The high-temperature dissolution behavior of primary carbides in samples taken from GCr15 continuous-casting bloom was observed in-situ by confocal laser scanning microscopy.Equations were fitted to the dissolution ki...The high-temperature dissolution behavior of primary carbides in samples taken from GCr15 continuous-casting bloom was observed in-situ by confocal laser scanning microscopy.Equations were fitted to the dissolution kinetics of primary carbides during either heating or soaking.Dissolution of carbides proceeded in three stages(fast→slow→faster)as either temperature or holding time was increased.During the heating process and during the first and third stages of the soaking process,the original size of the carbides determined the steepness of the slope,but during the middle(“slow”)stage of the soaking process,the slope remained zero.The initial size of the carbides varied greatly,but their final dissolution temperature fell within the narrow range of 1210-1235℃,and the holding time remained within 50 min.Fractal analysis was used to study the morphological characteristics of small and medium-sized carbides during the dissolution process.According to changes in the fractal dimension before and after soaking,the carbides tended to evolve towards a more regular morphology.展开更多
The characteristics of nonmetallic inclusions formed during steel production have a significant influence on steel performance.In this paper,studies on inclusions using confocal scanning laser microscopy(CSLM)are revi...The characteristics of nonmetallic inclusions formed during steel production have a significant influence on steel performance.In this paper,studies on inclusions using confocal scanning laser microscopy(CSLM)are reviewed and summarized,particularly the col-lision of various inclusions,dissolution of inclusions in liquid slag,and reactions between inclusions and steel.Solid inclusions exhibited a high collision tendency,whereas pure liquid inclusions exhibited minimal collisions because of the small attraction force induced by their<90°contact angle with molten steel.The collision of complex inclusions in molten steel was not included in the scope of this study and should be evaluated in future studies.Higher CaO/Al_(2)O_(3)and CaO/SiO_(2)ratios in liquid slag promoted the dissolution of Al_(2)O_(3)-based in-clusions.The formation of solid phases in the slag should be prevented to improve dissolution of inclusions.To accurately simulate the dissolution of inclusions in liquid slag,in-situ observation of the dissolution of inclusions at the steel-slag interface is necessary.Using a combination of CSLM and scanning electron microscopy-energy dispersive spectroscopy,the composition and morphological evolution of the inclusions during their modification by the dissolved elements in steel were observed and analyzed.Although the in-situ observa-tion of MnS and TiN precipitations has been widely studied,the in-situ observation of the evolution of oxide inclusions in steel during so-lidification and heating processes has rarely been reported.The effects of temperature,heating and cooling rates,and inclusion character-istics on the formation of acicular ferrites(AFs)have been widely studied.At a cooling rate of 3-5 K/s,the order of AF growth rate in-duced by different inclusions,as reported in literature,is Ti-O<Ti-Ca-Zr-Al-O<Mg-O<Ti-Zr-Al-O<Mn-Ti-Al-O<Ti-Al-O<Zr-Ti-Al-O.Further comprehensive experiments are required to investigate the quantitative relationship between the formation of AFs and inclusions.展开更多
The Macao satellites differ from their predecessors in their orbits:MSS-1(Macao Science Satellite-1)is in low inclination and the planned MSS-2 will be in highly elliptical orbits.This paper reviews the fundamental ad...The Macao satellites differ from their predecessors in their orbits:MSS-1(Macao Science Satellite-1)is in low inclination and the planned MSS-2 will be in highly elliptical orbits.This paper reviews the fundamental advantages and disadvantages of the different possible magnetic measurements:the component(declination,intensity,etc.)and location(satellite,ground,etc.).When planning a survey the choice of component is the"What?"question;the choice of location the"Where?"question.Results from potential theory inform the choice of measurement and data analysis.For example,knowing the vertical component of magnetic field provides a solution for the full magnetic field everywhere in the potential region.This is the familiar Neumann problem.In reality this ideal dataset is never available.In the past we were restricted to declination data only,then direction only,then total intensity only.There have also been large swathes of Earth's surface with no measurements at all(MSS-1 is restricted to latitudes below).These incomplete datasets throw up new questions for potential theory,questions that have some intriguing answers.When only declination is known uniqueness is provided by horizontal intensity measurements on a single line joining the dip-poles.When only directions are involved uniqueness is provided by a single intensity measurement,at least in principle.Paleomagnetic intensities can help.When only total intensity is known,as was largely the case in the early satellite era,uniqueness is provided by a precise location of the magnetic equator.Holes in the data distribution is a familiar problem in geophysical studies.All magnetic measurements sample,to a greater or lesser extent,the potential field everywhere.There is a trade-off between measurements close to the source,good for small targets and high resolution,and the broader sample of a distant measurement.The sampling of a measurement is given by the appropriate Green's function of the Laplacian,which determines both the resolution and scope of the measurement.For example,radial and horizontal measurements near the Earth's surface give a weighted average of the radial component over a patch of the core surface beneath the measurement site about in radius.The patch is smaller for shallower surfaces,for example from satellite to ground.Holes in the data distribution do not correspond to similar holes at the source surface;the price paid is in resolution of the source.I argue that,in the past,we have been too reluctant to take advantage of incomplete and apparently hopeless datasets.展开更多
Micro-nano Earth Observation Satellite(MEOS)constellation has the advantages of low construction cost,short revisit cycle,and high functional density,which is considered a promising solution for serving rapidly growin...Micro-nano Earth Observation Satellite(MEOS)constellation has the advantages of low construction cost,short revisit cycle,and high functional density,which is considered a promising solution for serving rapidly growing observation demands.The observation Scheduling Problem in the MEOS constellation(MEOSSP)is a challenging issue due to the large number of satellites and tasks,as well as complex observation constraints.To address the large-scale and complicated MEOSSP,we develop a Two-Stage Scheduling Algorithm based on the Pointer Network with Attention mechanism(TSSA-PNA).In TSSA-PNA,the MEOS observation scheduling is decomposed into a task allocation stage and a single-MEOS scheduling stage.In the task allocation stage,an adaptive task allocation algorithm with four problem-specific allocation operators is proposed to reallocate the unscheduled tasks to new MEOSs.Regarding the single-MEOS scheduling stage,we design a pointer network based on the encoder-decoder architecture to learn the optimal singleMEOS scheduling solution and introduce the attention mechanism into the encoder to improve the learning efficiency.The Pointer Network with Attention mechanism(PNA)can generate the single-MEOS scheduling solution quickly in an end-to-end manner.These two decomposed stages are performed iteratively to search for the solution with high profit.A greedy local search algorithm is developed to improve the profits further.The performance of the PNA and TSSA-PNA on singleMEOS and multi-MEOS scheduling problems are evaluated in the experiments.The experimental results demonstrate that PNA can obtain the approximate solution for the single-MEOS scheduling problem in a short time.Besides,the TSSA-PNA can achieve higher observation profits than the existing scheduling algorithms within the acceptable computational time for the large-scale MEOS scheduling problem.展开更多
This paper explores how traditional Chinese medicine(TCM),in the absence of modern medical instruments,employed observation and perception to understand and diagnose malignant tumors(cancer).It also reviews the evolut...This paper explores how traditional Chinese medicine(TCM),in the absence of modern medical instruments,employed observation and perception to understand and diagnose malignant tumors(cancer).It also reviews the evolution of relevant knowledge and treatment approaches since the introduction of Western medical technology.In ancient times,TCM primarily relied on external symptoms,palpation,and patient-reported experiences to infer internal masses,with a focus on gynecological disorders.Ancient TCM practitioners deduced internal conditions through patterns such as menstrual irregularities,abdominal masses,and abnormal discharges.Early descriptions of malignant tumors employed the character“癌(cancer)”to symbolize rock-like cavities,yet the descriptions were chiefly limited to external manifestations,with limited understanding of internal pathology.With the introduction of Western medicine,Chinese society gradually expanded its comprehension of cancer and adopted surgical as well as other therapies.In contrast,modern TCM has increasingly emphasized its own therapeutic effects,even promoting claims of cancer cure,warranting further investigation.The paper highlights the transition in TCM from a diagnostic model based mainly on observation and perception to another model increasingly combined with modern imaging and laboratory techniques.The transition underscores the need for innovation in TCM’s future development,while also revealing the diagnostic experience of ancient practice.Understanding TCM’s historical recognition of malignant tumors from the perspective of history of medicine may provide insights for contemporary TCM approaches to cancer treatment.展开更多
Fractures play a crucial role in various fields such as hydrocarbon exploration,groundwater resources management,and earthquake research.The determination of fracture location and the estimation of parameters such as ...Fractures play a crucial role in various fields such as hydrocarbon exploration,groundwater resources management,and earthquake research.The determination of fracture location and the estimation of parameters such as fracture length and dip angle are the focus of geophysical work.In borehole observation system,the short distance between fractures and detectors leads to weak attenuation of elastic wave energy,and high-frequency source makes it easier to identify small-scale fractures.Compared to traditional monopole logging methods,dipole logging method has advantage of exciting pure shear waves sensitive to fractures,so its application is becoming increasingly widespread.However,since the reflected shear waves and scattered shear waves of fractures correspond to different fracture properties,how to distinguish and analyze these two kinds of waves is crucial for accurately characterizing the fracture parameters.To address this issue,numerical simulation of wave responses by a single fracture near a borehole in rock formation is performed,and the generation mechanism and characteristics of shear waves scattered by fractures are investigated.It is found that when the dip angle of the fracture surpasses a critical threshold,the S-wave will propagate to both endpoints of the fracture and generate scattered S-waves,resulting in two distinct scattered wave packets on the received waveform.When the polarization direction of the acoustic source is parallel to the strike of the fracture,the scattered SH-waves always have larger amplitude than the scattered SV-waves regardless of changing the fracture dip angle.Unlike SV-waves,the SH-waves scattered by the fracture do not have any mode conversion.Additionally,propagation of S-waves to a short length fracture can induce dipole mode vibration of the fracture within a wide frequency range.The phenomena of shear waves reflected and scattered by the fracture are further illustrated and verified by two field examples,thus showing the potential of scattered waves for fracture evaluation and characterization with borehole observation system.展开更多
Air-sea water vapor and CO_(2) flux observation experiments were carried out at the Yantai National Satellite Ocean Calibration Platform and the jetty at Monolithic Beach,Juehua Island,using a 100 Hz gas analyzer.The ...Air-sea water vapor and CO_(2) flux observation experiments were carried out at the Yantai National Satellite Ocean Calibration Platform and the jetty at Monolithic Beach,Juehua Island,using a 100 Hz gas analyzer.The observations were corrected by employing wild point rejection,linear detrending,delay correction,coordinate rotation,time matching,and Webb,Pearman,and Leuning(WPL)correction.The results of spectral analysis and a turbulence development adequacy data quality check showed that the overall observation data quality was good.The air-sea water vapor and CO_(2) flux results showed that the observation duration affected both the air-sea flux intensity and direction at different observation frequencies.At shorter observation durations,the air-sea flux values measured at 100 Hz were smaller than the 20 Hz measurements and had opposite directions.In addition,the WPL correction reduced the overall air-sea flux and partially minimized the effect of observation frequency on the air-sea flux intensity.These results showed that high-frequency observations showed more turbulence variations than low-frequency observations.This conclusion could promote an understanding of small-scale turbulence variations.展开更多
Engineering tests can yield inaccurate data due to instrument errors,human factors,and environmental interference,introducing uncertainty in numerical model updating.This study employs the probability-box(p-box)method...Engineering tests can yield inaccurate data due to instrument errors,human factors,and environmental interference,introducing uncertainty in numerical model updating.This study employs the probability-box(p-box)method for representing observational uncertainty and develops a two-step approximate Bayesian computation(ABC)framework using time-series data.Within the ABC framework,Euclidean and Bhattacharyya distances are employed as uncertainty quantification metrics to delineate approximate likelihood functions in the initial and subsequent steps,respectively.A novel variational Bayesian Monte Carlo method is introduced to efficiently apply the ABC framework amidst observational uncertainty,resulting in rapid convergence and accurate parameter estimation with minimal iterations.The efficacy of the proposed updating strategy is validated by its application to a shear frame model excited by seismic wave and an aviation pump force sensor for thermal output analysis.The results affirm the efficiency,robustness,and practical applicability of the proposed method.展开更多
Solar energy is a pivotal clean energy source in the transition to carbon neutrality from fossil fuels.However,the intermittent and stochastic characteristics of solar radiation pose challenges for accurate simulation...Solar energy is a pivotal clean energy source in the transition to carbon neutrality from fossil fuels.However,the intermittent and stochastic characteristics of solar radiation pose challenges for accurate simulation and prediction.Accurately simulating and predicting solar radiation and its variability are crucial for optimizing solar energy utilization.This study conducted simulation experiments using the WRF-Solar model from 25 June to 25 July 2022,to evaluate the accuracy and performance of the simulated solar radiation across China.The simulations covered the whole country with a grid spacing of 27 km and were compared with ground observation network data from the Chinese Ecosystem Research Network.The results indicated that WRF-Solar can accurately capture the spatiotemporal patterns of global horizontal irradiance over China,but there is still an overestimation of solar radiation,and the model underestimates the total cloud cover.The root-mean-square error ranged from 92.83 to 188.13 W m^(-2) and the mean bias(MB)ranged from 21.05 to 56.22 W m^(-2).The simulation showed the smallest MB at Lhasa on the Qinghai–Tibet Plateau,while the largest MB was observed in Southeast China.To enhance the accuracy of solar radiation simulation,the authors compared the Fast All-sky Radiation Model for Solar with the Rapid Radiative Transfer Model for General Circulation Models and found that the former provides better simulation.展开更多
The Bei Dou satellite system(BDS)has progressed with the full operationalization of the secondgeneration regional system(BDS-2)and the third-generation global system(BDS-3).This technology plays a crucial role in dete...The Bei Dou satellite system(BDS)has progressed with the full operationalization of the secondgeneration regional system(BDS-2)and the third-generation global system(BDS-3).This technology plays a crucial role in determining Earth Rotation Parameters(ERPs).In this study,we determine the ERPs based on the observations of BDS-2,BDS-3 and BDS-2+BDS-3,with the time spanning from August18,2022,to August 18,2023.The IERS EOP 20C04 series is used as a reference to evaluate the accuracy of the ERP estimates.We analyze the impact of different numbers of reference stations,polyhedron volumes,observation arc lengths,satellite types,and satellite systems on solving ERPs using BDS-2 and BDS-3 observation data provided by the International GNSS Service(IGS)stations.When selecting a specific satellite type,it is necessary to choose an appropriate observation arc length based on different numbers of reference stations while maximizing the volume of the formed polyhedron to achieve optimal efficiency and accuracy in parameter estimation.When both the number of reference stations and observation arc length are fixed,higher precision of the ERPs can be achieved using observations from MEO than MEO+IGSO and MEO+IGSO+GEO.Moreover,when considering only IGSO and MEO satellites as options for analysis purposes,BDS-3 provides higher accuracy compared to BDS-2.In summary,when using BDS for ERP estimation and MEO satellite observations with the same observation arc length,selecting stations from reference stations with larger polyhedral volumes can significantly improve the efficiency and accuracy of parameter estimation.展开更多
Sterile neutrinos can influence the evolution of the Universe,and thus cosmological observations can be used to detect them.Future gravitational-wave(GW)observations can precisely measure absolute cosmological distanc...Sterile neutrinos can influence the evolution of the Universe,and thus cosmological observations can be used to detect them.Future gravitational-wave(GW)observations can precisely measure absolute cosmological distances,helping to break parameter degeneracies generated by traditional cosmological observations.This advancement can lead to much tighter constraints on sterile neutrino parameters.This work provides a preliminary forecast for detecting sterile neutrinos using third-generation GW detectors in combination with future shortγ-ray burst observations from a THESEUS-like telescope,an approach not previously explored in the literature.Both massless and massive sterile neutrinos are considered within theΛCDM cosmology.We find that using GW data can greatly enhance the detection capability for massless sterile neutrinos,reaching 3σlevel.For massive sterile neutrinos,GW data can also greatly assist in improving the parameter constraints,but it seems that effective detection is still not feasible.展开更多
The melting and solidification process of DZ411 superalloy at different cooling rates(50,200,500°C/min)was observed in situ by high-temperature confocal laser scanning microscopy.The solidification behaviour of t...The melting and solidification process of DZ411 superalloy at different cooling rates(50,200,500°C/min)was observed in situ by high-temperature confocal laser scanning microscopy.The solidification behaviour of this alloy was also studied through other methods such as differential scanning calorimetry and scanning electron microscopy.The results show that the precipitation sequence of the main phases during the solidification of DZ411 alloy isγmatrix phase,carbide phase and Laves phase.Besides,during the solidification process of DZ411 alloy,both the dendrite thickness and dendrite spacing decreased with the increasing of cooling rate.In addition,a large amount of Ta is enriched in the dendrite stems at the end of solidification,which is the main reason for the formation of Laves phase.As the cooling rate increases,the size of the Laves phase becomes smaller and the distribution becomes more dispersed,which effectively inhibits the segregation of the alloy.展开更多
Objective: This study focuses on the clinical observation of the impact of different treatment methods for gestational heart failure on delivery outcomes. Method: A total of 160 pregnant women with heart failure admit...Objective: This study focuses on the clinical observation of the impact of different treatment methods for gestational heart failure on delivery outcomes. Method: A total of 160 pregnant women with heart failure admitted to our hospital between October 2020 and October 2021 were selected as the study subjects. They were categorized based on delivery mode, delivery timing, heart failure control time, and cardiac function status. The delivery outcomes of the different groups were then compared. Result: In terms of delivery methods, the rate of neonatal asphyxia was higher following vaginal delivery than cesarean section. Regarding delivery timing, the neonatal mortality rate was lower for cesarean sections performed at 32-36 + 6 weeks compared to those conducted at 37-39 + 6 weeks. With respect to heart failure control time, the rates of neonatal asphyxia and pulmonary hyaline membrane disease were lower in the ≤ 48- hour group than in the > 48-hour group. From the perspective of cardiac function status, patients with cardiac function I- II exhibited relatively lower rates of neonatal asphyxia and perinatal mortality compared to those with cardiac function III-IV. The observed differences were statistically significant (P < 0.05). Conclusion: For patients with gestational heart failure, cesarean section is the recommended mode of delivery, with the optimal timing being between 32 and 36+6 weeks of pregnancy. During cesarean section, the timing of delivery should be carefully selected based on the mother’s cardiac function status.展开更多
Aiming at node deployment in the monitoring area of the field observation instrument network in the cold and arid regions,we propose a virtual force algorithm based on Voronoi diagram(VFAVD),which adopts probabilistic...Aiming at node deployment in the monitoring area of the field observation instrument network in the cold and arid regions,we propose a virtual force algorithm based on Voronoi diagram(VFAVD),which adopts probabilistic sensing model that is more in line with the actual situation.First,the Voronoi diagram is constructed in the monitoring area to determine the Thiessen polygon of each node.Then,the virtual force on each node is calculated,and the node update its position according to the direction and size of the total force,so as to achieve the purpose of improving the network coverage rate.The simulation results show that the proposed algorithm can effectively improve the coverage rate of the network,and also has a good effect on the coverage uniformity.展开更多
The source region of the Yellow River, accounting for over 38% of its total runoff, is a critical catchment area,primarily characterized by alpine grasslands. In 2005, the Maqu land surface processes observational sit...The source region of the Yellow River, accounting for over 38% of its total runoff, is a critical catchment area,primarily characterized by alpine grasslands. In 2005, the Maqu land surface processes observational site was established to monitor climate, land surface dynamics, and hydrological variability in this region. Over a 10-year period(2010–19), an extensive observational dataset was compiled, now available to the scientific community. This dataset includes comprehensive details on site characteristics, instrumentation, and data processing methods, covering meteorological and radiative fluxes, energy exchanges, soil moisture dynamics, and heat transfer properties. The dataset is particularly valuable for researchers studying land surface processes, land–atmosphere interactions, and climate modeling, and may also benefit ecological, hydrological, and water resource studies. The report ends with a discussion on perspectives and challenges of continued observational monitoring in this region, focusing on issues such as cryosphere influences, complex topography,and ecological changes like the encroachment of weeds and scrubland.展开更多
The applications of Al alloy foam require consideration of potential damage risks,which are closely related to the evolution of its internal pore structures.However,conventional ex situ experimental observation cannot...The applications of Al alloy foam require consideration of potential damage risks,which are closely related to the evolution of its internal pore structures.However,conventional ex situ experimental observation cannot provide information on the structure evolution during deformation.In order to investigate the failure mechanism of Al alloy foam under quasi-static compression,by utilizing X-ray imaging technology,in situ CT image data were obtained during the loading process.A geometric model characterizing the real structure of Al alloy foam was reconstructed from the initial CT images and used for finite element simulation.Besides,based on the digital volume correlation(DVC)method,the displacement and strain fields of Al alloy foam were calculated.The results show that the in situ experimental observation based on X-ray imaging can effectively obtain the failure information of Al alloy foam.The simulation results for deformation and failure behavior of Al alloy foam are consistent with experimental results.During the quasi-static compression,a shear band can be observed diagonally across the profile of Al alloy foam,with weak regions occurring in the cells with larger volume and higher aspect ratios.Using these weak regions as boundaries,the relative displacement of cell structures on one side compared to another side was identified as the intrinsic cause of shear band formation.The high-strain regions identified by DVC closely match the crack locations on the cell walls,validating the accuracy of DVC on localizing cracks on cell walls and predicting their propagation trends.展开更多
In this paper,Wuzhou City of Guangxi was taken as the research object.Through the design of a climatic data warehousing system,the decoding methods of surface meteorological data and their application in the managemen...In this paper,Wuzhou City of Guangxi was taken as the research object.Through the design of a climatic data warehousing system,the decoding methods of surface meteorological data and their application in the management of climatic data were explored.Based on the parsing technology of the monthly report of surface meteorological records(A-file),the design of Wuzhou climatic data warehousing system was realized,completing the precise extraction and database construction of observational elements such as regional temperature,wind direction,and weather phenomena.Based on this system,the meteorological data in 2024 were analyzed,and the probabilistic characteristics of dominant wind direction in Wuzhou(northeast wind accounting for the largest proportion),the spatiotemporal distribution patterns of extreme temperatures(annual extreme high temperature of 37.1℃in August and extreme low temperature of 1.9℃in January),and the general climatic overview of Wuzhou City(annual precipitation 3.2%higher than the standard value)were revealed.The research shows that climate change has a significant impact on agricultural production and economic development in Wuzhou City,and the construction of a reasonable climatic data database is of great significance for enhancing professional meteorological service capabilities in the context of climate change.This study not only provides a scientific basis for the economic development of Wuzhou region,but also offers reference ideas for other regions to cope with regional climate adaptation planning.展开更多
This study explored the observation strategy and effectiveness of synoptic-scale adaptive observations for improving sea fog prediction in coastal regions around the Bohai Sea based on a poorly predicted fog event wit...This study explored the observation strategy and effectiveness of synoptic-scale adaptive observations for improving sea fog prediction in coastal regions around the Bohai Sea based on a poorly predicted fog event with cold-front synoptic pattern(CFSP).An ensemble Kalman filter data assimilation system for the Weather Research and Forecasting model was adopted with ensemble sensitivity analysis(ESA).By comparing observation impacts(estimated from a 40-member ensemble with ESA)among different meteorological observation variables and pressure levels,the temperature at 850 hPa and surface layer(850 hPa-and-surface temperature)was selected as the target observation type.Additionally,the area with large observation impacts for this observation type was predicted in the transition region of the surface low–high system.This area developed southward with the low and moved eastward with the low–high system,which could be explained by the main features of CFSP.Moreover,both experiments assimilating synthetic and real observations showed that assimilating 850 hPa-and-surface temperature observations generally yielded better fog coverage forecasts in areas with greater observation impacts than areas with smaller impacts.However,the effectiveness of adaptive observations was reduced when real observations rather than synthetic observations were assimilated,which is possibly due to factors such as observation and model errors.The main conclusions above were verified by another typical fog event with CFSP characteristics.Results of this study highlight the importance of improved initial conditions in the transition region of the low–high system for improving fog prediction and provide scientific guidance for implementing an observation network for fog forecasting over the Bohai Sea.展开更多
Runoff observation uncertainty is a key unsolved issue in the hydrology community.Existing studies mainly focused on observation uncertainty sources and their impacts on simulation performance,but the impacts on chang...Runoff observation uncertainty is a key unsolved issue in the hydrology community.Existing studies mainly focused on observation uncertainty sources and their impacts on simulation performance,but the impacts on changes of flow regime characteristics remained rare.This study detects temporal changes in 16 flow regime metrics from five main components(i.e.,magnitude,frequency of events,variability,duration,and timing),and evaluates the effects of observation uncertainty on trends of flow regime metrics by adopting a normal distribution error model and using uncertainty width,significant change rate of slopes,coefficient of variation,and degree of deviation.The daily runoff series from 1971 to 2020 at five hydrological stations(i.e.,Huangheyan,Tangnaihai,and Lanzhou in the Yellow River Source Region,Xianyang in the Weihe River Catchment,and Heishiguan in the Yiluo River Catchment)in the water conservation zone of Yellow River are collected for our study.Results showed that:(1)Flow regimes showed significant increases in the low flow magnitude,and significant decreases in the high and average flow magnitude,variability and duration at all the five stations.The magnitude,variability and duration metrics decreased significantly,and the frequency metrics increased significantly at Heishiguan.The low flow magnitude and timing metrics increased significantly,while the high flow magnitude,frequency and variability metrics decreased significantly at Xianyang.The low flow magnitude and high flow timing metrics increased significantly,while the low flow frequency,high flow magnitude and variability metrics decreased significantly in the Yellow River Source Region.(2)Observation uncertainty remarkably impacted the changes of 28.75% of total flow regime metrics at all the stations.The trends of 11.25% of total metrics changed from significance to insignificance,while those of 17.5% of total metrics changed from insignificance to significance.For the rest metrics,the trends remained the same,i.e.,significant(18.75%)and insignificant(52.50%)trends.(3)Observation uncertainty had the greatest impacts on the frequency metrics,especially at Xianyang,followed by duration,variability,timing and magnitude metrics.展开更多
For all-sky infrared radiance assimilation,the heteroscedasticity and non-Gaussian behavior of observation-minusbackground(OMB)departures are two major difficulties.The Geer–Bauer observation error inflation(GBOEI)sc...For all-sky infrared radiance assimilation,the heteroscedasticity and non-Gaussian behavior of observation-minusbackground(OMB)departures are two major difficulties.The Geer–Bauer observation error inflation(GBOEI)scheme is a universal way to handle the issues.However,it fails to take into account the consistency between model and observation,resulting in unreasonably large observation errors where the simulations agree with the observations.Thus,this study modifies the GBOEI scheme to rationalize the observation errors in such areas.With Advanced Himawari Imager water vapor channel data,the test results show that the normalized OMB with the new observation error approach leads to more Gaussian form than the GBOEI method and constant observation errors.Hence,the assimilation experiments with the new scheme produce better brightness temperature analysis than other methods,and also improve temperature and humidity analysis.Furthermore,a real case experiment of Typhoon Lekima(2019)with the new observation error scheme exhibits more accuracy,especially in track prediction,and substantial error reductions in wind,temperature,and humidity forecasts are also obtained.Meanwhile,5-day 6-hour cycling experiments in the real case of Typhoon Lekima(2019)with the new observation error scheme confirm that the new method does not introduce extra imbalance compared to the experiment with constant observation errors;plus,more accurate typhoon forecasts can also be obtained in both the analysis and forecast,especially in track prediction.展开更多
基金supported by Independent Research Project of State Key Laboratory of Advanced Special Steel,Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University(SKLASS-2023-Z13)the Science and Technology Commission of Shanghai Municipality(No.19DZ2270200)+1 种基金A portion of the work was performed at US National High Magnetic Field Laboratory,which is supported by the National Science Foundation(Cooperative Agreement No.DMR-1157490 and DMR-1644779)the State of Florida.Thanks also to Mary Tyler for editing.
文摘The high-temperature dissolution behavior of primary carbides in samples taken from GCr15 continuous-casting bloom was observed in-situ by confocal laser scanning microscopy.Equations were fitted to the dissolution kinetics of primary carbides during either heating or soaking.Dissolution of carbides proceeded in three stages(fast→slow→faster)as either temperature or holding time was increased.During the heating process and during the first and third stages of the soaking process,the original size of the carbides determined the steepness of the slope,but during the middle(“slow”)stage of the soaking process,the slope remained zero.The initial size of the carbides varied greatly,but their final dissolution temperature fell within the narrow range of 1210-1235℃,and the holding time remained within 50 min.Fractal analysis was used to study the morphological characteristics of small and medium-sized carbides during the dissolution process.According to changes in the fractal dimension before and after soaking,the carbides tended to evolve towards a more regular morphology.
基金supported by the National Key R&D Program(No.2023YFB3709900)the National Nature Science Foundation of China(No.U22A20171)+2 种基金China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202315)the High Steel Center(HSC)at North China University of TechnologyUniversity of Science and Technology Beijing,China.
文摘The characteristics of nonmetallic inclusions formed during steel production have a significant influence on steel performance.In this paper,studies on inclusions using confocal scanning laser microscopy(CSLM)are reviewed and summarized,particularly the col-lision of various inclusions,dissolution of inclusions in liquid slag,and reactions between inclusions and steel.Solid inclusions exhibited a high collision tendency,whereas pure liquid inclusions exhibited minimal collisions because of the small attraction force induced by their<90°contact angle with molten steel.The collision of complex inclusions in molten steel was not included in the scope of this study and should be evaluated in future studies.Higher CaO/Al_(2)O_(3)and CaO/SiO_(2)ratios in liquid slag promoted the dissolution of Al_(2)O_(3)-based in-clusions.The formation of solid phases in the slag should be prevented to improve dissolution of inclusions.To accurately simulate the dissolution of inclusions in liquid slag,in-situ observation of the dissolution of inclusions at the steel-slag interface is necessary.Using a combination of CSLM and scanning electron microscopy-energy dispersive spectroscopy,the composition and morphological evolution of the inclusions during their modification by the dissolved elements in steel were observed and analyzed.Although the in-situ observa-tion of MnS and TiN precipitations has been widely studied,the in-situ observation of the evolution of oxide inclusions in steel during so-lidification and heating processes has rarely been reported.The effects of temperature,heating and cooling rates,and inclusion character-istics on the formation of acicular ferrites(AFs)have been widely studied.At a cooling rate of 3-5 K/s,the order of AF growth rate in-duced by different inclusions,as reported in literature,is Ti-O<Ti-Ca-Zr-Al-O<Mg-O<Ti-Zr-Al-O<Mn-Ti-Al-O<Ti-Al-O<Zr-Ti-Al-O.Further comprehensive experiments are required to investigate the quantitative relationship between the formation of AFs and inclusions.
文摘The Macao satellites differ from their predecessors in their orbits:MSS-1(Macao Science Satellite-1)is in low inclination and the planned MSS-2 will be in highly elliptical orbits.This paper reviews the fundamental advantages and disadvantages of the different possible magnetic measurements:the component(declination,intensity,etc.)and location(satellite,ground,etc.).When planning a survey the choice of component is the"What?"question;the choice of location the"Where?"question.Results from potential theory inform the choice of measurement and data analysis.For example,knowing the vertical component of magnetic field provides a solution for the full magnetic field everywhere in the potential region.This is the familiar Neumann problem.In reality this ideal dataset is never available.In the past we were restricted to declination data only,then direction only,then total intensity only.There have also been large swathes of Earth's surface with no measurements at all(MSS-1 is restricted to latitudes below).These incomplete datasets throw up new questions for potential theory,questions that have some intriguing answers.When only declination is known uniqueness is provided by horizontal intensity measurements on a single line joining the dip-poles.When only directions are involved uniqueness is provided by a single intensity measurement,at least in principle.Paleomagnetic intensities can help.When only total intensity is known,as was largely the case in the early satellite era,uniqueness is provided by a precise location of the magnetic equator.Holes in the data distribution is a familiar problem in geophysical studies.All magnetic measurements sample,to a greater or lesser extent,the potential field everywhere.There is a trade-off between measurements close to the source,good for small targets and high resolution,and the broader sample of a distant measurement.The sampling of a measurement is given by the appropriate Green's function of the Laplacian,which determines both the resolution and scope of the measurement.For example,radial and horizontal measurements near the Earth's surface give a weighted average of the radial component over a patch of the core surface beneath the measurement site about in radius.The patch is smaller for shallower surfaces,for example from satellite to ground.Holes in the data distribution do not correspond to similar holes at the source surface;the price paid is in resolution of the source.I argue that,in the past,we have been too reluctant to take advantage of incomplete and apparently hopeless datasets.
基金supported by the National Natural Science Foundation of China(No.62101587)the National Funded Postdoctoral Researcher Program of China(No.GZC20233578)。
文摘Micro-nano Earth Observation Satellite(MEOS)constellation has the advantages of low construction cost,short revisit cycle,and high functional density,which is considered a promising solution for serving rapidly growing observation demands.The observation Scheduling Problem in the MEOS constellation(MEOSSP)is a challenging issue due to the large number of satellites and tasks,as well as complex observation constraints.To address the large-scale and complicated MEOSSP,we develop a Two-Stage Scheduling Algorithm based on the Pointer Network with Attention mechanism(TSSA-PNA).In TSSA-PNA,the MEOS observation scheduling is decomposed into a task allocation stage and a single-MEOS scheduling stage.In the task allocation stage,an adaptive task allocation algorithm with four problem-specific allocation operators is proposed to reallocate the unscheduled tasks to new MEOSs.Regarding the single-MEOS scheduling stage,we design a pointer network based on the encoder-decoder architecture to learn the optimal singleMEOS scheduling solution and introduce the attention mechanism into the encoder to improve the learning efficiency.The Pointer Network with Attention mechanism(PNA)can generate the single-MEOS scheduling solution quickly in an end-to-end manner.These two decomposed stages are performed iteratively to search for the solution with high profit.A greedy local search algorithm is developed to improve the profits further.The performance of the PNA and TSSA-PNA on singleMEOS and multi-MEOS scheduling problems are evaluated in the experiments.The experimental results demonstrate that PNA can obtain the approximate solution for the single-MEOS scheduling problem in a short time.Besides,the TSSA-PNA can achieve higher observation profits than the existing scheduling algorithms within the acceptable computational time for the large-scale MEOS scheduling problem.
文摘This paper explores how traditional Chinese medicine(TCM),in the absence of modern medical instruments,employed observation and perception to understand and diagnose malignant tumors(cancer).It also reviews the evolution of relevant knowledge and treatment approaches since the introduction of Western medical technology.In ancient times,TCM primarily relied on external symptoms,palpation,and patient-reported experiences to infer internal masses,with a focus on gynecological disorders.Ancient TCM practitioners deduced internal conditions through patterns such as menstrual irregularities,abdominal masses,and abnormal discharges.Early descriptions of malignant tumors employed the character“癌(cancer)”to symbolize rock-like cavities,yet the descriptions were chiefly limited to external manifestations,with limited understanding of internal pathology.With the introduction of Western medicine,Chinese society gradually expanded its comprehension of cancer and adopted surgical as well as other therapies.In contrast,modern TCM has increasingly emphasized its own therapeutic effects,even promoting claims of cancer cure,warranting further investigation.The paper highlights the transition in TCM from a diagnostic model based mainly on observation and perception to another model increasingly combined with modern imaging and laboratory techniques.The transition underscores the need for innovation in TCM’s future development,while also revealing the diagnostic experience of ancient practice.Understanding TCM’s historical recognition of malignant tumors from the perspective of history of medicine may provide insights for contemporary TCM approaches to cancer treatment.
基金supported by Scientific Research and Technology Development Project of CNPC(2024ZG38,2024ZG42)the CNPC Innovation Fund(2022DQ02-0307).
文摘Fractures play a crucial role in various fields such as hydrocarbon exploration,groundwater resources management,and earthquake research.The determination of fracture location and the estimation of parameters such as fracture length and dip angle are the focus of geophysical work.In borehole observation system,the short distance between fractures and detectors leads to weak attenuation of elastic wave energy,and high-frequency source makes it easier to identify small-scale fractures.Compared to traditional monopole logging methods,dipole logging method has advantage of exciting pure shear waves sensitive to fractures,so its application is becoming increasingly widespread.However,since the reflected shear waves and scattered shear waves of fractures correspond to different fracture properties,how to distinguish and analyze these two kinds of waves is crucial for accurately characterizing the fracture parameters.To address this issue,numerical simulation of wave responses by a single fracture near a borehole in rock formation is performed,and the generation mechanism and characteristics of shear waves scattered by fractures are investigated.It is found that when the dip angle of the fracture surpasses a critical threshold,the S-wave will propagate to both endpoints of the fracture and generate scattered S-waves,resulting in two distinct scattered wave packets on the received waveform.When the polarization direction of the acoustic source is parallel to the strike of the fracture,the scattered SH-waves always have larger amplitude than the scattered SV-waves regardless of changing the fracture dip angle.Unlike SV-waves,the SH-waves scattered by the fracture do not have any mode conversion.Additionally,propagation of S-waves to a short length fracture can induce dipole mode vibration of the fracture within a wide frequency range.The phenomena of shear waves reflected and scattered by the fracture are further illustrated and verified by two field examples,thus showing the potential of scattered waves for fracture evaluation and characterization with borehole observation system.
基金The National Key Research and Development Program of China under contract Nos 2022YFC3104203 and 2018YFC0213103the Science Foundation of Donghai Laboratory under contract No.DH-2022KF01019+1 种基金the National Natural Science Foundation under contract No.419061522023 Shanghai Education Science Research Project under contract No.C2023120.
文摘Air-sea water vapor and CO_(2) flux observation experiments were carried out at the Yantai National Satellite Ocean Calibration Platform and the jetty at Monolithic Beach,Juehua Island,using a 100 Hz gas analyzer.The observations were corrected by employing wild point rejection,linear detrending,delay correction,coordinate rotation,time matching,and Webb,Pearman,and Leuning(WPL)correction.The results of spectral analysis and a turbulence development adequacy data quality check showed that the overall observation data quality was good.The air-sea water vapor and CO_(2) flux results showed that the observation duration affected both the air-sea flux intensity and direction at different observation frequencies.At shorter observation durations,the air-sea flux values measured at 100 Hz were smaller than the 20 Hz measurements and had opposite directions.In addition,the WPL correction reduced the overall air-sea flux and partially minimized the effect of observation frequency on the air-sea flux intensity.These results showed that high-frequency observations showed more turbulence variations than low-frequency observations.This conclusion could promote an understanding of small-scale turbulence variations.
基金supported by the National Natural Science Foundation of China(Grant No.U23B20105).
文摘Engineering tests can yield inaccurate data due to instrument errors,human factors,and environmental interference,introducing uncertainty in numerical model updating.This study employs the probability-box(p-box)method for representing observational uncertainty and develops a two-step approximate Bayesian computation(ABC)framework using time-series data.Within the ABC framework,Euclidean and Bhattacharyya distances are employed as uncertainty quantification metrics to delineate approximate likelihood functions in the initial and subsequent steps,respectively.A novel variational Bayesian Monte Carlo method is introduced to efficiently apply the ABC framework amidst observational uncertainty,resulting in rapid convergence and accurate parameter estimation with minimal iterations.The efficacy of the proposed updating strategy is validated by its application to a shear frame model excited by seismic wave and an aviation pump force sensor for thermal output analysis.The results affirm the efficiency,robustness,and practical applicability of the proposed method.
基金supported by the National Natural Science Foundation of China[grant number 42175132]the National Key R&D Program[grant number 2020YFA0607802]the CAS Information Technology Program[grant number CAS-WX2021SF-0107-02]。
文摘Solar energy is a pivotal clean energy source in the transition to carbon neutrality from fossil fuels.However,the intermittent and stochastic characteristics of solar radiation pose challenges for accurate simulation and prediction.Accurately simulating and predicting solar radiation and its variability are crucial for optimizing solar energy utilization.This study conducted simulation experiments using the WRF-Solar model from 25 June to 25 July 2022,to evaluate the accuracy and performance of the simulated solar radiation across China.The simulations covered the whole country with a grid spacing of 27 km and were compared with ground observation network data from the Chinese Ecosystem Research Network.The results indicated that WRF-Solar can accurately capture the spatiotemporal patterns of global horizontal irradiance over China,but there is still an overestimation of solar radiation,and the model underestimates the total cloud cover.The root-mean-square error ranged from 92.83 to 188.13 W m^(-2) and the mean bias(MB)ranged from 21.05 to 56.22 W m^(-2).The simulation showed the smallest MB at Lhasa on the Qinghai–Tibet Plateau,while the largest MB was observed in Southeast China.To enhance the accuracy of solar radiation simulation,the authors compared the Fast All-sky Radiation Model for Solar with the Rapid Radiative Transfer Model for General Circulation Models and found that the former provides better simulation.
基金received financial support from the National Natural Science Foundation of China(Grant No.42030105,No.42204006,No.42274011,No.42304095)Funded by State Key Laboratory of Geo-Information Engineering and Key Laboratory of Surveying and Mapping Science and Geospatial Information Technology of MNR,CASM(Grant No.2024-01-01)+2 种基金Open Fund of Hubei Luojia Laboratory(Grant No.230100020,230100019)the China Postdoctoral Science Foundation(Certificate Number:2023M743580)the Key Project of Natural Science Research in Universities of Anhui Province(No.2023AH051634)。
文摘The Bei Dou satellite system(BDS)has progressed with the full operationalization of the secondgeneration regional system(BDS-2)and the third-generation global system(BDS-3).This technology plays a crucial role in determining Earth Rotation Parameters(ERPs).In this study,we determine the ERPs based on the observations of BDS-2,BDS-3 and BDS-2+BDS-3,with the time spanning from August18,2022,to August 18,2023.The IERS EOP 20C04 series is used as a reference to evaluate the accuracy of the ERP estimates.We analyze the impact of different numbers of reference stations,polyhedron volumes,observation arc lengths,satellite types,and satellite systems on solving ERPs using BDS-2 and BDS-3 observation data provided by the International GNSS Service(IGS)stations.When selecting a specific satellite type,it is necessary to choose an appropriate observation arc length based on different numbers of reference stations while maximizing the volume of the formed polyhedron to achieve optimal efficiency and accuracy in parameter estimation.When both the number of reference stations and observation arc length are fixed,higher precision of the ERPs can be achieved using observations from MEO than MEO+IGSO and MEO+IGSO+GEO.Moreover,when considering only IGSO and MEO satellites as options for analysis purposes,BDS-3 provides higher accuracy compared to BDS-2.In summary,when using BDS for ERP estimation and MEO satellite observations with the same observation arc length,selecting stations from reference stations with larger polyhedral volumes can significantly improve the efficiency and accuracy of parameter estimation.
基金supported by the National Natural Science Foundation of China under Grant Nos.12305069,11947022,12473001,11975072,11875102,and 11835009the National SKA Program of China under Grants Nos.2022SKA0110200 and 2022SKA0110203+1 种基金the Program of the Education Department of Liaoning Province under Grant No.JYTMS20231695the National 111 Project under Grant No.B16009。
文摘Sterile neutrinos can influence the evolution of the Universe,and thus cosmological observations can be used to detect them.Future gravitational-wave(GW)observations can precisely measure absolute cosmological distances,helping to break parameter degeneracies generated by traditional cosmological observations.This advancement can lead to much tighter constraints on sterile neutrino parameters.This work provides a preliminary forecast for detecting sterile neutrinos using third-generation GW detectors in combination with future shortγ-ray burst observations from a THESEUS-like telescope,an approach not previously explored in the literature.Both massless and massive sterile neutrinos are considered within theΛCDM cosmology.We find that using GW data can greatly enhance the detection capability for massless sterile neutrinos,reaching 3σlevel.For massive sterile neutrinos,GW data can also greatly assist in improving the parameter constraints,but it seems that effective detection is still not feasible.
基金funded by the Key Science and Technology Projects of Gansu Province(Grant No.252DGA006)Central Fund for Guiding Local Science and Technology Development Projects(Grant No.25ZYJB001)+3 种基金Gansu Key Research and Development Project(Grant No.23YFGA0003)Gansu Provincial Joint Research Fund(Grant No.24JRRB004)the Industry support plan of Gansu Universities(Grant No.2024CYZC-01)the Science and Technology Projects of Jiayuguan City(No.24-10,QKJ24-01,QKJ24-10).
文摘The melting and solidification process of DZ411 superalloy at different cooling rates(50,200,500°C/min)was observed in situ by high-temperature confocal laser scanning microscopy.The solidification behaviour of this alloy was also studied through other methods such as differential scanning calorimetry and scanning electron microscopy.The results show that the precipitation sequence of the main phases during the solidification of DZ411 alloy isγmatrix phase,carbide phase and Laves phase.Besides,during the solidification process of DZ411 alloy,both the dendrite thickness and dendrite spacing decreased with the increasing of cooling rate.In addition,a large amount of Ta is enriched in the dendrite stems at the end of solidification,which is the main reason for the formation of Laves phase.As the cooling rate increases,the size of the Laves phase becomes smaller and the distribution becomes more dispersed,which effectively inhibits the segregation of the alloy.
文摘Objective: This study focuses on the clinical observation of the impact of different treatment methods for gestational heart failure on delivery outcomes. Method: A total of 160 pregnant women with heart failure admitted to our hospital between October 2020 and October 2021 were selected as the study subjects. They were categorized based on delivery mode, delivery timing, heart failure control time, and cardiac function status. The delivery outcomes of the different groups were then compared. Result: In terms of delivery methods, the rate of neonatal asphyxia was higher following vaginal delivery than cesarean section. Regarding delivery timing, the neonatal mortality rate was lower for cesarean sections performed at 32-36 + 6 weeks compared to those conducted at 37-39 + 6 weeks. With respect to heart failure control time, the rates of neonatal asphyxia and pulmonary hyaline membrane disease were lower in the ≤ 48- hour group than in the > 48-hour group. From the perspective of cardiac function status, patients with cardiac function I- II exhibited relatively lower rates of neonatal asphyxia and perinatal mortality compared to those with cardiac function III-IV. The observed differences were statistically significant (P < 0.05). Conclusion: For patients with gestational heart failure, cesarean section is the recommended mode of delivery, with the optimal timing being between 32 and 36+6 weeks of pregnancy. During cesarean section, the timing of delivery should be carefully selected based on the mother’s cardiac function status.
基金supported by National Natural Science Foundation of China(No.61862038)Lanzhou Talent Innovation and Entrepreneurship Technology Plan Project(No.2019-RC-14).
文摘Aiming at node deployment in the monitoring area of the field observation instrument network in the cold and arid regions,we propose a virtual force algorithm based on Voronoi diagram(VFAVD),which adopts probabilistic sensing model that is more in line with the actual situation.First,the Voronoi diagram is constructed in the monitoring area to determine the Thiessen polygon of each node.Then,the virtual force on each node is calculated,and the node update its position according to the direction and size of the total force,so as to achieve the purpose of improving the network coverage rate.The simulation results show that the proposed algorithm can effectively improve the coverage rate of the network,and also has a good effect on the coverage uniformity.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars (Grant No.42325502)the 2nd Scientific Expedition to the Qinghai–Tibet Plateau (Grant No.2019QZKK0102)+3 种基金the West Light Foundation of the Chinese Academy of Sciences (Grant No.xbzg-zdsys-202215)the Science and Technology Research Plan of Gansu Province (Grant Nos.23JRRA654 and 20JR10RA070)the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No.QCH2019004)iLEAPS (integrated Land Ecosystem–Atmosphere Processes Study)。
文摘The source region of the Yellow River, accounting for over 38% of its total runoff, is a critical catchment area,primarily characterized by alpine grasslands. In 2005, the Maqu land surface processes observational site was established to monitor climate, land surface dynamics, and hydrological variability in this region. Over a 10-year period(2010–19), an extensive observational dataset was compiled, now available to the scientific community. This dataset includes comprehensive details on site characteristics, instrumentation, and data processing methods, covering meteorological and radiative fluxes, energy exchanges, soil moisture dynamics, and heat transfer properties. The dataset is particularly valuable for researchers studying land surface processes, land–atmosphere interactions, and climate modeling, and may also benefit ecological, hydrological, and water resource studies. The report ends with a discussion on perspectives and challenges of continued observational monitoring in this region, focusing on issues such as cryosphere influences, complex topography,and ecological changes like the encroachment of weeds and scrubland.
基金supported by the National Natural Science Foundation of China(Nos.12072105,11932006,and 52474388).
文摘The applications of Al alloy foam require consideration of potential damage risks,which are closely related to the evolution of its internal pore structures.However,conventional ex situ experimental observation cannot provide information on the structure evolution during deformation.In order to investigate the failure mechanism of Al alloy foam under quasi-static compression,by utilizing X-ray imaging technology,in situ CT image data were obtained during the loading process.A geometric model characterizing the real structure of Al alloy foam was reconstructed from the initial CT images and used for finite element simulation.Besides,based on the digital volume correlation(DVC)method,the displacement and strain fields of Al alloy foam were calculated.The results show that the in situ experimental observation based on X-ray imaging can effectively obtain the failure information of Al alloy foam.The simulation results for deformation and failure behavior of Al alloy foam are consistent with experimental results.During the quasi-static compression,a shear band can be observed diagonally across the profile of Al alloy foam,with weak regions occurring in the cells with larger volume and higher aspect ratios.Using these weak regions as boundaries,the relative displacement of cell structures on one side compared to another side was identified as the intrinsic cause of shear band formation.The high-strain regions identified by DVC closely match the crack locations on the cell walls,validating the accuracy of DVC on localizing cracks on cell walls and predicting their propagation trends.
基金Supported by the Fifth Batch of Innovation Teams of Wuzhou Meteorological Bureau“Wuzhou Innovation Team for Enhancing the Comprehensive Meteorological Observation Ability through Digitization and Intelligence”Project of Wuzhou Science and Technology Bureau(202402122)Wuzhou Science and Technology Planning Project(202402119).
文摘In this paper,Wuzhou City of Guangxi was taken as the research object.Through the design of a climatic data warehousing system,the decoding methods of surface meteorological data and their application in the management of climatic data were explored.Based on the parsing technology of the monthly report of surface meteorological records(A-file),the design of Wuzhou climatic data warehousing system was realized,completing the precise extraction and database construction of observational elements such as regional temperature,wind direction,and weather phenomena.Based on this system,the meteorological data in 2024 were analyzed,and the probabilistic characteristics of dominant wind direction in Wuzhou(northeast wind accounting for the largest proportion),the spatiotemporal distribution patterns of extreme temperatures(annual extreme high temperature of 37.1℃in August and extreme low temperature of 1.9℃in January),and the general climatic overview of Wuzhou City(annual precipitation 3.2%higher than the standard value)were revealed.The research shows that climate change has a significant impact on agricultural production and economic development in Wuzhou City,and the construction of a reasonable climatic data database is of great significance for enhancing professional meteorological service capabilities in the context of climate change.This study not only provides a scientific basis for the economic development of Wuzhou region,but also offers reference ideas for other regions to cope with regional climate adaptation planning.
基金supported by the National Natural Science Foundation of China(Grant No.41705081)the Shandong Natural Science Foundation Project(Grant No.ZR2019ZD12)the Laoshan Laboratory(Grant No.LSKJ202202203).
文摘This study explored the observation strategy and effectiveness of synoptic-scale adaptive observations for improving sea fog prediction in coastal regions around the Bohai Sea based on a poorly predicted fog event with cold-front synoptic pattern(CFSP).An ensemble Kalman filter data assimilation system for the Weather Research and Forecasting model was adopted with ensemble sensitivity analysis(ESA).By comparing observation impacts(estimated from a 40-member ensemble with ESA)among different meteorological observation variables and pressure levels,the temperature at 850 hPa and surface layer(850 hPa-and-surface temperature)was selected as the target observation type.Additionally,the area with large observation impacts for this observation type was predicted in the transition region of the surface low–high system.This area developed southward with the low and moved eastward with the low–high system,which could be explained by the main features of CFSP.Moreover,both experiments assimilating synthetic and real observations showed that assimilating 850 hPa-and-surface temperature observations generally yielded better fog coverage forecasts in areas with greater observation impacts than areas with smaller impacts.However,the effectiveness of adaptive observations was reduced when real observations rather than synthetic observations were assimilated,which is possibly due to factors such as observation and model errors.The main conclusions above were verified by another typical fog event with CFSP characteristics.Results of this study highlight the importance of improved initial conditions in the transition region of the low–high system for improving fog prediction and provide scientific guidance for implementing an observation network for fog forecasting over the Bohai Sea.
基金National Key Research and Development Program of China,No.2021YFC3201102National Natural Science Foundation of China,No.42071041,No.42171047。
文摘Runoff observation uncertainty is a key unsolved issue in the hydrology community.Existing studies mainly focused on observation uncertainty sources and their impacts on simulation performance,but the impacts on changes of flow regime characteristics remained rare.This study detects temporal changes in 16 flow regime metrics from five main components(i.e.,magnitude,frequency of events,variability,duration,and timing),and evaluates the effects of observation uncertainty on trends of flow regime metrics by adopting a normal distribution error model and using uncertainty width,significant change rate of slopes,coefficient of variation,and degree of deviation.The daily runoff series from 1971 to 2020 at five hydrological stations(i.e.,Huangheyan,Tangnaihai,and Lanzhou in the Yellow River Source Region,Xianyang in the Weihe River Catchment,and Heishiguan in the Yiluo River Catchment)in the water conservation zone of Yellow River are collected for our study.Results showed that:(1)Flow regimes showed significant increases in the low flow magnitude,and significant decreases in the high and average flow magnitude,variability and duration at all the five stations.The magnitude,variability and duration metrics decreased significantly,and the frequency metrics increased significantly at Heishiguan.The low flow magnitude and timing metrics increased significantly,while the high flow magnitude,frequency and variability metrics decreased significantly at Xianyang.The low flow magnitude and high flow timing metrics increased significantly,while the low flow frequency,high flow magnitude and variability metrics decreased significantly in the Yellow River Source Region.(2)Observation uncertainty remarkably impacted the changes of 28.75% of total flow regime metrics at all the stations.The trends of 11.25% of total metrics changed from significance to insignificance,while those of 17.5% of total metrics changed from insignificance to significance.For the rest metrics,the trends remained the same,i.e.,significant(18.75%)and insignificant(52.50%)trends.(3)Observation uncertainty had the greatest impacts on the frequency metrics,especially at Xianyang,followed by duration,variability,timing and magnitude metrics.
基金funded by the National Natural Science Foundation of China(Grant Nos.42192553 and 41805071)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX24_1413)the High Performance Computing Center of Nanjing University of Information Science&Technology for their support of this work。
文摘For all-sky infrared radiance assimilation,the heteroscedasticity and non-Gaussian behavior of observation-minusbackground(OMB)departures are two major difficulties.The Geer–Bauer observation error inflation(GBOEI)scheme is a universal way to handle the issues.However,it fails to take into account the consistency between model and observation,resulting in unreasonably large observation errors where the simulations agree with the observations.Thus,this study modifies the GBOEI scheme to rationalize the observation errors in such areas.With Advanced Himawari Imager water vapor channel data,the test results show that the normalized OMB with the new observation error approach leads to more Gaussian form than the GBOEI method and constant observation errors.Hence,the assimilation experiments with the new scheme produce better brightness temperature analysis than other methods,and also improve temperature and humidity analysis.Furthermore,a real case experiment of Typhoon Lekima(2019)with the new observation error scheme exhibits more accuracy,especially in track prediction,and substantial error reductions in wind,temperature,and humidity forecasts are also obtained.Meanwhile,5-day 6-hour cycling experiments in the real case of Typhoon Lekima(2019)with the new observation error scheme confirm that the new method does not introduce extra imbalance compared to the experiment with constant observation errors;plus,more accurate typhoon forecasts can also be obtained in both the analysis and forecast,especially in track prediction.