Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in ed...Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in education continues to increase,educators actively seek innovative and immersive methods to engage students in learning.However,exploring these possibilities also entails identifying and overcoming existing barriers to optimal educational integration.Concurrently,this surge in demand has prompted the identification of specific barriers,one of which is three-dimensional(3D)modeling.Creating 3D objects for augmented reality education applications can be challenging and time-consuming for the educators.To address this,we have developed a pipeline that creates realistic 3D objects from the two-dimensional(2D)photograph.Applications for augmented and virtual reality can then utilize these created 3D objects.We evaluated the proposed pipeline based on the usability of the 3D object and performance metrics.Quantitatively,with 117 respondents,the co-creation team was surveyed with openended questions to evaluate the precision of the 3D object created by the proposed photogrammetry pipeline.We analyzed the survey data using descriptive-analytical methods and found that the proposed pipeline produces 3D models that are positively accurate when compared to real-world objects,with an average mean score above 8.This study adds new knowledge in creating 3D objects for augmented reality applications by using the photogrammetry technique;finally,it discusses potential problems and future research directions for 3D objects in the education sector.展开更多
To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,a...To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,and TL84)on 3D color difference evaluations,50 glossy spheres with a diameter of 2cm based on the Sailner J4003D color printing device were created.These spheres were centered around the five recommended colors(gray,red,yellow,green,and blue)by CIE.Color difference was calculated according to the four formulas,and 111 pairs of experimental samples meeting the CIELAB gray scale color difference requirements(1.0-14.0)were selected.Ten observers,aged between 22 and 27 with normal color vision,were participated in this study,using the gray scale method from psychophysical experiments to conduct color difference evaluations under the four light sources,with repeated experiments for each observer.The results indicated that the overall effect of the D65 light source on 3D objects color difference was minimal.In contrast,D50 and A light sources had a significant impact within the small color difference range,while the TL84 light source influenced both large and small color difference considerably.Among the four color difference formulas,CIEDE2000 demonstrated the best predictive performance for color difference in 3D objects,followed by CMC(1:1),CIE94,and CIELAB.展开更多
Transorbital craniocerebral injury is a relatively rare type of penetrating head injury that poses a significant threat to the ocular and cerebral structures.^([1])The clinical prognosis of transorbital craniocerebral...Transorbital craniocerebral injury is a relatively rare type of penetrating head injury that poses a significant threat to the ocular and cerebral structures.^([1])The clinical prognosis of transorbital craniocerebral injury is closely related to the size,shape,speed,nature,and trajectory of the foreign object,as well as the incidence of central nervous system damage and secondary complications.The foreign objects reported to have caused these injuries are categorized into wooden items,metallic items,^([2-8])and other materials,which penetrate the intracranial region via fi ve major pathways,including the orbital roof (OR),superior orbital fissure (SOF),inferior orbital fissure(IOF),optic canal (OC),and sphenoid wing.Herein,we present eight cases of transorbital craniocerebral injury caused by an unusual metallic foreign body.展开更多
Detecting oriented targets in remote sensing images amidst complex and heterogeneous backgrounds remains a formidable challenge in the field of object detection.Current frameworks for oriented detection modules are co...Detecting oriented targets in remote sensing images amidst complex and heterogeneous backgrounds remains a formidable challenge in the field of object detection.Current frameworks for oriented detection modules are constrained by intrinsic limitations,including excessive computational and memory overheads,discrepancies between predefined anchors and ground truth bounding boxes,intricate training processes,and feature alignment inconsistencies.To overcome these challenges,we present ASL-OOD(Angle-based SIOU Loss for Oriented Object Detection),a novel,efficient,and robust one-stage framework tailored for oriented object detection.The ASL-OOD framework comprises three core components:the Transformer-based Backbone(TB),the Transformer-based Neck(TN),and the Angle-SIOU(Scylla Intersection over Union)based Decoupled Head(ASDH).By leveraging the Swin Transformer,the TB and TN modules offer several key advantages,such as the capacity to model long-range dependencies,preserve high-resolution feature representations,seamlessly integrate multi-scale features,and enhance parameter efficiency.These improvements empower the model to accurately detect objects across varying scales.The ASDH module further enhances detection performance by incorporating angle-aware optimization based on SIOU,ensuring precise angular consistency and bounding box coherence.This approach effectively harmonizes shape loss and distance loss during the optimization process,thereby significantly boosting detection accuracy.Comprehensive evaluations and ablation studies on standard benchmark datasets such as DOTA with an mAP(mean Average Precision)of 80.16 percent,HRSC2016 with an mAP of 91.07 percent,MAR20 with an mAP of 85.45 percent,and UAVDT with an mAP of 39.7 percent demonstrate the clear superiority of ASL-OOD over state-of-the-art oriented object detection models.These findings underscore the model’s efficacy as an advanced solution for challenging remote sensing object detection tasks.展开更多
With the rapid development of technology,artificial intelligence(AI)is increasingly being applied in various fields.In today’s context of resource scarcity,pursuit of sustainable development and resource reuse,the tr...With the rapid development of technology,artificial intelligence(AI)is increasingly being applied in various fields.In today’s context of resource scarcity,pursuit of sustainable development and resource reuse,the transformation of old objects is particularly important.This article analyzes the current status of old object transformation and the opportunities brought by the internet to old objects and delves into the application of artificial intelligence in old object transformation.The focus is on five aspects:intelligent identification and classification,intelligent evaluation and prediction,automation integration,intelligent design and optimization,and integration of 3D printing technology.Finally,the process of“redesigning an old furniture,such as a wooden desk,through AI technology”is described,including the recycling,identification,detection,design,transformation,and final user feedback of the old wooden desk.This illustrates the unlimited potential of the“AI+old object transformation”approach,advocates for people to strengthen green environmental protection,and drives sustainable development.展开更多
Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging du...Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging due to advances in both camouflage materials and biological mimicry.Although multispectral-RGB based technology shows promise,conventional dual-aperture multispectral-RGB imaging systems are constrained by imprecise and time-consuming registration and fusion across different modalities,limiting their performance.Here,we propose the Reconstructed Multispectral-RGB Fusion Network(RMRF-Net),which reconstructs RGB images into multispectral ones,enabling efficient multimodal segmentation using only an RGB camera.Specifically,RMRF-Net employs a divergentsimilarity feature correction strategy to minimize reconstruction errors and includes an efficient boundary-aware decoder to enhance object contours.Notably,we establish the first real-world aerial multispectral-RGB semantic segmentation of camouflage objects dataset,including 11 object categories.Experimental results demonstrate that RMRF-Net outperforms existing methods,achieving 17.38 FPS on the NVIDIA Jetson AGX Orin,with only a 0.96%drop in mIoU compared to the RTX 3090,showing its practical applicability in multimodal remote sensing.展开更多
Structured study of spatial objects and their relationships leads to a better cognition of the geospatial information and creates the concept of context at a higher level of abstraction.This study is aimed at providin...Structured study of spatial objects and their relationships leads to a better cognition of the geospatial information and creates the concept of context at a higher level of abstraction.This study is aimed at providing a comprehensive definition of the context for geospatial objects.A combination of binary qualitative spatial relationships(i.e.direction,distance,and topological relations)among the members of a set of spatial objects will be used accordingly.In addition,by incorporating the general concept of context,obtained from either static data(attributes in a database)or dynamic data(sensors),the compact context of spatial objects will be introduced.Our framework for presentation of the involved knowledge and conception about the objects in context is also explored using ontology and description logic because of powerful conceptualization of relationships,either spatial or non-spatial,integrally.For this purpose,the hierarchies of main structure and object properties are formed at first.The constraint and characteristics of classes,such as subclasses,equivalent classes,cardinality etc.,and object properties,such as being functional,transitive,symmetric,asymmetric,inverse functional,disjoint etc.,are discovered and presented in more detail using web ontology language in description logic mode.The implementation is then performed in the framework of semantic web and extensible markup language syntaxes.The method ultimately facilitates,spatial reasoning by effective querying in a semantic framework taking pellet reasoner and SPARQL(a recursive acronym for SPARQL Protocol and RDF Query Language).展开更多
Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variati...Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variations inUAV flight altitude,differences in object scales,as well as factors like flight speed and motion blur.To enhancethe detection efficacy of small targets in drone aerial imagery,we propose an enhanced You Only Look Onceversion 7(YOLOv7)algorithm based on multi-scale spatial context.We build the MSC-YOLO model,whichincorporates an additional prediction head,denoted as P2,to improve adaptability for small objects.We replaceconventional downsampling with a Spatial-to-Depth Convolutional Combination(CSPDC)module to mitigatethe loss of intricate feature details related to small objects.Furthermore,we propose a Spatial Context Pyramidwith Multi-Scale Attention(SCPMA)module,which captures spatial and channel-dependent features of smalltargets acrossmultiple scales.This module enhances the perception of spatial contextual features and the utilizationof multiscale feature information.On the Visdrone2023 and UAVDT datasets,MSC-YOLO achieves remarkableresults,outperforming the baseline method YOLOv7 by 3.0%in terms ofmean average precision(mAP).The MSCYOLOalgorithm proposed in this paper has demonstrated satisfactory performance in detecting small targets inUAV aerial photography,providing strong support for practical applications.展开更多
Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computati...Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computational resources. In this paper, the LAA images-oriented tensor decomposition and knowledge distillation-based network(TDKD-Net) is proposed,where the TT-format TD(tensor decomposition) and equalweighted response-based KD(knowledge distillation) methods are designed to minimize redundant parameters while ensuring comparable performance. Moreover, some robust network structures are developed, including the small object detection head and the dual-domain attention mechanism, which enable the model to leverage the learned knowledge from small-scale targets and selectively focus on salient features. Considering the imbalance of bounding box regression samples and the inaccuracy of regression geometric factors, the focal and efficient IoU(intersection of union) loss with optimal transport assignment(F-EIoU-OTA)mechanism is proposed to improve the detection accuracy. The proposed TDKD-Net is comprehensively evaluated through extensive experiments, and the results have demonstrated the effectiveness and superiority of the developed methods in comparison to other advanced detection algorithms, which also present high generalization and strong robustness. As a resource-efficient precise network, the complex detection of small and occluded LAA objects is also well addressed by TDKD-Net, which provides useful insights on handling imbalanced issues and realizing domain adaptation.展开更多
Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable...Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable scale,and fuzzy edge morphology of insulator defects,we construct an insulator dataset with 1600 samples containing flashovers and breakages.Then a simple and effective surface defect detection method of power line insulators for difficult small objects is proposed.Firstly,a high-resolution featuremap is introduced and a small object prediction layer is added so that the model can detect tiny objects.Secondly,a simplified adaptive spatial feature fusion(SASFF)module is introduced to perform cross-scale spatial fusion to improve adaptability to variable multi-scale features.Finally,we propose an enhanced deformable attention mechanism(EDAM)module.By integrating a gating activation function,the model is further inspired to learn a small number of critical sampling points near reference points.And the module can improve the perception of object morphology.The experimental results indicate that concerning the dataset of flashover and breakage defects,this method improves the performance of YOLOv5,YOLOv7,and YOLOv8.In practical application,it can simply and effectively improve the precision of power line insulator defect detection and reduce missing detection for difficult small objects.展开更多
Introduction: Cranioencephalic trauma caused by bladed weapons is rare, and that caused by sharp objects is exceptional. The aim of our study was to describe the clinical, therapeutic and evolutionary aspects. Materia...Introduction: Cranioencephalic trauma caused by bladed weapons is rare, and that caused by sharp objects is exceptional. The aim of our study was to describe the clinical, therapeutic and evolutionary aspects. Materials and method: This was a descriptive and analytical study over a 48-month period at CHU la Renaissance from January 1, 2018 to December 31, 2021, concerning patients admitted for penetrating cranioencephalic trauma by pointed object. Results: Twelve cases, all male, of penetrating cranioencephalic sharp-force trauma were identified. The mean age was 34 ± 7 years, with extremes of 11 and 60 years. Farmers and herders accounted for 31% and 25% of cases respectively. The average admission time was 47 hours. Brawls were the circumstances of occurrence in 81.2% of cases. Knives (33%), arrows (25%) and iron bars (16.6%) were the objects used. Altered consciousness was present in 43.8% of cases, and focal deficit in 50%. Scannographic lesions were fracture and/or embarrhment (12 cases), intra-parenchymal haematomas (6 cases) and presence of object in place (4 cases). Surgery was performed in 11 patients. Postoperative outcome was favorable in 9 patients. After 12 months, 2 patients were declared unfit. Conclusion: Penetrating head injuries caused by sharp objects are common in Chad. Urgent surgery can prevent disabling after-effects.展开更多
To maintain the reliability of power systems,routine inspections using drones equipped with advanced object detection algorithms are essential for preempting power-related issues.The increasing resolution of drone-cap...To maintain the reliability of power systems,routine inspections using drones equipped with advanced object detection algorithms are essential for preempting power-related issues.The increasing resolution of drone-captured images has posed a challenge for traditional target detection methods,especially in identifying small objects in high-resolution images.This study presents an enhanced object detection algorithm based on the Faster Regionbased Convolutional Neural Network(Faster R-CNN)framework,specifically tailored for detecting small-scale electrical components like insulators,shock hammers,and screws in transmission line.The algorithm features an improved backbone network for Faster R-CNN,which significantly boosts the feature extraction network’s ability to detect fine details.The Region Proposal Network is optimized using a method of guided feature refinement(GFR),which achieves a balance between accuracy and speed.The incorporation of Generalized Intersection over Union(GIOU)and Region of Interest(ROI)Align further refines themodel’s accuracy.Experimental results demonstrate a notable improvement in mean Average Precision,reaching 89.3%,an 11.1%increase compared to the standard Faster R-CNN.This highlights the effectiveness of the proposed algorithm in identifying electrical components in high-resolution aerial images.展开更多
The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus...The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.展开更多
This article presents an analysis of the patterns of interactions resulting from the positive and negative emotional events that occur in cities,considering them as complex systems.It explores,from the imaginaries,how...This article presents an analysis of the patterns of interactions resulting from the positive and negative emotional events that occur in cities,considering them as complex systems.It explores,from the imaginaries,how certain urban objects can act as emotional agents and how these events affect the urban system as a whole.An adaptive complex systems perspective is used to analyze these patterns.The results show patterns in the processes and dynamics that occur in cities based on the objects that affect the emotions of the people who live there.These patterns depend on the characteristics of the emotional charge of urban objects,but they can be generalized in the following process:(1)immediate reaction by some individuals;(2)emotions are generated at the individual level which begins to generalize,permuting to a collective emotion;(3)a process of reflection is detonated in some individuals from the reading of collective emotions;(4)integration/significance in the community both at the individual and collective level,on the concepts,roles and/or functions that give rise to the process in the system.Therefore,it is clear that emotions play a significant role in the development of cities and these aspects should be considered in the design strategies of all kinds of projects for the city.Future extensions of this work could include a deeper analysis of specific emotional events in urban environments,as well as possible implications for urban policy and decision making.展开更多
The subcortical visual pathway is generally thought to be involved in dangerous information processing,such as fear processing and defensive behavior.A recent study,published in Human Brain Mapping,shows a new functio...The subcortical visual pathway is generally thought to be involved in dangerous information processing,such as fear processing and defensive behavior.A recent study,published in Human Brain Mapping,shows a new function of the subcortical pathway involved in the fast processing of non-emotional object perception.Rapid object processing is a critical function of visual system.Topological perception theory proposes that the initial perception of objects begins with the extraction of topological property(TP).However,the mechanism of rapid TP processing remains unclear.The researchers investigated the subcortical mechanism of TP processing with transcranial magnetic stimulation(TMS).They find that a subcortical magnocellular pathway is responsible for the early processing of TP,and this subcortical processing of TP accelerates object recognition.Based on their findings,we propose a novel training approach called subcortical magnocellular pathway training(SMPT),aimed at improving the efficiency of the subcortical M pathway to restore visual and attentional functions in disorders associated with subcortical pathway dysfunction.展开更多
Dear Editor,This letter focuses on the fact that small objects with few pixels disappear in feature maps with large receptive fields, as the network deepens, in object detection tasks. Therefore, the detection of dens...Dear Editor,This letter focuses on the fact that small objects with few pixels disappear in feature maps with large receptive fields, as the network deepens, in object detection tasks. Therefore, the detection of dense small objects is challenging.展开更多
Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones...Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones and lack of detail information for small-scale objects make drone-based small object detection a formidable challenge. To address these issues, we first develop a mathematical model to explore how changing receptive fields impacts the polynomial fitting results. Subsequently, based on the obtained conclusions, we propose a simple but effective Hybrid Receptive Field Network (HRFNet), whose modules include Hybrid Feature Augmentation (HFA), Hybrid Feature Pyramid (HFP) and Dual Scale Head (DSH). Specifically, HFA employs parallel dilated convolution kernels of different sizes to extend shallow features with different receptive fields, committed to improving the multi-scale adaptability of the network;HFP enhances the perception of small objects by capturing contextual information across layers, while DSH reconstructs the original prediction head utilizing a set of high-resolution features and ultrahigh-resolution features. In addition, in order to train HRFNet, the corresponding dual-scale loss function is designed. Finally, comprehensive evaluation results on public benchmarks such as VisDrone-DET and TinyPerson demonstrate the robustness of the proposed method. Most impressively, the proposed HRFNet achieves a mAP of 51.0 on VisDrone-DET with 29.3 M parameters, which outperforms the extant state-of-the-art detectors. HRFNet also performs excellently in complex scenarios captured by drones, achieving the best performance on the CS-Drone dataset we built.展开更多
Top-view fisheye cameras are widely used in personnel surveillance for their broad field of view,but their unique imaging characteristics pose challenges like distortion,complex scenes,scale variations,and small objec...Top-view fisheye cameras are widely used in personnel surveillance for their broad field of view,but their unique imaging characteristics pose challenges like distortion,complex scenes,scale variations,and small objects near image edges.To tackle these,we proposed peripheral focus you only look once(PF-YOLO),an enhanced YOLOv8n-based method.Firstly,we introduced a cutting-patch data augmentation strategy to mitigate the problem of insufficient small-object samples in various scenes.Secondly,to enhance the model's focus on small objects near the edges,we designed the peripheral focus loss,which uses dynamic focus coefficients to provide greater gradient gains for these objects,improving their regression accuracy.Finally,we designed the three dimensional(3D)spatial-channel coordinate attention C2f module,enhancing spatial and channel perception,suppressing noise,and improving personnel detection.Experimental results demonstrate that PF-YOLO achieves strong performance on the challenging events for person detection from overhead fisheye images(CEPDTOF)and in-the-wild events for people detection and tracking from overhead fisheye cameras(WEPDTOF)datasets.Compared to the original YOLOv8n model,PFYOLO achieves improvements on CEPDTOF with increases of 2.1%,1.7%and 2.9%in mean average precision 50(mAP 50),mAP 50-95,and tively.On WEPDTOF,PF-YOLO achieves substantial improvements with increases of 31.4%,14.9%,61.1%and 21.0%in 91.2%and 57.2%,respectively.展开更多
Based on the contextual adaptation perspective of Verschueren’s Adaptation Theory,this paper explores the Chinese translation strategies of Japanese quotation sentences in the Yang translation of The Courage of One f...Based on the contextual adaptation perspective of Verschueren’s Adaptation Theory,this paper explores the Chinese translation strategies of Japanese quotation sentences in the Yang translation of The Courage of One from the perspectives of communicative context and linguistic context.The study finds that the Chinese translation of Japanese quotation sentences involves various strategies,including retaining direct quotations,converting direct quotations into statements,transforming direct quotations into attributive+noun forms,and alternating between direct and indirect quotations.This research provides a new perspective for the Chinese translation of Japanese quotation sentences and offers theoretical support for translation practices in cross-cultural communication.展开更多
文摘Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in education continues to increase,educators actively seek innovative and immersive methods to engage students in learning.However,exploring these possibilities also entails identifying and overcoming existing barriers to optimal educational integration.Concurrently,this surge in demand has prompted the identification of specific barriers,one of which is three-dimensional(3D)modeling.Creating 3D objects for augmented reality education applications can be challenging and time-consuming for the educators.To address this,we have developed a pipeline that creates realistic 3D objects from the two-dimensional(2D)photograph.Applications for augmented and virtual reality can then utilize these created 3D objects.We evaluated the proposed pipeline based on the usability of the 3D object and performance metrics.Quantitatively,with 117 respondents,the co-creation team was surveyed with openended questions to evaluate the precision of the 3D object created by the proposed photogrammetry pipeline.We analyzed the survey data using descriptive-analytical methods and found that the proposed pipeline produces 3D models that are positively accurate when compared to real-world objects,with an average mean score above 8.This study adds new knowledge in creating 3D objects for augmented reality applications by using the photogrammetry technique;finally,it discusses potential problems and future research directions for 3D objects in the education sector.
文摘To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,and TL84)on 3D color difference evaluations,50 glossy spheres with a diameter of 2cm based on the Sailner J4003D color printing device were created.These spheres were centered around the five recommended colors(gray,red,yellow,green,and blue)by CIE.Color difference was calculated according to the four formulas,and 111 pairs of experimental samples meeting the CIELAB gray scale color difference requirements(1.0-14.0)were selected.Ten observers,aged between 22 and 27 with normal color vision,were participated in this study,using the gray scale method from psychophysical experiments to conduct color difference evaluations under the four light sources,with repeated experiments for each observer.The results indicated that the overall effect of the D65 light source on 3D objects color difference was minimal.In contrast,D50 and A light sources had a significant impact within the small color difference range,while the TL84 light source influenced both large and small color difference considerably.Among the four color difference formulas,CIEDE2000 demonstrated the best predictive performance for color difference in 3D objects,followed by CMC(1:1),CIE94,and CIELAB.
文摘Transorbital craniocerebral injury is a relatively rare type of penetrating head injury that poses a significant threat to the ocular and cerebral structures.^([1])The clinical prognosis of transorbital craniocerebral injury is closely related to the size,shape,speed,nature,and trajectory of the foreign object,as well as the incidence of central nervous system damage and secondary complications.The foreign objects reported to have caused these injuries are categorized into wooden items,metallic items,^([2-8])and other materials,which penetrate the intracranial region via fi ve major pathways,including the orbital roof (OR),superior orbital fissure (SOF),inferior orbital fissure(IOF),optic canal (OC),and sphenoid wing.Herein,we present eight cases of transorbital craniocerebral injury caused by an unusual metallic foreign body.
基金supported by the Key Research and Development Program of Shaanxi Province(2024GX-YBXM-010).
文摘Detecting oriented targets in remote sensing images amidst complex and heterogeneous backgrounds remains a formidable challenge in the field of object detection.Current frameworks for oriented detection modules are constrained by intrinsic limitations,including excessive computational and memory overheads,discrepancies between predefined anchors and ground truth bounding boxes,intricate training processes,and feature alignment inconsistencies.To overcome these challenges,we present ASL-OOD(Angle-based SIOU Loss for Oriented Object Detection),a novel,efficient,and robust one-stage framework tailored for oriented object detection.The ASL-OOD framework comprises three core components:the Transformer-based Backbone(TB),the Transformer-based Neck(TN),and the Angle-SIOU(Scylla Intersection over Union)based Decoupled Head(ASDH).By leveraging the Swin Transformer,the TB and TN modules offer several key advantages,such as the capacity to model long-range dependencies,preserve high-resolution feature representations,seamlessly integrate multi-scale features,and enhance parameter efficiency.These improvements empower the model to accurately detect objects across varying scales.The ASDH module further enhances detection performance by incorporating angle-aware optimization based on SIOU,ensuring precise angular consistency and bounding box coherence.This approach effectively harmonizes shape loss and distance loss during the optimization process,thereby significantly boosting detection accuracy.Comprehensive evaluations and ablation studies on standard benchmark datasets such as DOTA with an mAP(mean Average Precision)of 80.16 percent,HRSC2016 with an mAP of 91.07 percent,MAR20 with an mAP of 85.45 percent,and UAVDT with an mAP of 39.7 percent demonstrate the clear superiority of ASL-OOD over state-of-the-art oriented object detection models.These findings underscore the model’s efficacy as an advanced solution for challenging remote sensing object detection tasks.
基金2023 College Student Innovation and Entrepreneurship Training Program-Provincial and Ministerial Level(Chongqing City):Jiangjiang-A DIY Old Object Transformation Platform Integrating AI Technology(Project No.:S202312608036)。
文摘With the rapid development of technology,artificial intelligence(AI)is increasingly being applied in various fields.In today’s context of resource scarcity,pursuit of sustainable development and resource reuse,the transformation of old objects is particularly important.This article analyzes the current status of old object transformation and the opportunities brought by the internet to old objects and delves into the application of artificial intelligence in old object transformation.The focus is on five aspects:intelligent identification and classification,intelligent evaluation and prediction,automation integration,intelligent design and optimization,and integration of 3D printing technology.Finally,the process of“redesigning an old furniture,such as a wooden desk,through AI technology”is described,including the recycling,identification,detection,design,transformation,and final user feedback of the old wooden desk.This illustrates the unlimited potential of the“AI+old object transformation”approach,advocates for people to strengthen green environmental protection,and drives sustainable development.
基金National Natural Science Foundation of China(Grant Nos.62005049 and 62072110)Natural Science Foundation of Fujian Province(Grant No.2020J01451).
文摘Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging due to advances in both camouflage materials and biological mimicry.Although multispectral-RGB based technology shows promise,conventional dual-aperture multispectral-RGB imaging systems are constrained by imprecise and time-consuming registration and fusion across different modalities,limiting their performance.Here,we propose the Reconstructed Multispectral-RGB Fusion Network(RMRF-Net),which reconstructs RGB images into multispectral ones,enabling efficient multimodal segmentation using only an RGB camera.Specifically,RMRF-Net employs a divergentsimilarity feature correction strategy to minimize reconstruction errors and includes an efficient boundary-aware decoder to enhance object contours.Notably,we establish the first real-world aerial multispectral-RGB semantic segmentation of camouflage objects dataset,including 11 object categories.Experimental results demonstrate that RMRF-Net outperforms existing methods,achieving 17.38 FPS on the NVIDIA Jetson AGX Orin,with only a 0.96%drop in mIoU compared to the RTX 3090,showing its practical applicability in multimodal remote sensing.
文摘Structured study of spatial objects and their relationships leads to a better cognition of the geospatial information and creates the concept of context at a higher level of abstraction.This study is aimed at providing a comprehensive definition of the context for geospatial objects.A combination of binary qualitative spatial relationships(i.e.direction,distance,and topological relations)among the members of a set of spatial objects will be used accordingly.In addition,by incorporating the general concept of context,obtained from either static data(attributes in a database)or dynamic data(sensors),the compact context of spatial objects will be introduced.Our framework for presentation of the involved knowledge and conception about the objects in context is also explored using ontology and description logic because of powerful conceptualization of relationships,either spatial or non-spatial,integrally.For this purpose,the hierarchies of main structure and object properties are formed at first.The constraint and characteristics of classes,such as subclasses,equivalent classes,cardinality etc.,and object properties,such as being functional,transitive,symmetric,asymmetric,inverse functional,disjoint etc.,are discovered and presented in more detail using web ontology language in description logic mode.The implementation is then performed in the framework of semantic web and extensible markup language syntaxes.The method ultimately facilitates,spatial reasoning by effective querying in a semantic framework taking pellet reasoner and SPARQL(a recursive acronym for SPARQL Protocol and RDF Query Language).
基金the Key Research and Development Program of Hainan Province(Grant Nos.ZDYF2023GXJS163,ZDYF2024GXJS014)National Natural Science Foundation of China(NSFC)(Grant Nos.62162022,62162024)+2 种基金the Major Science and Technology Project of Hainan Province(Grant No.ZDKJ2020012)Hainan Provincial Natural Science Foundation of China(Grant No.620MS021)Youth Foundation Project of Hainan Natural Science Foundation(621QN211).
文摘Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variations inUAV flight altitude,differences in object scales,as well as factors like flight speed and motion blur.To enhancethe detection efficacy of small targets in drone aerial imagery,we propose an enhanced You Only Look Onceversion 7(YOLOv7)algorithm based on multi-scale spatial context.We build the MSC-YOLO model,whichincorporates an additional prediction head,denoted as P2,to improve adaptability for small objects.We replaceconventional downsampling with a Spatial-to-Depth Convolutional Combination(CSPDC)module to mitigatethe loss of intricate feature details related to small objects.Furthermore,we propose a Spatial Context Pyramidwith Multi-Scale Attention(SCPMA)module,which captures spatial and channel-dependent features of smalltargets acrossmultiple scales.This module enhances the perception of spatial contextual features and the utilizationof multiscale feature information.On the Visdrone2023 and UAVDT datasets,MSC-YOLO achieves remarkableresults,outperforming the baseline method YOLOv7 by 3.0%in terms ofmean average precision(mAP).The MSCYOLOalgorithm proposed in this paper has demonstrated satisfactory performance in detecting small targets inUAV aerial photography,providing strong support for practical applications.
基金supported in part by the National Natural Science Foundation of China (62073271)the Natural Science Foundation for Distinguished Young Scholars of the Fujian Province of China (2023J06010)the Fundamental Research Funds for the Central Universities of China(20720220076)。
文摘Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computational resources. In this paper, the LAA images-oriented tensor decomposition and knowledge distillation-based network(TDKD-Net) is proposed,where the TT-format TD(tensor decomposition) and equalweighted response-based KD(knowledge distillation) methods are designed to minimize redundant parameters while ensuring comparable performance. Moreover, some robust network structures are developed, including the small object detection head and the dual-domain attention mechanism, which enable the model to leverage the learned knowledge from small-scale targets and selectively focus on salient features. Considering the imbalance of bounding box regression samples and the inaccuracy of regression geometric factors, the focal and efficient IoU(intersection of union) loss with optimal transport assignment(F-EIoU-OTA)mechanism is proposed to improve the detection accuracy. The proposed TDKD-Net is comprehensively evaluated through extensive experiments, and the results have demonstrated the effectiveness and superiority of the developed methods in comparison to other advanced detection algorithms, which also present high generalization and strong robustness. As a resource-efficient precise network, the complex detection of small and occluded LAA objects is also well addressed by TDKD-Net, which provides useful insights on handling imbalanced issues and realizing domain adaptation.
基金State Grid Jiangsu Electric Power Co.,Ltd.of the Science and Technology Project(Grant No.J2022004).
文摘Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable scale,and fuzzy edge morphology of insulator defects,we construct an insulator dataset with 1600 samples containing flashovers and breakages.Then a simple and effective surface defect detection method of power line insulators for difficult small objects is proposed.Firstly,a high-resolution featuremap is introduced and a small object prediction layer is added so that the model can detect tiny objects.Secondly,a simplified adaptive spatial feature fusion(SASFF)module is introduced to perform cross-scale spatial fusion to improve adaptability to variable multi-scale features.Finally,we propose an enhanced deformable attention mechanism(EDAM)module.By integrating a gating activation function,the model is further inspired to learn a small number of critical sampling points near reference points.And the module can improve the perception of object morphology.The experimental results indicate that concerning the dataset of flashover and breakage defects,this method improves the performance of YOLOv5,YOLOv7,and YOLOv8.In practical application,it can simply and effectively improve the precision of power line insulator defect detection and reduce missing detection for difficult small objects.
文摘Introduction: Cranioencephalic trauma caused by bladed weapons is rare, and that caused by sharp objects is exceptional. The aim of our study was to describe the clinical, therapeutic and evolutionary aspects. Materials and method: This was a descriptive and analytical study over a 48-month period at CHU la Renaissance from January 1, 2018 to December 31, 2021, concerning patients admitted for penetrating cranioencephalic trauma by pointed object. Results: Twelve cases, all male, of penetrating cranioencephalic sharp-force trauma were identified. The mean age was 34 ± 7 years, with extremes of 11 and 60 years. Farmers and herders accounted for 31% and 25% of cases respectively. The average admission time was 47 hours. Brawls were the circumstances of occurrence in 81.2% of cases. Knives (33%), arrows (25%) and iron bars (16.6%) were the objects used. Altered consciousness was present in 43.8% of cases, and focal deficit in 50%. Scannographic lesions were fracture and/or embarrhment (12 cases), intra-parenchymal haematomas (6 cases) and presence of object in place (4 cases). Surgery was performed in 11 patients. Postoperative outcome was favorable in 9 patients. After 12 months, 2 patients were declared unfit. Conclusion: Penetrating head injuries caused by sharp objects are common in Chad. Urgent surgery can prevent disabling after-effects.
基金supported by the Shanghai Science and Technology Innovation Action Plan High-Tech Field Project(Grant No.22511100601)for the year 2022 and Technology Development Fund for People’s Livelihood Research(Research on Transmission Line Deep Foundation Pit Environmental Situation Awareness System Based on Multi-Source Data).
文摘To maintain the reliability of power systems,routine inspections using drones equipped with advanced object detection algorithms are essential for preempting power-related issues.The increasing resolution of drone-captured images has posed a challenge for traditional target detection methods,especially in identifying small objects in high-resolution images.This study presents an enhanced object detection algorithm based on the Faster Regionbased Convolutional Neural Network(Faster R-CNN)framework,specifically tailored for detecting small-scale electrical components like insulators,shock hammers,and screws in transmission line.The algorithm features an improved backbone network for Faster R-CNN,which significantly boosts the feature extraction network’s ability to detect fine details.The Region Proposal Network is optimized using a method of guided feature refinement(GFR),which achieves a balance between accuracy and speed.The incorporation of Generalized Intersection over Union(GIOU)and Region of Interest(ROI)Align further refines themodel’s accuracy.Experimental results demonstrate a notable improvement in mean Average Precision,reaching 89.3%,an 11.1%increase compared to the standard Faster R-CNN.This highlights the effectiveness of the proposed algorithm in identifying electrical components in high-resolution aerial images.
基金Projects(U22B2084,52275483,52075142)supported by the National Natural Science Foundation of ChinaProject(2023ZY01050)supported by the Ministry of Industry and Information Technology High Quality Development,China。
文摘The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.
文摘This article presents an analysis of the patterns of interactions resulting from the positive and negative emotional events that occur in cities,considering them as complex systems.It explores,from the imaginaries,how certain urban objects can act as emotional agents and how these events affect the urban system as a whole.An adaptive complex systems perspective is used to analyze these patterns.The results show patterns in the processes and dynamics that occur in cities based on the objects that affect the emotions of the people who live there.These patterns depend on the characteristics of the emotional charge of urban objects,but they can be generalized in the following process:(1)immediate reaction by some individuals;(2)emotions are generated at the individual level which begins to generalize,permuting to a collective emotion;(3)a process of reflection is detonated in some individuals from the reading of collective emotions;(4)integration/significance in the community both at the individual and collective level,on the concepts,roles and/or functions that give rise to the process in the system.Therefore,it is clear that emotions play a significant role in the development of cities and these aspects should be considered in the design strategies of all kinds of projects for the city.Future extensions of this work could include a deeper analysis of specific emotional events in urban environments,as well as possible implications for urban policy and decision making.
文摘The subcortical visual pathway is generally thought to be involved in dangerous information processing,such as fear processing and defensive behavior.A recent study,published in Human Brain Mapping,shows a new function of the subcortical pathway involved in the fast processing of non-emotional object perception.Rapid object processing is a critical function of visual system.Topological perception theory proposes that the initial perception of objects begins with the extraction of topological property(TP).However,the mechanism of rapid TP processing remains unclear.The researchers investigated the subcortical mechanism of TP processing with transcranial magnetic stimulation(TMS).They find that a subcortical magnocellular pathway is responsible for the early processing of TP,and this subcortical processing of TP accelerates object recognition.Based on their findings,we propose a novel training approach called subcortical magnocellular pathway training(SMPT),aimed at improving the efficiency of the subcortical M pathway to restore visual and attentional functions in disorders associated with subcortical pathway dysfunction.
基金supported in part by the National Science Foundation of China(52371372)the Project of Science and Technology Commission of Shanghai Municipality,China(22JC1401400,21190780300)the 111 Project,China(D18003)
文摘Dear Editor,This letter focuses on the fact that small objects with few pixels disappear in feature maps with large receptive fields, as the network deepens, in object detection tasks. Therefore, the detection of dense small objects is challenging.
基金supported by the National Natural Science Foundation of China(Nos.62276204 and 62203343)the Fundamental Research Funds for the Central Universities(No.YJSJ24011)+1 种基金the Natural Science Basic Research Program of Shanxi,China(Nos.2022JM-340 and 2023-JC-QN-0710)the China Postdoctoral Science Foundation(Nos.2020T130494 and 2018M633470).
文摘Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones and lack of detail information for small-scale objects make drone-based small object detection a formidable challenge. To address these issues, we first develop a mathematical model to explore how changing receptive fields impacts the polynomial fitting results. Subsequently, based on the obtained conclusions, we propose a simple but effective Hybrid Receptive Field Network (HRFNet), whose modules include Hybrid Feature Augmentation (HFA), Hybrid Feature Pyramid (HFP) and Dual Scale Head (DSH). Specifically, HFA employs parallel dilated convolution kernels of different sizes to extend shallow features with different receptive fields, committed to improving the multi-scale adaptability of the network;HFP enhances the perception of small objects by capturing contextual information across layers, while DSH reconstructs the original prediction head utilizing a set of high-resolution features and ultrahigh-resolution features. In addition, in order to train HRFNet, the corresponding dual-scale loss function is designed. Finally, comprehensive evaluation results on public benchmarks such as VisDrone-DET and TinyPerson demonstrate the robustness of the proposed method. Most impressively, the proposed HRFNet achieves a mAP of 51.0 on VisDrone-DET with 29.3 M parameters, which outperforms the extant state-of-the-art detectors. HRFNet also performs excellently in complex scenarios captured by drones, achieving the best performance on the CS-Drone dataset we built.
基金supported by National Natural Science Foundation of China(Nos.62171042,62102033,U24A20331)the R&D Program of Beijing Municipal Education Commission(No.KZ202211417048)+2 种基金the Project of Construction and Support for High-Level Innovative Teams of Beijing Municipal Institutions(No.BPHR20220121)Beijing Natural Science Foundation(Nos.4232026,4242020)the Academic Research Projects of Beijing Union University(Nos.ZKZD202302,ZK20202403)。
文摘Top-view fisheye cameras are widely used in personnel surveillance for their broad field of view,but their unique imaging characteristics pose challenges like distortion,complex scenes,scale variations,and small objects near image edges.To tackle these,we proposed peripheral focus you only look once(PF-YOLO),an enhanced YOLOv8n-based method.Firstly,we introduced a cutting-patch data augmentation strategy to mitigate the problem of insufficient small-object samples in various scenes.Secondly,to enhance the model's focus on small objects near the edges,we designed the peripheral focus loss,which uses dynamic focus coefficients to provide greater gradient gains for these objects,improving their regression accuracy.Finally,we designed the three dimensional(3D)spatial-channel coordinate attention C2f module,enhancing spatial and channel perception,suppressing noise,and improving personnel detection.Experimental results demonstrate that PF-YOLO achieves strong performance on the challenging events for person detection from overhead fisheye images(CEPDTOF)and in-the-wild events for people detection and tracking from overhead fisheye cameras(WEPDTOF)datasets.Compared to the original YOLOv8n model,PFYOLO achieves improvements on CEPDTOF with increases of 2.1%,1.7%and 2.9%in mean average precision 50(mAP 50),mAP 50-95,and tively.On WEPDTOF,PF-YOLO achieves substantial improvements with increases of 31.4%,14.9%,61.1%and 21.0%in 91.2%and 57.2%,respectively.
文摘Based on the contextual adaptation perspective of Verschueren’s Adaptation Theory,this paper explores the Chinese translation strategies of Japanese quotation sentences in the Yang translation of The Courage of One from the perspectives of communicative context and linguistic context.The study finds that the Chinese translation of Japanese quotation sentences involves various strategies,including retaining direct quotations,converting direct quotations into statements,transforming direct quotations into attributive+noun forms,and alternating between direct and indirect quotations.This research provides a new perspective for the Chinese translation of Japanese quotation sentences and offers theoretical support for translation practices in cross-cultural communication.