This paper addresses the problems of input-to-state stabilization and integral input-to-state stabilization for a class of nonlinear impulsive delayed systems subject to exogenous dis-turbances.Since the information o...This paper addresses the problems of input-to-state stabilization and integral input-to-state stabilization for a class of nonlinear impulsive delayed systems subject to exogenous dis-turbances.Since the information of plant’s states,time delays,and exogenous disturbances is often hard to be obtained,the key design challenge,which we resolve,is the construction of a state observer-based controller.For this purpose,we firstly propose a corresponding observer which is independent of time delays and exogenous disturbances to reconstruct(or estimate)the plant’s states.And then based on the observations,we establish an observer-based control design for the plant to achieve the input-to-state stability(ISS)and integral-ISS(iISS)properties.With the help of the comparison principle and average impulse interval approach,some sufficient conditions are presented,and moreover,two different linear matrix inequalities(LMIs)based criteria are proposed to design the gain matrices.Finally,two numerical examples and their simulations are given to show the effectiveness of our theoretical results.展开更多
In this paper,a data-driven method for disturbance estimation and rejection is presented.The proposed approach is divided into two stages:an inner stabilization loop,to set the desired reference model,together with an...In this paper,a data-driven method for disturbance estimation and rejection is presented.The proposed approach is divided into two stages:an inner stabilization loop,to set the desired reference model,together with an outer loop for disturbance estimation and compensation.Inspired by the active disturbance rejection control framework,the exogenous and endogenous disturbances are lumped into a lotal disturbance signal.This signal is estimaed using an on-line algorithm based on a data-driven predictor scheme,whose parameters are chosen Io salisfy high robustnessperformance criteria.The above process is presented as a novel enhancement lo design a disturbance observer,w hich constitutes the main contribution of the paper.In addition,the control strategy is completely presented in discrete time,avoiding the use of discretization methods for its digital implementation.As a case study,the voltage control of a DC-DC synchronous buck converter aflected by disturbances in the input voltage and the load is considered.Finally,experimental results that validate the proposed stralegy and some comparisons with the classical disturbance observer-based control are presented.展开更多
This paper investigates the event-triggered security consensus problem for nonlinear multi-agent systems(MASs)under denial-of-service(Do S)attacks over an undirected graph.A novel adaptive memory observer-based anti-d...This paper investigates the event-triggered security consensus problem for nonlinear multi-agent systems(MASs)under denial-of-service(Do S)attacks over an undirected graph.A novel adaptive memory observer-based anti-disturbance control scheme is presented to improve the observer accuracy by adding a buffer for the system output measurements.Meanwhile,this control scheme can also provide more reasonable control signals when Do S attacks occur.To save network resources,an adaptive memory event-triggered mechanism(AMETM)is also proposed and Zeno behavior is excluded.It is worth mentioning that the AMETM's updates do not require global information.Then,the observer and controller gains are obtained by using the linear matrix inequality(LMI)technique.Finally,simulation examples show the effectiveness of the proposed control scheme.展开更多
This paper presents a nonlinear observer-based control design approach for gasoline engines equipped with exhaust gas recirculation (EGR) system. A mean value engine model is designed for control which includes both t...This paper presents a nonlinear observer-based control design approach for gasoline engines equipped with exhaust gas recirculation (EGR) system. A mean value engine model is designed for control which includes both the in take manifold and exhaust manifold dynamic focused on gas mass flows. Then, the nonlinear feedback controller based on the developed model is designed for the state tracking control, and the stability of the close loop system is guaranteed by a constructed Lyapunov function. Since the exhaust manifold pressure is usually unmeasurable in the production engines, a nonlinear observer-based feedback controller is proposed by using standard sensors equipped on the engine, and the asymptotic stability of the both observer dynamic system and control dynamic system are guaranteed with Lyapunov design assisted by the detail analysis of the model. The experimental validations show that the observer-based nonlinear feedback controller is able to regulate the in take pressure and exhaust pressure state to the desired values during both the steady-state and transient conditions quickly by only using the standard sensors.展开更多
This paper addresses the attitude control problem of a space tethered robot platform in the presence of unknown external disturbance caused by a connecting elastic tether. The tethergenerated unknown disturbance leads...This paper addresses the attitude control problem of a space tethered robot platform in the presence of unknown external disturbance caused by a connecting elastic tether. The tethergenerated unknown disturbance leads to tremendous challenges for attitude control of the platform.In this work, the perturbed attitude dynamics of the platform are derived with a consideration of the libration of the elastic tether, and then with the purpose of compensating the unknown disturbance, major attention is dedicated to develop a nonlinear disturbance observer based on gyros measurements, after which, an adaptive attitude scheme is proposed by combining the disturbance observer with a sliding mode controller. Finally, benefits from the observer based on an adaptive controller are validated by series of numerical simulations.展开更多
The development of iterative learning control combined with disturbance-observer-based(DOB)control for the digital low-level radio frequency(LLRF)system of the International Linear Collider project is presented.The ob...The development of iterative learning control combined with disturbance-observer-based(DOB)control for the digital low-level radio frequency(LLRF)system of the International Linear Collider project is presented.The objective of this study is to compensate for both repetitive(or predictable)and unpredictable disturbances in a radio frequency system(e.g.,beam loading,Lorentz force detuning,and microphonics).The DOB control approach was verified using the LLRF system at the Superconducting Test Facility(STF)at KEK in the absence of a beam.The method comprising DOB control combined with an iterative learning control algorithm was then demonstrated in a cavity-simulator-based test bench,where a simulated beam was available.The results showed that the performance of the LLRF system was improved,as expected by this combined control approach.We plan to further generalize this approach to LLRF systems at the STF and the future International Linear Collider project.展开更多
This paper presents a novel observer-based controller for a class of nonlinear multi-agent robot models using the high order sliding mode consensus protocol. In many applications, demand for autonomous vehicles is gro...This paper presents a novel observer-based controller for a class of nonlinear multi-agent robot models using the high order sliding mode consensus protocol. In many applications, demand for autonomous vehicles is growing;omnidirectional wheeled robots are suggested to meet this demand. They are flexible, fast, and autonomous, able to find the best direction and can move on an optional path at any time. Multi-agent omnidirectional wheeled robot(MOWR) systems consist of several similar or different robots and there are multiple different interactions between their agents, thus the MOWR systems have complex dynamics. Hence, designing a robust reliable controller for the nonlinear MOWR operations is considered an important obstacles in the science of the control design. A high order sliding mode is selected in this work that is a suitable technique for implementing a robust controller for nonlinear complex dynamics models. Furthermore, the proposed method ensures all signals involved in the multi-agent system(MAS) are uniformly ultimately bounded and the system is robust against the external disturbances and uncertainties. Theoretical analysis of candidate Lyapunov functions has been presented to depict the stability of the overall MAS, the convergence of observer and tracking error to zero, and the reduction of the chattering phenomena. In order to illustrate the promising performance of the methodology, the observer is applied to two nonlinear dynamic omnidirectional wheeled robots. The results display the meritorious performance of the scheme.展开更多
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype...This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.展开更多
This paper proposes an autonomous finite-time disturbance observer-based control(FTDOBC)scheme to simultaneously achieve speed/frequency regulation and dynamic power compensation.The proposed approach is designed for ...This paper proposes an autonomous finite-time disturbance observer-based control(FTDOBC)scheme to simultaneously achieve speed/frequency regulation and dynamic power compensation.The proposed approach is designed for a standalone micro turbine generation system operating under aerospace power demands.Unlike centralized architectures relying on real-time communication between subsystems,the proposed method embeds finite-time disturbance observers(FTDOs)into each dynamic stage of the micro turbine(MT)model.It enables independent estimation and compensation of mismatched/matched disturbances(e.g.,load power fluctuations,system uncertainties).Then,the composite controller is finally designed by the estimates of local FTDOs and the state feedback control law.Theoretical analysis proves that the FTDOBC method guarantees the finite-time convergence of dynamic power estimation and the asymptotically convergence of speed tracking errors.Simulations demonstrate that the proposed method can maintain the speed/frequency at the reference value rapidly,even under the demand of ramped and step load power.It also reveals that the demand power load is compensated rapidly by the proposed method.By capacitating a single MT to autonomously balance frequency stability and dynamic power demand,this work provides a foundational control paradigm for future distributed aviation energy systems.展开更多
The target tracking performance of the coarse pointing assembly(CPA) is a critical factor in determining the data transmission efficiency of the inter-satellite laser communication. However, under the influence of mul...The target tracking performance of the coarse pointing assembly(CPA) is a critical factor in determining the data transmission efficiency of the inter-satellite laser communication. However, under the influence of multiple disturbances, such as gimbal coupling torque, friction, and satellite-transmitted vibration, the angle tracking performance of the CPA can be decreased,which then affects the safety of the system in terms of angular velocity. To address the performance and safety requirements of the CPA, this paper proposes a refined metamodel disturbance observer-based state constraints controller. First, a refined metamodel disturbance observer is proposed to achieve accurate disturbance estimation by combining the data-driven state-space Kriging metamodeling method with a refined disturbance observer. Both disturbance numerical data and partially known information(e.g. vibration frequency and structure)are fully utilized to reduce estimation conservatism. Second, based on the observer, a state constraint controller is designed to ensure the angle tracking performance and angular velocity constraints. Finally, the effectiveness and robustness of the proposed control method are validated through numerical simulations, indicating an enhanced angle tracking performance compared to the traditional disturbance observer-based control method.展开更多
We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that prov...We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.展开更多
This paper is concerned with the problem of observer-based controller design for singular stochastic Markov jump systems with state-dependent noise. Two concepts called "non-impulsiveness"and "mean squa...This paper is concerned with the problem of observer-based controller design for singular stochastic Markov jump systems with state-dependent noise. Two concepts called "non-impulsiveness"and "mean square admissibility" are introduced, which are different from previous ones. Sufficient conditions for the open-and closed-loop singular stochastic Markov jump systems with state-dependent noise to be mean square admissible are provided in terms of strict LMIs. The controller gain and the observer gain which guarantee the resulting closed-loop error system to be mean square admissible are obtained in turn by solving the strict LMIs. A numerical example is presented to show the efficiency of the design approach.展开更多
This paper investigates the problem of path tracking control for autonomous ground vehicles(AGVs),where the input saturation,system nonlinearities and uncertainties are considered.Firstly,the nonlinear path tracking s...This paper investigates the problem of path tracking control for autonomous ground vehicles(AGVs),where the input saturation,system nonlinearities and uncertainties are considered.Firstly,the nonlinear path tracking system is formulated as a linear parameter varying(LPV)model where the variation of vehicle velocity is taken into account.Secondly,considering the noise effects on the measurement of lateral offset and heading angle,an observer-based control strategy is proposed,and by analyzing the frequency domain characteristics of the derivative of desired heading angle,a finite frequency H_∞index is proposed to attenuate the effects of the derivative of desired heading angle on path tracking error.Thirdly,sufficient conditions are derived to guarantee robust H_∞performance of the path tracking system,and the calculation of observer and controller gains is converted into solving a convex optimization problem.Finally,simulation examples verify the advantages of the control method proposed in this paper.展开更多
In this paper,observer-based control for fractional-order singular systems with orderα(0<α<1)and input delay is studied.On the basis of the Smith predictor and approximation error,the system with input delay i...In this paper,observer-based control for fractional-order singular systems with orderα(0<α<1)and input delay is studied.On the basis of the Smith predictor and approximation error,the system with input delay is approximately equivalent to the system without input delay.Furthermore,based on the linear matrix inequality(LMI)technique,the necessary and sufficient condition of observer-based control is proposed.Since the condition is a nonstrict LMI,including the equality constraint,it will lead to some trouble when solving problems using toolbox.Thus,the strict LMI-based condition is improved in the paper.Finally,a numerical example and a direct current motor example are given to illustrate the effectiveness of the strict LMI-based condition.展开更多
This article concerns a coupled LMIs approach to delay-dependent observer-based output feedback stabilizing controller design for linear continuous-time systems with multiple state delays. The advantage of our propose...This article concerns a coupled LMIs approach to delay-dependent observer-based output feedback stabilizing controller design for linear continuous-time systems with multiple state delays. The advantage of our proposed delay-dependent coupled LMIs criterion lies in that: ( 1 ) it can optimize one of multiple time delays with others selected properly, and at the same time, the feedback-gain and observer-gain can be obtained, respectively. (2) it is less conservative than the existing delay-independent ones in the literature. Algorithm to solve the coupled LMIs is also given. Numerical examples illustrate the effectiveness of our method. Keywords Delay-dependent criterion - Time-delay system - Multiple time-delay - Observer-based controller - Linear matrixinequality (LMI)展开更多
This paper investigates the finite-time H_(∞)control problem for a class of nonlinear discrete-time one-sided Lipschitz systems with uncertainties.Using the one-sided Lipschitz and quadratically inner-bounded conditi...This paper investigates the finite-time H_(∞)control problem for a class of nonlinear discrete-time one-sided Lipschitz systems with uncertainties.Using the one-sided Lipschitz and quadratically inner-bounded conditions,the authors derive less conservative criterion for the controller design and observer design.A new criterion is proposed to ensure the closed-loop system is finite-time bounded(FTB).The sufficient conditions are established to ensure the closed-loop system is H_(∞)finite-time bounded(H_(∞)FTB)in terms of matrix inequalities.The controller gains and observer gains are given.A numerical example is provided to demonstrate the effectiveness of the proposed results.展开更多
This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theor...This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.展开更多
An observer-based adaptive fuzzy control is presented for a class of nonlinear systems with unknown time delays. The state observer is first designed, and then the controller is designed via the adaptive fuzzy control...An observer-based adaptive fuzzy control is presented for a class of nonlinear systems with unknown time delays. The state observer is first designed, and then the controller is designed via the adaptive fuzzy control method based on the observed states. Both the designed observer and controller are independent of time delays. Using an appropriate Lyapunov-Krasovskii functional, the uncertainty of the unknown time delay is compensated, and then the fuzzy logic system in Mamdani type is utilized to approximate the unknown nonlinear functions. Based on the Lyapunov stability theory, the constructed observer-based controller and the closed-loop system are proved to be asymptotically stable. The designed control law is independent of the time delays and has a simple form with only one adaptive parameter vector, which is to be updated on-line. Simulation results are presented to demonstrate the effectiveness of the proposed approach.展开更多
基金This work was supported by the National Natural Science Foundation of China(62173215)Major Basic Research Program of the Natural Science Foundation of Shandong Province in China(ZR2021ZD04,ZR2020ZD24)the Support Plan for Outstanding Youth Innovation Team in Shandong Higher Education Institutions(2019KJI008).
文摘This paper addresses the problems of input-to-state stabilization and integral input-to-state stabilization for a class of nonlinear impulsive delayed systems subject to exogenous dis-turbances.Since the information of plant’s states,time delays,and exogenous disturbances is often hard to be obtained,the key design challenge,which we resolve,is the construction of a state observer-based controller.For this purpose,we firstly propose a corresponding observer which is independent of time delays and exogenous disturbances to reconstruct(or estimate)the plant’s states.And then based on the observations,we establish an observer-based control design for the plant to achieve the input-to-state stability(ISS)and integral-ISS(iISS)properties.With the help of the comparison principle and average impulse interval approach,some sufficient conditions are presented,and moreover,two different linear matrix inequalities(LMIs)based criteria are proposed to design the gain matrices.Finally,two numerical examples and their simulations are given to show the effectiveness of our theoretical results.
文摘In this paper,a data-driven method for disturbance estimation and rejection is presented.The proposed approach is divided into two stages:an inner stabilization loop,to set the desired reference model,together with an outer loop for disturbance estimation and compensation.Inspired by the active disturbance rejection control framework,the exogenous and endogenous disturbances are lumped into a lotal disturbance signal.This signal is estimaed using an on-line algorithm based on a data-driven predictor scheme,whose parameters are chosen Io salisfy high robustnessperformance criteria.The above process is presented as a novel enhancement lo design a disturbance observer,w hich constitutes the main contribution of the paper.In addition,the control strategy is completely presented in discrete time,avoiding the use of discretization methods for its digital implementation.As a case study,the voltage control of a DC-DC synchronous buck converter aflected by disturbances in the input voltage and the load is considered.Finally,experimental results that validate the proposed stralegy and some comparisons with the classical disturbance observer-based control are presented.
基金supported by the National Natural Science Foundation of China(61773056)the Scientific and Technological Innovation Foundation of Shunde Graduate School,University of Science and Technology Beijing(USTB)(BK19AE018)+2 种基金the Fundamental Research Funds for the Central Universities of USTB(FRF-TP-20-09B,230201606500061,FRF-DF-20-35,FRF-BD-19-002A)supported by Zhejiang Natural Science Foundation(LD21F030001)supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(Ministry of Science and Information and Communications Technology)(NRF-2020R1A2C1005449)。
文摘This paper investigates the event-triggered security consensus problem for nonlinear multi-agent systems(MASs)under denial-of-service(Do S)attacks over an undirected graph.A novel adaptive memory observer-based anti-disturbance control scheme is presented to improve the observer accuracy by adding a buffer for the system output measurements.Meanwhile,this control scheme can also provide more reasonable control signals when Do S attacks occur.To save network resources,an adaptive memory event-triggered mechanism(AMETM)is also proposed and Zeno behavior is excluded.It is worth mentioning that the AMETM's updates do not require global information.Then,the observer and controller gains are obtained by using the linear matrix inequality(LMI)technique.Finally,simulation examples show the effectiveness of the proposed control scheme.
文摘This paper presents a nonlinear observer-based control design approach for gasoline engines equipped with exhaust gas recirculation (EGR) system. A mean value engine model is designed for control which includes both the in take manifold and exhaust manifold dynamic focused on gas mass flows. Then, the nonlinear feedback controller based on the developed model is designed for the state tracking control, and the stability of the close loop system is guaranteed by a constructed Lyapunov function. Since the exhaust manifold pressure is usually unmeasurable in the production engines, a nonlinear observer-based feedback controller is proposed by using standard sensors equipped on the engine, and the asymptotic stability of the both observer dynamic system and control dynamic system are guaranteed with Lyapunov design assisted by the detail analysis of the model. The experimental validations show that the observer-based nonlinear feedback controller is able to regulate the in take pressure and exhaust pressure state to the desired values during both the steady-state and transient conditions quickly by only using the standard sensors.
基金supported by the National Natural Science Foundation of China (11102018)
文摘This paper addresses the attitude control problem of a space tethered robot platform in the presence of unknown external disturbance caused by a connecting elastic tether. The tethergenerated unknown disturbance leads to tremendous challenges for attitude control of the platform.In this work, the perturbed attitude dynamics of the platform are derived with a consideration of the libration of the elastic tether, and then with the purpose of compensating the unknown disturbance, major attention is dedicated to develop a nonlinear disturbance observer based on gyros measurements, after which, an adaptive attitude scheme is proposed by combining the disturbance observer with a sliding mode controller. Finally, benefits from the observer based on an adaptive controller are validated by series of numerical simulations.
文摘The development of iterative learning control combined with disturbance-observer-based(DOB)control for the digital low-level radio frequency(LLRF)system of the International Linear Collider project is presented.The objective of this study is to compensate for both repetitive(or predictable)and unpredictable disturbances in a radio frequency system(e.g.,beam loading,Lorentz force detuning,and microphonics).The DOB control approach was verified using the LLRF system at the Superconducting Test Facility(STF)at KEK in the absence of a beam.The method comprising DOB control combined with an iterative learning control algorithm was then demonstrated in a cavity-simulator-based test bench,where a simulated beam was available.The results showed that the performance of the LLRF system was improved,as expected by this combined control approach.We plan to further generalize this approach to LLRF systems at the STF and the future International Linear Collider project.
文摘This paper presents a novel observer-based controller for a class of nonlinear multi-agent robot models using the high order sliding mode consensus protocol. In many applications, demand for autonomous vehicles is growing;omnidirectional wheeled robots are suggested to meet this demand. They are flexible, fast, and autonomous, able to find the best direction and can move on an optional path at any time. Multi-agent omnidirectional wheeled robot(MOWR) systems consist of several similar or different robots and there are multiple different interactions between their agents, thus the MOWR systems have complex dynamics. Hence, designing a robust reliable controller for the nonlinear MOWR operations is considered an important obstacles in the science of the control design. A high order sliding mode is selected in this work that is a suitable technique for implementing a robust controller for nonlinear complex dynamics models. Furthermore, the proposed method ensures all signals involved in the multi-agent system(MAS) are uniformly ultimately bounded and the system is robust against the external disturbances and uncertainties. Theoretical analysis of candidate Lyapunov functions has been presented to depict the stability of the overall MAS, the convergence of observer and tracking error to zero, and the reduction of the chattering phenomena. In order to illustrate the promising performance of the methodology, the observer is applied to two nonlinear dynamic omnidirectional wheeled robots. The results display the meritorious performance of the scheme.
基金supported by the National Natural Science Foundation of China(12072090).
文摘This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.
文摘This paper proposes an autonomous finite-time disturbance observer-based control(FTDOBC)scheme to simultaneously achieve speed/frequency regulation and dynamic power compensation.The proposed approach is designed for a standalone micro turbine generation system operating under aerospace power demands.Unlike centralized architectures relying on real-time communication between subsystems,the proposed method embeds finite-time disturbance observers(FTDOs)into each dynamic stage of the micro turbine(MT)model.It enables independent estimation and compensation of mismatched/matched disturbances(e.g.,load power fluctuations,system uncertainties).Then,the composite controller is finally designed by the estimates of local FTDOs and the state feedback control law.Theoretical analysis proves that the FTDOBC method guarantees the finite-time convergence of dynamic power estimation and the asymptotically convergence of speed tracking errors.Simulations demonstrate that the proposed method can maintain the speed/frequency at the reference value rapidly,even under the demand of ramped and step load power.It also reveals that the demand power load is compensated rapidly by the proposed method.By capacitating a single MT to autonomously balance frequency stability and dynamic power demand,this work provides a foundational control paradigm for future distributed aviation energy systems.
基金supported by the Project of China Aerospace Science and Technology Corporation under Grant YF-ZZYF-2022-088
文摘The target tracking performance of the coarse pointing assembly(CPA) is a critical factor in determining the data transmission efficiency of the inter-satellite laser communication. However, under the influence of multiple disturbances, such as gimbal coupling torque, friction, and satellite-transmitted vibration, the angle tracking performance of the CPA can be decreased,which then affects the safety of the system in terms of angular velocity. To address the performance and safety requirements of the CPA, this paper proposes a refined metamodel disturbance observer-based state constraints controller. First, a refined metamodel disturbance observer is proposed to achieve accurate disturbance estimation by combining the data-driven state-space Kriging metamodeling method with a refined disturbance observer. Both disturbance numerical data and partially known information(e.g. vibration frequency and structure)are fully utilized to reduce estimation conservatism. Second, based on the observer, a state constraint controller is designed to ensure the angle tracking performance and angular velocity constraints. Finally, the effectiveness and robustness of the proposed control method are validated through numerical simulations, indicating an enhanced angle tracking performance compared to the traditional disturbance observer-based control method.
基金Project supported by the National Natural Science Foundation of China (Grant No.62073045)。
文摘We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.
基金supported by the National Natural Science Foundation of China under Grant No.61573227the Research Fund for the Taishan Scholar Project of Shandong Province of China+1 种基金the SDUST Research Fund No.2015TDJH105the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources under Grant No.LAPS16011
文摘This paper is concerned with the problem of observer-based controller design for singular stochastic Markov jump systems with state-dependent noise. Two concepts called "non-impulsiveness"and "mean square admissibility" are introduced, which are different from previous ones. Sufficient conditions for the open-and closed-loop singular stochastic Markov jump systems with state-dependent noise to be mean square admissible are provided in terms of strict LMIs. The controller gain and the observer gain which guarantee the resulting closed-loop error system to be mean square admissible are obtained in turn by solving the strict LMIs. A numerical example is presented to show the efficiency of the design approach.
基金supported by the National Natural Science Foundation of China(62173029,62273033,U20A20225)the Fundamental Research Funds for the Central Universities,China(FRF-BD-19-002A)。
文摘This paper investigates the problem of path tracking control for autonomous ground vehicles(AGVs),where the input saturation,system nonlinearities and uncertainties are considered.Firstly,the nonlinear path tracking system is formulated as a linear parameter varying(LPV)model where the variation of vehicle velocity is taken into account.Secondly,considering the noise effects on the measurement of lateral offset and heading angle,an observer-based control strategy is proposed,and by analyzing the frequency domain characteristics of the derivative of desired heading angle,a finite frequency H_∞index is proposed to attenuate the effects of the derivative of desired heading angle on path tracking error.Thirdly,sufficient conditions are derived to guarantee robust H_∞performance of the path tracking system,and the calculation of observer and controller gains is converted into solving a convex optimization problem.Finally,simulation examples verify the advantages of the control method proposed in this paper.
基金Project supported by the National Natural Science Foundation of China(Nos.U1813210,62027812,and 62273185)。
文摘In this paper,observer-based control for fractional-order singular systems with orderα(0<α<1)and input delay is studied.On the basis of the Smith predictor and approximation error,the system with input delay is approximately equivalent to the system without input delay.Furthermore,based on the linear matrix inequality(LMI)technique,the necessary and sufficient condition of observer-based control is proposed.Since the condition is a nonstrict LMI,including the equality constraint,it will lead to some trouble when solving problems using toolbox.Thus,the strict LMI-based condition is improved in the paper.Finally,a numerical example and a direct current motor example are given to illustrate the effectiveness of the strict LMI-based condition.
文摘This article concerns a coupled LMIs approach to delay-dependent observer-based output feedback stabilizing controller design for linear continuous-time systems with multiple state delays. The advantage of our proposed delay-dependent coupled LMIs criterion lies in that: ( 1 ) it can optimize one of multiple time delays with others selected properly, and at the same time, the feedback-gain and observer-gain can be obtained, respectively. (2) it is less conservative than the existing delay-independent ones in the literature. Algorithm to solve the coupled LMIs is also given. Numerical examples illustrate the effectiveness of our method. Keywords Delay-dependent criterion - Time-delay system - Multiple time-delay - Observer-based controller - Linear matrixinequality (LMI)
基金supported by the Natural Science Foundation of Tianjin under Grant No.18JCYBJC88000.
文摘This paper investigates the finite-time H_(∞)control problem for a class of nonlinear discrete-time one-sided Lipschitz systems with uncertainties.Using the one-sided Lipschitz and quadratically inner-bounded conditions,the authors derive less conservative criterion for the controller design and observer design.A new criterion is proposed to ensure the closed-loop system is finite-time bounded(FTB).The sufficient conditions are established to ensure the closed-loop system is H_(∞)finite-time bounded(H_(∞)FTB)in terms of matrix inequalities.The controller gains and observer gains are given.A numerical example is provided to demonstrate the effectiveness of the proposed results.
基金supported by the National Nature Science Foundation of China(61304223)the Aeronautical Science Foundation of China(2016ZA52009)the Research Fund for the Doctoral Program of Higher Education of China(20123218120015)
基金supported by the National Natural Science Foundation of China(Grant Nos.52272358 and 62103052)。
文摘This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.
文摘An observer-based adaptive fuzzy control is presented for a class of nonlinear systems with unknown time delays. The state observer is first designed, and then the controller is designed via the adaptive fuzzy control method based on the observed states. Both the designed observer and controller are independent of time delays. Using an appropriate Lyapunov-Krasovskii functional, the uncertainty of the unknown time delay is compensated, and then the fuzzy logic system in Mamdani type is utilized to approximate the unknown nonlinear functions. Based on the Lyapunov stability theory, the constructed observer-based controller and the closed-loop system are proved to be asymptotically stable. The designed control law is independent of the time delays and has a simple form with only one adaptive parameter vector, which is to be updated on-line. Simulation results are presented to demonstrate the effectiveness of the proposed approach.