocities as well as relative positions among agents, target and obstacle. The maximum linear speed of the agents is also discussed. Finally, simulation studies are given to demonstrate the performance of the proposed algorithm.
基金supported by the National Key Research and the Development Program of China(2022YFC3803700)the National Natural Science Foundation of China(52202391 and U20A20155).
文摘Obstacle detection and platoon control for mixed traffic flows,comprising human-driven vehicles(HDVs)and connected and autonomous vehicles(CAVs),face challenges from uncertain disturbances,such as sensor faults,inaccurate driver operations,and mismatched model errors.Furthermore,misleading sensing information or malicious attacks in vehicular wireless networks can jeopardize CAVs’perception and platoon safety.In this paper,we develop a two-dimensional robust control method for a mixed platoon,including a single leading CAV and multiple following HDVs that incorpo-rate robust information sensing and platoon control.To effectively detect and locate unknown obstacles ahead of the leading CAV,we propose a cooperative vehicle-infrastructure sensing scheme and integrate it with an adaptive model predictive control scheme for the leading CAV.This sensing scheme fuses information from multiple nodes while suppressing malicious data from attackers to enhance robustness and attack resilience in a distributed and adaptive manner.Additionally,we propose a distributed car-following control scheme with robustness to guarantee the following HDVs,considering uncertain disturbances.We also provide theoretical proof of the string stability under this control framework.Finally,extensive simulations are conducted to validate our approach.The simulation results demonstrate that our method can effectively filter out misleading sensing information from malicious attackers,significantly reduce the mean-square deviation in obstacle sensing,and approach the theoretical error lower bound.Moreover,the proposed control method successfully achieves obstacle avoidance for the mixed platoon while ensuring stability and robustness in the face of external attacks and uncertain disturbances.
基金partly supported by National Key R&D Program of China(No.2018YFE0117500)National Natural Science Foundation of China(No.62171104)+2 种基金EU Horizon2020(824019),EU Horizon2020(101022280)Horizon Europe(101086228)the UK EPSRC(EP/Y027787/1)。
文摘Road obstacles that unexpectedly appear due to vehicle breakdowns and accidents are major causes of fatal road accidents.Connected Autonomous Vehicles(CAVs)can be used to avoid collisions to ensure road safety through cooperative sensing and driving.However,the collision avoidance performance of CAVs with unexpected obstacles has not been studied in the existing works.In this paper,we first design a platoon-based collision avoidance framework for CAVs.In this framework,we deploy a Digital Twin(DT)system at the head vehicle in a platoon to reduce communication overhead and decision-making delay based on a proposed trajectory planning scheme.In addition,a DT-assistant system is deployed on the assistant vehicle to monitor vehicles out of the sensing range of the head vehicle for the maintenance of the DT system.In this case,the transmission frequency of kinetic states of platoon members can be reduced to ensure low-overhead communication.Moreover,we design a variable resource reservation interval that can ensure DT synchronization between DT and the assistant system with high reliability.To further improve road safety,an urgency level-based trajectory planning algorithm is proposed to avoid unexpected obstacles considering different levels of emergency risks.Simulation results show that our DT system-based scheme can achieve significant performance gains in unexpected obstacle avoidance.Compared to the existing schemes,it can reduce collisions by 95%and is faster by about 10%passing by the unexpected obstacle.
基金Supported by National Natural Science Foundation of China (Grant Nos. 52072215, 52221005, 52272386)Beijing Municipal Natrual Science Foundation (Grant No. L243025)+2 种基金National Key R&D Program of China (Grant No. 2022YFB2503003)State Key Laboratory of Intelligent Green Vehicle and Mobilityfundamental Research Funds for the Central Universities
文摘Autonomous trucks have the potential to enhance both safety and convenience in intelligent transportation.However,their maximum speed and ability to navigate a variety of driving conditions,particularly uneven roads,are limited by a high center of gravity,which increases the risk of rollover.Road bulges,sinkholes,and unexpected debris all present additional challenges for autonomous trucks’operational design,which current perception and decisionmaking algorithms often overlook.To mitigate rollover risks and improve adaptability to damaged roads,this paper presents a novel Road Obstacle-Involved Trajectory Planner(ROITP).The planner categorizes road obstacles using a learning-based algorithm.A discrete optimization algorithm selects a multi-objective optimal trajectory while taking into account constraints and objective functions derived from truck dynamics.Validation across various scenarios on a hardware-in-loop platform demonstrates that the proposed planner is effective and feasible for real-time implementation.
文摘A robot intelligent path planning system RIPPS is developed, which can be utilized for a robot off line programming tool. The system consists of three parts: geometric modeler, kinematic modeler and path planer. The geometric modeler is used to construct the robot working environment cluttered with obstacles and the robot kinematic modeler to define robot manipulators by the input parameters. Giving robot start and the goal configurations, the path planer can produce a quasi optimal path. By transforming obstacles into the C space to form C obstacles, the path searching is performed in C space. The planning simulations are performed on a SGI workstation, the future research is to implement the planer on a commercial robot manipulators.
基金co-supported by the National Natural Science Foundation of China(Nos.61273349 and 61175109)the Aeronautical Science Foundation of China(Nos.2014ZA18004 and 2013ZA18001)
文摘A distributed coordination algorithm is proposed to enhance the engagement of the multi-missile network in consideration of obstacle avoidance. To achieve a cooperative interception, the guidance law is developed in a simple form that consists of three individual components for tar- get capture, time coordination and obstacle avoidance. The distributed coordination algorithm enables a group of interceptor missiles to reach the target simultaneously, even if some member in the multi-missile network can only collect the information from nearest neighbors. The simula- tion results show that the guidance strategy provides a feasible tool to implement obstacle avoid- ance for the multi-missile network with satisfactory accuracy of target capture. The effects of the gain parameters are also discussed to evaluate the proposed approach.
基金the support of the Zhejiang Lab(No.2019NB0AB04)National Natural Science Foundation of China(No.61903014)+1 种基金Aeronautical Science Foundation of China(No.20181751010)Fundamental Research Funds for the Central Universities,China。
文摘In this paper,a bio-inspired path planning algorithm in 3 D space is proposed.The algorithm imitates the basic mechanisms of plant growth,including phototropism,negative geotropism and branching.The algorithm proposed in this paper solves the dynamic obstacle avoidance path planning problem of Unmanned Aerial Vehicle(UAV)in the case of unknown environment maps.Compared with other path planning algorithms,the algorithm has the advantages of fast path planning speed and fewer route points,and can achieve the effect of low delay real-time path planning.The feasibility of the algorithm is verified in the Gazebo simulator based on the Robot Operating System(ROS)platform.Finally,an actual UAV autonomous obstacle avoidance path planning experimental platform is built,and a UAV obstacle avoidance path planning flight test is carried out based on this actual environment.
基金This research has been funded by Scientific Research Deanship at University of Ha’il–Saudi Arabia through Project Number BA-2107.
文摘Optimal path planning avoiding obstacles is among the most attractive applications of mobile robots(MRs)in both research and education.In this paper,an optimal collision-free algorithm is designed and implemented practically based on an improved Dijkstra algorithm.To achieve this research objectives,first,the MR obstacle-free environment is modeled as a diagraph including nodes,edges and weights.Second,Dijkstra algorithm is used offline to generate the shortest path driving the MR from a starting point to a target point.During its movement,the robot should follow the previously obtained path and stop at each node to test if there is an obstacle between the current node and the immediately following node.For this aim,the MR was equipped with an ultrasonic sensor used as obstacle detector.If an obstacle is found,the MR updates its diagraph by excluding the corresponding node.Then,Dijkstra algorithm runs on the modified diagraph.This procedure is repeated until reaching the target point.To verify the efficiency of the proposed approach,a simulation was carried out on a hand-made MR and an environment including 9 nodes,19 edges and 2 obstacles.The obtained optimal path avoiding obstacles has been transferred into motion control and implemented practically using line tracking sensors.This study has shown that the improved Dijkstra algorithm can efficiently solve optimal path planning in environments including obstacles and that STEAM-based MRs are efficient cost-effective tools to practically implement the designed algorithm.
文摘This paper deals with the problem of distributed formation tracking control and obstacle avoidance of multivehicle systems(MVSs)in complex obstacle-laden environments.The MVS under consideration consists of a leader vehicle with an unknown control input and a group of follower vehicles,connected via a directed interaction topology,subject to simultaneous unknown heterogeneous nonlinearities and external disturbances.The central aim is to achieve effective and collisionfree formation tracking control for the nonlinear and uncertain MVS with obstacles encountered in formation maneuvering,while not demanding global information of the interaction topology.Toward this goal,a radial basis function neural network is used to model the unknown nonlinearity of vehicle dynamics in each vehicle and repulsive potentials are employed for obstacle avoidance.Furthermore,a scalable distributed adaptive formation tracking control protocol with a built-in obstacle avoidance mechanism is developed.It is proved that,with the proposed protocol,the resulting formation tracking errors are uniformly ultimately bounded and obstacle collision avoidance is guaranteed.Comprehensive simulation results are elaborated to substantiate the effectiveness and the promising collision avoidance performance of the proposed scalable adaptive formation control approach.
基金This work was supported in part by the National Natural Science Foundation of China(Nos.61803025,62073031)the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities)(No.FRF-IDRY-19010)the Beijing Top Discipline for Artificial Intelligent Science and Engineering,University of Science and Technology Beijing.
文摘The flapping-wing air vehicle(FWAV)is a kind of bio-inspired robot whose wings can flap up and down like bird and insect wings.A vision-based obstacle avoidance method for FWAVs is proposed in this paper.First,the Farneback algorithm is used to calculate the optical flow field of the first-view video frames taken by the on-board image transmission camera.Based on the optical flow information,a fuzzy obstacle avoidance controller is then designed to generate the FWAV steering commands.Experimental results show that the proposed obstacle avoidance method can accurately identify obstacles and achieve obstacle avoidance for FWAVs.
基金Supported by National Natural Science Foundation of China(Grant No.61733017)Foundation of State Key Laboratory of Robotics of China(Grant No.2018O13)Shanghai Pujiang Program of China(Grant No.18PJD018).
文摘A super redundant serpentine manipulator has slender structure and multiple degrees of freedom.It can travel through narrow spaces and move in complex spaces.This manipulator is composed of many modules that can form different lengths of robot arms for different application sites.The increase in degrees of freedom causes the inverse kinematics of redundant manipulator to be typical and immensely increases the calculation load in the joint space.This paper presents an integrated optimization method to solve the path planning for obstacle avoidance and discrete trajectory tracking of a super redundant manipulator.In this integrated optimization,path planning is established on a Bezier curve,and particle swarm optimization is adopted to adjust the control points of the Bezier curve with the kinematic constraints of manipulator.A feasible obstacle avoidance path is obtained along with a discrete trajectory tracking by using a follow-the-leader strategy.The relative distance between each two discrete path points is limited to reduce the fitting error of the connecting rigid links to the smooth curve.Simulation results show that this integrated optimization method can rapidly search for the appropriate trajectory to guide the manipulator in obtaining the target while achieving obstacle avoidance and meeting joint constraints.The proposed algorithm is suitable for 3D space obstacle avoidance and multitarget path tracking.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(class A)(Grant No.XDA22040203)the Fundamental Research Funds for the Central Universities(Grant No.2019XX01)+1 种基金GDNRC[2020]031the Natural Science Foundation of Guangdong Province(Grant No.2020A1515010621).
文摘This paper presents a study on bioinspired closed-loop Central Pattern Generator(CPG)based control of a robot fish for obstacle avoidance and direction tracking.The biomimetic robot fish is made of a rigid head with a pair of pectoral fins,a wire-driven active body covered with soft skin,and a compliant tail.The CPG model consists of four input parameters:the flapping amplitude,the flapping angular velocity,the flapping offset,and the time ratio between the beat phase and the restore phase in flapping.The robot fish is equipped with three infrared sensors mounted on the left,front and right of the robot fish,as well as an inertial measurement unit,from which the surrounding obstacles and moving direction can be sensed.Based on these sensor signals,the closed-loop CPG-based control can drive the robot fish to avoid obstacles and to track designated directions.Four sets of experiments are presented,including avoiding a static obstacle,avoiding a moving obstacle,tracking a designated direction and tracking a designated direction with an obstacle in the path.The experiment results indicated that the presented control strategy worked well and the robot fish can accomplish the obstacle avoidance and direction tracking effectively.