期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
融合多种策略SSA算法优化XGBoost的水厂混凝投药预测模型 被引量:1
1
作者 王文成 杨金瑞 《制造业自动化》 2025年第1期136-143,共8页
为了提高水厂混凝剂投加量的预测精度,提出一种改进麻雀搜索算法(ISSA)优化极端梯度提升树(XGBoost)的混凝投药预测模型。首先将Sobol序列、双样本学习策略和柯西-高斯变异策略与麻雀搜索算法结合;然后利用改进的麻雀搜索算法对XGBoost... 为了提高水厂混凝剂投加量的预测精度,提出一种改进麻雀搜索算法(ISSA)优化极端梯度提升树(XGBoost)的混凝投药预测模型。首先将Sobol序列、双样本学习策略和柯西-高斯变异策略与麻雀搜索算法结合;然后利用改进的麻雀搜索算法对XGBoost模型中主要的超参数进行优化,建立混凝投药预测模型。该模型以源水流量、浊度、温度、pH、耗氧量为输入,混凝剂投加量为输出。最后利用桂林某水厂的历史生产数据,通过20次重复实验对该模型进行训练和测试。结果显示,ISSA优化XGBoost模型的平均均方根误差(RMSE)达0.4895 mg/L,平均决定系数(R~2)达0.893,验证了该模型具有良好的预测精度和稳定性。 展开更多
关键词 混凝投药 XGBoost 麻雀搜索算法 Sobol序列 双样本学习 变异策略
在线阅读 下载PDF
基于HSBSO算法的城市物流无人机指派 被引量:1
2
作者 张书琴 夏洪山 +2 位作者 江炜 杨文凯 王莫凡 《计算机工程与应用》 北大核心 2025年第17期355-364,共10页
针对头脑风暴优化算法求解带有时间窗同时寄取快递的城市物流无人机任务指派效果差、收敛速度慢等问题,提出了一种混合策略改进的头脑风暴优化算法(hybrid strategy-improved brain storm optimization,HSBSO)。通过Sobol序列初始化种群... 针对头脑风暴优化算法求解带有时间窗同时寄取快递的城市物流无人机任务指派效果差、收敛速度慢等问题,提出了一种混合策略改进的头脑风暴优化算法(hybrid strategy-improved brain storm optimization,HSBSO)。通过Sobol序列初始化种群,增加种群多样性;引入改进的Sine混沌映射修正中间粒子,再用量子行为产生新粒子,提高算法全局搜索能力的同时加快收敛速度;二次函数动态调整局部搜索概率,控制全局搜索及局部搜索的精度;运用基于观测的变异学习策略跳出局部最优。实验结果表明,HSBSO算法与基本BSO算法、GA及SA相比,平均适应度值分别降低1.5%、21.4%及5.7%,程序运行时间分别下降4.5%、98.2%及70.2%,HSBSO算法运行时间增长率为每客户2.2 s,且HSBSO获得的90%解的适应度值优于BSO适应度值的平均值。同时,基于观测的变异学习策略在跳出局部最优的能力及稳定性方面也显著优于莱维飞行、动态透镜成像及透镜成像反向学习策略。 展开更多
关键词 城市物流无人机 量子行为 Sine混沌映射 基于观测的变异学习策略 头脑风暴优化算法
在线阅读 下载PDF
基于多策略融合的麻雀搜索算法的设计与实现
3
作者 王硕 李成杰 +4 位作者 崔丽琪 李欣 李聪 乐秀权 戴志坚 《太赫兹科学与电子信息学报》 2025年第11期1193-1202,1213,共11页
群体智能算法在图像分类、图像识别和最优化问题方面有广泛的应用,群体智能算法易陷入局部最优、种群多样性损失,造成收敛速度慢、后期收敛停滞等问题。该文针对麻雀搜索算法易陷入局部最优的问题,提出一种基于多策略融合的麻雀搜索算法... 群体智能算法在图像分类、图像识别和最优化问题方面有广泛的应用,群体智能算法易陷入局部最优、种群多样性损失,造成收敛速度慢、后期收敛停滞等问题。该文针对麻雀搜索算法易陷入局部最优的问题,提出一种基于多策略融合的麻雀搜索算法,借助反向精英学习初始化种群,增加物种多样性;在发现者位置用正余弦算法(SCA)和自适应权重公式进行融合,在追随者位置更新中引入高斯变异算子对全局最优解扰动过程进行更新。以上处理有效提升算法的全局最优能力,防止算法陷入局部最优;最后,利用8个测试函数对算法的收敛速度、收敛精确度、平均值和标准差等指标进行评估。实验证明多策略融合麻雀搜索算法(MSFSSA)相对于传统麻雀搜索算法,在收敛速度和整体最优值的精确度等性能方面有明显提升。 展开更多
关键词 多策略融合 精英学习 高斯变异算子 正弦余弦算法
在线阅读 下载PDF
基于改进白鲸优化算法的三维DV-Hop定位算法 被引量:1
4
作者 陈悦 冯锋 《计算机科学》 北大核心 2025年第S1期798-806,共9页
为解决无线传感器网络中传统三维DV-Hop(Distance Vector Hop)算法在应对复杂环境时存在节点定位精度低、误差过大的问题,提出了一种基于改进白鲸优化算法(Improved Beluga Whale Optimization,IBWO)的三维定位算法(IBWO-DV-Hop)。首先... 为解决无线传感器网络中传统三维DV-Hop(Distance Vector Hop)算法在应对复杂环境时存在节点定位精度低、误差过大的问题,提出了一种基于改进白鲸优化算法(Improved Beluga Whale Optimization,IBWO)的三维定位算法(IBWO-DV-Hop)。首先,通过多通信半径并引入修正因子优化节点最小跳数,并利用跳距加权优化方法修正平均跳距,以降低通信半径不确定性和跳数误差对定位精度的影响。其次,引入IBWO代替最小二乘法估算未知节点的位置,所做改进包括在白鲸算法初始化阶段采用Sobol序列和反向学习结合的策略对初始种群实施改进,增加种群多样性。然后,在勘探阶段和开发阶段分别引入自适应t分布变异和自适应Levy飞行策略,增强算法的寻优能力。最后,在鲸落阶段引入透镜成像反向学习策略,提升算法的全局寻优能力。实验结果表明,与传统三维DV-hop算法以及其他同类算法相比,该算法具有更高的定位精度。 展开更多
关键词 无线传感器网络 三维DV-Hop算法 白鲸优化算法 多通信半径 跳距加权优化 自适应t分布变异 透镜成像反向学习策略
在线阅读 下载PDF
基于改进登山队优化算法的无人机三维路径规划
5
作者 弓晓霞 郝海霞 +1 位作者 程威 刘吉 《测控技术》 2025年第6期46-52,共7页
为解决传统登山队优化(Mountaineering Team-Based Optimization, MTBO)算法在无人机三维路径规划中易陷入局部最优和收敛速度慢的问题,提出一种基于多种策略改进登山队优化(Improved MTBO,IMTBO)算法的无人机路径规划方法。首先,结合... 为解决传统登山队优化(Mountaineering Team-Based Optimization, MTBO)算法在无人机三维路径规划中易陷入局部最优和收敛速度慢的问题,提出一种基于多种策略改进登山队优化(Improved MTBO,IMTBO)算法的无人机路径规划方法。首先,结合三维地形与障碍物信息,通过数字高程模型(Digital Elevation Model, DEM)进行三维环境建模,设计包含路径长度、高度代价和平滑性的加权目标函数,将路径规划问题转换为多目标优化问题;其次,采用Tent混沌映射和折射反向学习来增强初始种群的多样性,采用正余弦策略来替换灾害威胁阶段原始的位置更新公式,以平衡算法的全局搜索和局部开发能力,采用高斯变异策略来替换队员更新阶段的随机生成新队员机制,以提升算法的局部开发能力;最后,将IMTBO算法应用于无人机三维路径规划,实验结果表明,相较于其他4种路径规划算法,在相同的环境下,IMTBO算法规划的路径更短、搜索效率更高。 展开更多
关键词 登山队优化算法 Tent混沌映射 折射反向学习 正余弦策略 高斯变异 三维路径规划
在线阅读 下载PDF
A Feature Selection Method for Software Defect Prediction Based on Improved Beluga Whale Optimization Algorithm
6
作者 Shaoming Qiu Jingjie He +1 位作者 Yan Wang Bicong E 《Computers, Materials & Continua》 2025年第6期4879-4898,共20页
Software defect prediction(SDP)aims to find a reliable method to predict defects in specific software projects and help software engineers allocate limited resources to release high-quality software products.Software ... Software defect prediction(SDP)aims to find a reliable method to predict defects in specific software projects and help software engineers allocate limited resources to release high-quality software products.Software defect prediction can be effectively performed using traditional features,but there are some redundant or irrelevant features in them(the presence or absence of this feature has little effect on the prediction results).These problems can be solved using feature selection.However,existing feature selection methods have shortcomings such as insignificant dimensionality reduction effect and low classification accuracy of the selected optimal feature subset.In order to reduce the impact of these shortcomings,this paper proposes a new feature selection method Cubic TraverseMa Beluga whale optimization algorithm(CTMBWO)based on the improved Beluga whale optimization algorithm(BWO).The goal of this study is to determine how well the CTMBWO can extract the features that are most important for correctly predicting software defects,improve the accuracy of fault prediction,reduce the number of the selected feature and mitigate the risk of overfitting,thereby achieving more efficient resource utilization and better distribution of test workload.The CTMBWO comprises three main stages:preprocessing the dataset,selecting relevant features,and evaluating the classification performance of the model.The novel feature selection method can effectively improve the performance of SDP.This study performs experiments on two software defect datasets(PROMISE,NASA)and shows the method’s classification performance using four detailed evaluation metrics,Accuracy,F1-score,MCC,AUC and Recall.The results indicate that the approach presented in this paper achieves outstanding classification performance on both datasets and has significant improvement over the baseline models. 展开更多
关键词 Software defect prediction feature selection beluga optimization algorithm triangular wandering strategy cauchy mutation reverse learning
在线阅读 下载PDF
基于精英反向学习的正余弦指数分布优化算法
7
作者 王一荻 陈丽敏 +1 位作者 叶汶建 沈越 《牡丹江师范学院学报(自然科学版)》 2025年第3期6-10,共5页
提出一种基于精英反向学习的正余弦指数分布优化算法(IEDO).IEDO算法引入精英反向学习策略、柯西-高斯变异策略和正余弦策略,提高了算法的收敛精度.将IEDO应用于齿轮设计问题中并进行对比,结果显示,IEDO在工程问题中具有较好的应用性.
关键词 指数分布优化算法 精英反向学习策略 柯西-高斯变异策略 正余弦策略
在线阅读 下载PDF
Multi-Strategy Boosted Spider Monkey Optimization Algorithm for Feature Selection
8
作者 Jianguo Zheng Shuilin Chen 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3619-3635,共17页
To solve the problem of slow convergence and easy to get into the local optimum of the spider monkey optimization algorithm,this paper presents a new algorithm based on multi-strategy(ISMO).First,the initial populatio... To solve the problem of slow convergence and easy to get into the local optimum of the spider monkey optimization algorithm,this paper presents a new algorithm based on multi-strategy(ISMO).First,the initial population is generated by a refracted opposition-based learning strategy to enhance diversity and ergodicity.Second,this paper introduces a non-linear adaptive dynamic weight factor to improve convergence efficiency.Then,using the crisscross strategy,using the horizontal crossover to enhance the global search and vertical crossover to keep the diversity of the population to avoid being trapped in the local optimum.At last,we adopt a Gauss-Cauchy mutation strategy to improve the stability of the algorithm by mutation of the optimal individuals.Therefore,the application of ISMO is validated by ten benchmark functions and feature selection.It is proved that the proposed method can resolve the problem of feature selection. 展开更多
关键词 Spider monkey optimization refracted opposition-based learning crisscross strategy Gauss-Cauchy mutation strategy feature selection
在线阅读 下载PDF
融合多策略的改进秃鹰搜索算法 被引量:7
9
作者 郭云川 张长胜 +4 位作者 段青娜 罗运河 程倩 钱斌 胡蓉 《控制与决策》 EI CSCD 北大核心 2024年第1期69-77,共9页
针对秃鹰搜索算法(BES)存在全局搜索性能与局部开发能力不协调、易陷入局部最优等缺陷,提出一种融合多策略的改进秃鹰搜索算法(IBES).采用凸型自适应控制因子使算法在迭代寻优过程中可根据搜索进程动态调整位置更新方程以修正模型,实现... 针对秃鹰搜索算法(BES)存在全局搜索性能与局部开发能力不协调、易陷入局部最优等缺陷,提出一种融合多策略的改进秃鹰搜索算法(IBES).采用凸型自适应控制因子使算法在迭代寻优过程中可根据搜索进程动态调整位置更新方程以修正模型,实现自适应寻优,有效平衡算法的全局搜索性能和局部开发能力;引入折射反向学习机制可对问题当前解在其解空间内进行折射反向学习找到与之对应的折射反向解,增加寻到最优解的概率,提升算法求解精度和收敛速度;同时,利用定向重组与诱导突变策略实现种群个体多维信息的重组和突变,提升个体质量和种群多样性,增加算法跳出局部最优的机率,提高搜索精度.以最优值、平均值、标准差和平均收敛代数作为算法性能的评价指标,对10个不同基准测试函数进行数值仿真实验,实验结果验证了所提改进方法的有效性及IBES算法的优越性.此外,经IBES算法优化后的PID神经网络控制器响应速度快、超调量小、调节时间短,进一步验证了算法的实用性. 展开更多
关键词 秃鹰搜索算法 凸型自适应控制因子 折射反向学习机制 定向重组与诱导突变策略 PID神经网络控制器
原文传递
混合多策略改进的蜣螂优化算法 被引量:8
10
作者 娄革伟 郑永煌 +3 位作者 陈均 谌廷政 索相波 刘旭亮 《计算机工程与应用》 CSCD 北大核心 2024年第24期97-109,共13页
针对原始蜣螂优化算法全局探索能力不足、易陷入局部最优以及收敛精度不理想等问题,提出了一种混合多策略改进的蜣螂优化算法。采用混沌映射结合随机反向学习策略初始化种群提高多样性,扩大解空间搜索范围,增强全局寻优能力;通过黄金正... 针对原始蜣螂优化算法全局探索能力不足、易陷入局部最优以及收敛精度不理想等问题,提出了一种混合多策略改进的蜣螂优化算法。采用混沌映射结合随机反向学习策略初始化种群提高多样性,扩大解空间搜索范围,增强全局寻优能力;通过黄金正弦策略实现个体动态搜索,提高算法遍历性;引入竞争机制增强信息交互,平衡全局探索与局部开发,加快算法收敛速度;最后在迭代后期利用自适应t分布变异对个体进行扰动,避免算法陷入局部最优。在23个基准测试函数中,将该算法与其他优化算法进行对比测试,结果表明,改进后的算法具有更强的寻优性能、更高的收敛精度和更好的稳定性。在具体工程设计实例中的应用验证了该算法在处理实际优化问题上的有效性。 展开更多
关键词 蜣螂优化算法 随机反向学习 混沌映射 黄金正弦策略 竞争机制 t分布变异 基准测试函数 工程设计实例
在线阅读 下载PDF
趋优变异反向学习的樽海鞘群与蝴蝶混合优化算法 被引量:2
11
作者 黄鑫宇 马宁 +2 位作者 付伟 季伟东 亓文凤 《计算机应用研究》 CSCD 北大核心 2024年第3期721-728,763,共9页
针对蝴蝶优化算法(butterfly optimization algorithm,BOA)易陷入局部最优,且收敛速度慢和寻优精度低等问题,提出了一种趋优变异反向学习的樽海鞘群与蝴蝶混合优化算法(hybrid optimization algorithm for salp swarm and butterfly wit... 针对蝴蝶优化算法(butterfly optimization algorithm,BOA)易陷入局部最优,且收敛速度慢和寻优精度低等问题,提出了一种趋优变异反向学习的樽海鞘群与蝴蝶混合优化算法(hybrid optimization algorithm for salp swarm and butterfly with reverse mutation towards optimization learning,OMSSBOA)。引入柯西变异对最优蝴蝶个体进行扰动,避免算法陷入局部最优;将改进的樽海鞘群优化算法(salp swarm algorithm,SSA)嵌入到BOA,平衡算法全局勘探和局部开采的比重,进而提高算法收敛速度;利用趋优变异反向学习策略扩大算法搜索范围并提升解的质量,进而提高算法的寻优精度。将改进算法在10种基准测试函数上进行仿真实验,结果表明,改进算法具有较好的寻优性能和鲁棒性。 展开更多
关键词 蝴蝶优化算法 樽海鞘群优化算法 柯西变异 趋优变异反向学习 领导者策略
在线阅读 下载PDF
带偏向性轮盘赌的多算子协同粒子群优化算法 被引量:4
12
作者 于海波 朱秦娜 +2 位作者 康丽 乔钢柱 曾建潮 《控制与决策》 EI CSCD 北大核心 2024年第4期1167-1176,共10页
针对粒子群优化算法在处理高维、大规模、多变量耦合、多模态、多极值属性优化问题时易早熟收敛等性能和技术瓶颈,基于粒子群优化算法行为学习算子和3种不同学习偏好的差分变异算子,建立带偏向性轮盘赌的多算子选择与融合机制,提出一种... 针对粒子群优化算法在处理高维、大规模、多变量耦合、多模态、多极值属性优化问题时易早熟收敛等性能和技术瓶颈,基于粒子群优化算法行为学习算子和3种不同学习偏好的差分变异算子,建立带偏向性轮盘赌的多算子选择与融合机制,提出一种带偏向性轮盘赌的多算子协同粒子群优化算法MOCPSO.MOCPSO针对迭代粒子群榜样粒子集,首先通过对迭代种群及其榜样粒子集优劣分组,同时采用轮盘赌分别为每组榜样粒子集选配不同学习偏好的变异算子,并为每组榜样粒子适配差分基向量和最优基向量,预学习并优化迭代种群及其榜样粒子,以权衡算法的全局探索和局部开发;然后通过合并所有子种群,并结合粒子群优化算法行为学习算子,指导迭代种群状态更新,以提高算法的全局收敛性;最后结合精英学习策略,对群体历史最优进行高斯扰动,以提高算法的局部逃生能力,保障算法收敛的多样性.实验结果表明,MOCPSO算法与5种先进的同类型群智能算法在求解CEC2014基准测试问题上具备竞争力,且有更强的优化特性. 展开更多
关键词 粒子群优化 差分演化 多算子协同 榜样竞争 偏向性变异策略 精英学习
原文传递
基于改进帝王蝶算法的最大似然DOA估计 被引量:2
13
作者 赵小梅 丁勇 王海涛 《广西师范大学学报(自然科学版)》 CAS 北大核心 2024年第3期131-140,共10页
针对传统最大似然波达方向(maximum likelihood direction of arrival,ML-DOA)估计存在计算量大、估计精度差等问题,本文提出一种采用改进帝王蝶优化算法(improved monarch butterfly optimization algorithm,IMBO)的ML-DOA估计方法。I... 针对传统最大似然波达方向(maximum likelihood direction of arrival,ML-DOA)估计存在计算量大、估计精度差等问题,本文提出一种采用改进帝王蝶优化算法(improved monarch butterfly optimization algorithm,IMBO)的ML-DOA估计方法。IMBO算法通过精英反向学习策略对初始帝王蝶种群进行优化,得到适应度值较优的初始帝王蝶个体,进而能够改善帝王蝶种群的多样性;引入差分进化算法启发的变异操作以及自适应策略对帝王蝶个体的寻优方式进行改进,扩大了算法的搜索空间;引入了高斯-柯西变异算子,自适应调整变异步长,避免算法陷入局部最优。将IMBO应用于ML-DOA,实验表明,与传统的DOA估计算法相比,在不同信源数目、信噪比以及种群数量下,本文提出的算法收敛性能更好,均方根误差更低,运算量更小。 展开更多
关键词 波达方向 最大似然估计 帝王蝶算法 精英反向学习 自适应策略 变异算子
在线阅读 下载PDF
多策略融合改进的飞蛾火焰优化算法 被引量:2
14
作者 何加文 许贤泽 高波 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第9期2862-2871,共10页
针对飞蛾火焰优化算法容易出现局部最优解、接近全局最优时开发能力不足等问题,提出一种多策略融合改进的飞蛾火焰优化(RGMFO)算法。在每次迭代开始时,使用随机反向学习策略获得高质量飞蛾种群;利用高斯变异将较差的火焰个体替换为优秀... 针对飞蛾火焰优化算法容易出现局部最优解、接近全局最优时开发能力不足等问题,提出一种多策略融合改进的飞蛾火焰优化(RGMFO)算法。在每次迭代开始时,使用随机反向学习策略获得高质量飞蛾种群;利用高斯变异将较差的火焰个体替换为优秀个体;使用阿基米德螺线、权重因子和围绕最优火焰飞行3种方式改进飞蛾更新机制。为验证所提算法的有效性,与11个不同类型的基准函数进行寻优测试,基准函数实验结果与秩和检验表明:相较于其他优化算法及其他MFO改进算法,所提算法具有更好的全局搜索能力与更高的寻优精度。将所提算法应用于减速器设计和槽形舱壁设计的实际工程场景中,以进一步验证算法的实用性与可行性。 展开更多
关键词 飞蛾火焰优化算法 多策略融合 随机反向学习 高斯变异 智能优化
原文传递
基于精英引导的改进哈里斯鹰优化算法 被引量:5
15
作者 李雨恒 高尚 孟祥宇 《计算机工程与科学》 CSCD 北大核心 2024年第2期363-373,共11页
针对哈里斯鹰优化算法(HHO)易陷入局部最优和收敛速度慢的问题,提出一种基于精英引导的改进哈里斯鹰优化算法(EHHO)。首先,引入精英反向学习,以精英中心为对称中心进行反向学习来优化种群结构,增强算法跳出局部最优的能力;其次,引入精... 针对哈里斯鹰优化算法(HHO)易陷入局部最优和收敛速度慢的问题,提出一种基于精英引导的改进哈里斯鹰优化算法(EHHO)。首先,引入精英反向学习,以精英中心为对称中心进行反向学习来优化种群结构,增强算法跳出局部最优的能力;其次,引入精英演化策略,以精英个体为主体进行基于高斯随机突变的演化来提升种群质量,加快算法收敛速度;最后,引入自适应机制,动态调整精英演化策略中2种演化方式的选择概率,以提升算法稳定性。为验证改进算法的有效性,选取15个基准函数进行仿真实验。实验结果表明,改进算法在寻优性能和鲁棒性上均有明显提升,在优化算法中具有一定竞争力。 展开更多
关键词 哈里斯鹰优化算法 精英反向学习 精英演化策略 高斯随机突变 自适应机制
在线阅读 下载PDF
融合差分教学优化的粗糙集属性约简算法
16
作者 周婉婷 郑颖春 魏博涛 《计算机应用研究》 CSCD 北大核心 2024年第11期3317-3322,共6页
针对传统粗糙集理论在属性约简中存在计算复杂度高、易陷入局部最优解等问题,结合差分教学优化算法的全局搜索能力和粗糙集在处理不精确和不确定数据方面的优势,提出融合差分教学优化的粗糙集属性约简算法(rough set attribute reductio... 针对传统粗糙集理论在属性约简中存在计算复杂度高、易陷入局部最优解等问题,结合差分教学优化算法的全局搜索能力和粗糙集在处理不精确和不确定数据方面的优势,提出融合差分教学优化的粗糙集属性约简算法(rough set attribute reduction algorithm based on differential teaching-learning optimization, AR-DTLBO)。首先,引入自适应教学因子和差分变异策略对教学优化算法进行改进,提高算法的搜索能力和优化性能;其次,通过改进后的教学优化算法“教”和“学”两个阶段对属性约简过程进行优化,降低了数据集的维度和复杂性;最后,在UCI数据库中的8个数据集上将所提算法和其他六种算法进行对比实验。实验结果表明,该算法在约简长度、约简时间、约简率和分类精度上均取得了良好的效果,实现了对数据集的有效约简和优化,能够有效减少冗余信息并提高决策规则的准确性,为决策分析和数据挖掘等领域提供了有效支撑。 展开更多
关键词 教学优化算法 教学阶段 学习阶段 差分变异策略 属性约简
在线阅读 下载PDF
基于窦性变异的改进人工蜂群白骨顶鸡算法及应用
17
作者 张羽 何庆 《计算机技术与发展》 2024年第4期162-167,共6页
针对白骨顶鸡算法(COOT)存在求解精度低、收敛速度较慢和易陷入局部最优的问题,该文提出一种基于窦性变异的改进人工蜂群白骨顶鸡算法(ICOOT)。首先,采用精英反向学习策略初始化个体位置,增加初始个体寻优多样性;其次,考虑到人工蜂群算... 针对白骨顶鸡算法(COOT)存在求解精度低、收敛速度较慢和易陷入局部最优的问题,该文提出一种基于窦性变异的改进人工蜂群白骨顶鸡算法(ICOOT)。首先,采用精英反向学习策略初始化个体位置,增加初始个体寻优多样性;其次,考虑到人工蜂群算法强大的搜索能力,提出一种以全局最优值引导的改进人工蜂群搜索策略,更新白骨顶鸡个体的位置,以提高COOT的搜索能力和收敛精度;最后,引入窦性变异策略对最优个体进行扰动,一方面使算法能够有效跳出局部最优,另一方面提高最优个体质量。利用12个基准测试函数对ICOOT进行寻优性能测试,将ICOOT应用于拉力/压力弹簧优化工程设计问题,并与其他元启发式算法进行了比较和分析,结果验证了改进的算法的可行性和优越性。 展开更多
关键词 白骨顶鸡算法 精英反向学习 人工蜂群算法 窦性变异策略 工程设计问题
在线阅读 下载PDF
应用精英反向学习策略的混合差分演化算法 被引量:25
18
作者 汪慎文 丁立新 +2 位作者 谢承旺 郭肇禄 胡玉荣 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2013年第2期111-116,共6页
针对传统差分演化算法在演化后期收敛速度变慢的问题,利用精英个体的良好信息,在一般反向学习方法的基础上,提出精英反向学习策略,并融合降低参数敏感性和变异策略敏感性的机制,设计了一种基于精英反向学习策略的混合差分演化算法(EOCoD... 针对传统差分演化算法在演化后期收敛速度变慢的问题,利用精英个体的良好信息,在一般反向学习方法的基础上,提出精英反向学习策略,并融合降低参数敏感性和变异策略敏感性的机制,设计了一种基于精英反向学习策略的混合差分演化算法(EOCoDE),从理论上证明了该算法的全局收敛性.新算法使用精英反向策略初始化种群,在进化过程中,如果满足预设定的学习概率,就执行精英反向算子,否则,随机组合参数知识库和策略知识库中的知识来产生差分演化种群.对比实验结果表明,精英反向学习策略比一般反向学习策略具有更强的搜索能力,EOCoDE算法的性能具有明显优势. 展开更多
关键词 差分演化 一般反向学习 精英反向学习 参数敏感性 变异策略
原文传递
基于择优学习策略的差分进化算法 被引量:9
19
作者 刘昊 丁进良 +1 位作者 杨翠娥 柴天佑 《上海交通大学学报》 EI CAS CSCD 北大核心 2017年第6期704-708,共5页
传统的差分进化算法在个体变异方面只是利用了随机个体和最优个体的信息.由于选用个体的随机性,导致其搜索效率比较低并且有可能找不到最优解,为此,提出了基于择优学习策略的差分进化算法.该算法选择性地利用种群中比较优秀的个体的信息... 传统的差分进化算法在个体变异方面只是利用了随机个体和最优个体的信息.由于选用个体的随机性,导致其搜索效率比较低并且有可能找不到最优解,为此,提出了基于择优学习策略的差分进化算法.该算法选择性地利用种群中比较优秀的个体的信息,克服种群进化过程中的盲目性,增强了搜索能力.通过对多个具有不同特性的标准测试函数进行测试研究,结果表明该方法可以明显减少迭代次数,提高计算效率. 展开更多
关键词 差分进化算法 择优学习 变异策略 函数优化
在线阅读 下载PDF
基于混合策略自适应学习的并行粒子群优化算法 被引量:28
20
作者 伍大清 郑建国 《控制与决策》 EI CSCD 北大核心 2013年第7期1087-1093,共7页
针对当前各种粒子群优化算法解决问题时存在的局限性,提出一种基于混合策略自适应学习的粒子群优化算法(HLPSO).该算法从收敛速度、跳出局部极值、探索、开发几个不同角度融合了4种具有不同优势的变异策略,当面对不同形态的复杂问题时... 针对当前各种粒子群优化算法解决问题时存在的局限性,提出一种基于混合策略自适应学习的粒子群优化算法(HLPSO).该算法从收敛速度、跳出局部极值、探索、开发几个不同角度融合了4种具有不同优势的变异策略,当面对不同形态的复杂问题时通过自适应学习机制选择出合适的策略来完成全局寻优.通过对7个标准测试函数的仿真实验并与其他算法相比较,所得结果表明了所提出的算法具有较快的收敛速度、较高的精度以及很强的跳出局部极值的能力. 展开更多
关键词 粒子群优化 自适应学习 变异策略 函数优化
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部