期刊文献+
共找到15,505篇文章
< 1 2 250 >
每页显示 20 50 100
基于PSO和网格优化结合的SVM算法癌症分类研究
1
作者 汪颖 王琳 《兰州文理学院学报(自然科学版)》 2026年第1期56-61,共6页
针对乳腺癌良性与恶性的鉴别,提出一种融合粒子群优化与网格搜索的支持向量机模型(GPSO-SVM).该方法先通过网格搜索初步确定粒子群优化的超参数范围,并在粒子群优化迭代过程中阶段性引入网格搜索.联合完成对支持向量机超参数的优化,有... 针对乳腺癌良性与恶性的鉴别,提出一种融合粒子群优化与网格搜索的支持向量机模型(GPSO-SVM).该方法先通过网格搜索初步确定粒子群优化的超参数范围,并在粒子群优化迭代过程中阶段性引入网格搜索.联合完成对支持向量机超参数的优化,有效结合了网格搜索的全局搜索能力与粒子群算法的局部精细寻优优势,提高了参数寻优的效率与准确性.实验结果显示,GPSO-SVM模型在4种不同乳腺癌数据集上的五折交叉验证准确率分别达到98.60%、97.00%、90.52%和88.89%,优于其他寻优方法. 展开更多
关键词 癌症分类 网格搜索 GPSO-svm
在线阅读 下载PDF
基于转矩角的永磁同步电机SVM-DTC研究
2
作者 董艮滔 余垚博 +5 位作者 张鑫杰 张平 严伟 郭明 雷新卓 彭恺 《工业控制计算机》 2026年第1期132-133,135,共3页
通过对永磁同步电机转矩角控制进行分析,将空间矢量脉宽调制(SVPWM)与直接转矩控制(DTC)相结合。在此基础上对速度控制器进行改进,构建了基于转矩角的SVM-DTC转速闭环控制系统。仿真结果表明这套控制架构具有良好的稳定性和动态性能,实... 通过对永磁同步电机转矩角控制进行分析,将空间矢量脉宽调制(SVPWM)与直接转矩控制(DTC)相结合。在此基础上对速度控制器进行改进,构建了基于转矩角的SVM-DTC转速闭环控制系统。仿真结果表明这套控制架构具有良好的稳定性和动态性能,实现了对电机转速更为精准的控制。 展开更多
关键词 转矩角 永磁同步电机 svm-DTC PI
在线阅读 下载PDF
基于SVM和MOPSO算法的西安地区高层住宅多目标优化设计研究
3
作者 邵腾 张锟 杨玉湘 《新材料·新装饰》 2026年第3期1-5,共5页
院随着我国城市化率的持续升高,高层住宅规模逐渐扩大,已成为建筑能耗和碳排放的主要来源之一。因此,在方案设计阶段开展适配气候与资源的节能设计十分关键,同时还应兼顾对经济与环境的影响,以实现能源、碳排、经济和环境协同优化。文... 院随着我国城市化率的持续升高,高层住宅规模逐渐扩大,已成为建筑能耗和碳排放的主要来源之一。因此,在方案设计阶段开展适配气候与资源的节能设计十分关键,同时还应兼顾对经济与环境的影响,以实现能源、碳排、经济和环境协同优化。文章基于西安地区的气候背景,以建筑能耗、自然采光、全生命周期碳排放和成本为优化目标,搭建以智能算法为核心的高层住宅优化设计框架,并通过实证研究构建综合最优设计模式进行对比分析。研究结果可为西安地区高层住宅性能优化设计提供科学量化依据和指导方案。 展开更多
关键词 高层住宅 svm MOPSO 智能算法 多目标优化
在线阅读 下载PDF
基于改进SVM的火力发电机组锅炉管异物堵塞检测方法
4
作者 李哲 《电气技术与经济》 2026年第1期237-240,共4页
在火力发电机组中,只能采用单一异物堵塞特征,导致检测精度较差,因此设计一种基于改进SVM的火力发电机组锅炉管异物堵塞检测方法。对锅炉管数据列进行无量纲化处理,采用标准化变化率方法消除量纲影响,并通过灰色关联度归一化确定各数据... 在火力发电机组中,只能采用单一异物堵塞特征,导致检测精度较差,因此设计一种基于改进SVM的火力发电机组锅炉管异物堵塞检测方法。对锅炉管数据列进行无量纲化处理,采用标准化变化率方法消除量纲影响,并通过灰色关联度归一化确定各数据列权重系数。利用改进SVM融合颜色、形态及频域特征,根据特征区分能力动态赋予权重,通过高维非线性变换形成更具判别力的特征向量。引入多项式核函数与高斯核函数的组合核函数,并考虑数据多样性和不平衡性,对不同类别样本赋予不同权重,实现火力发电机组锅炉管异物堵塞检测。实验结果表明,设计方法的过热器管压力异常检测结果与实际基本一致,并且平均误报率仅为3.0%,远低于其他方法,充分证明其具有更高的检测精度。 展开更多
关键词 改进svm 火力发电机组 锅炉管 异物堵塞 检测误报率
在线阅读 下载PDF
基于PSO-SVM-SST模型的地震应急物资需求预测研究
5
作者 唐彦东 程梅 +2 位作者 刘军 于汐 林浩 《大地测量与地球动力学》 北大核心 2026年第1期86-93,共8页
建立基于粒子群算法(PSO)优化的支持向量机(SVM)震后受灾人口预测模型,依据安全库存理论建立SST地震应急物资需求预测模型。选取地震危险性、破坏程度等9项指标参数,经降维和去冗处理后作为基于PSO优化的SVM模型输入变量,并开展受灾人... 建立基于粒子群算法(PSO)优化的支持向量机(SVM)震后受灾人口预测模型,依据安全库存理论建立SST地震应急物资需求预测模型。选取地震危险性、破坏程度等9项指标参数,经降维和去冗处理后作为基于PSO优化的SVM模型输入变量,并开展受灾人数预测,根据受灾人口与应急物资间的内在关联,应用SST模型对九寨沟地震震后初期所需的典型物资数量进行间接估算。结果表明,通过采用误差对比分析方法对模型进行有效性验证,PSO-SVM模型较SVM模型的预测误差降低14.27%,预测精度显著提高。估算得到九寨沟地震震后典型物资需求量,预测结果具有一定的参考价值,表明PSO-SVM-SST预测模型在理论和实践层面均具有一定的合理性和实用性。 展开更多
关键词 地震应急物资 需求预测 支持向量机 安全库存理论
在线阅读 下载PDF
基于SVM的价值导向分类模型研究
6
作者 曹红宝 《现代信息科技》 2026年第1期132-137,共6页
以传统机器学习分类模型较缺乏经济学理论支撑为起点,提出了一种基于支持向量机(SVM)的价值导向分类模型(Value-Driven Classification,VDC)。通过深度结合马克思主义价值理论,该模型创新性地将数据样本类比为商品和劳动力,构建了特征... 以传统机器学习分类模型较缺乏经济学理论支撑为起点,提出了一种基于支持向量机(SVM)的价值导向分类模型(Value-Driven Classification,VDC)。通过深度结合马克思主义价值理论,该模型创新性地将数据样本类比为商品和劳动力,构建了特征价值量化体系和剩余价值波动计算模型,并利用核函数处理复杂特征。实验结果表明,该模型在保持与传统模型分类性能相当的同时,增强了理论解释性。这一成果不仅拓展了机器学习模型的理论基础,也为经济学量化研究提供了新方法,在经济学实证分析和市场预测等领域具有应用潜力。 展开更多
关键词 分类模型 价值 价值分类导向模型 PYTHON语言 支持向量机模型 核函数
在线阅读 下载PDF
基于数字孪生与LS-SVM的燃煤机组锅炉主再热汽温寻优研究
7
作者 王旭东 傅谦晶 +4 位作者 程爱勇 刘俊麟 陈辉 李斌 邵尉涛 《计算机应用文摘》 2026年第2期87-89,共3页
针对燃煤机组锅炉主再热汽温控制中存在的滞后性、多变量耦合及动态工况适应难题,文章提出一种融合数字孪生技术与最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)的汽温寻优方法。通过构建锅炉三维数字孪生模型实现... 针对燃煤机组锅炉主再热汽温控制中存在的滞后性、多变量耦合及动态工况适应难题,文章提出一种融合数字孪生技术与最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)的汽温寻优方法。通过构建锅炉三维数字孪生模型实现设备状态实时映射,结合LS-SVM建立多变量动态预测模型,并引入多目标微分进化算法(MODE)进行参数优化。实际应用表明,该方法使主汽温波动范围从±7℃缩小至±2.5℃,再热汽温预测误差稳定在±1.5℃以内,年节约燃煤成本超400万元,为火电机组深度调峰与能效提升提供技术支撑。 展开更多
关键词 数字孪生 LS-svm 主再热汽温 多目标优化 深度调峰
在线阅读 下载PDF
局部密度最小不确定性的SVM样本选择算法 被引量:1
8
作者 周玉 刘虹瑜 +2 位作者 李京京 丁红强 白磊 《哈尔滨工业大学学报》 北大核心 2025年第8期45-56,共12页
为解决支持向量机(SVM)在分类时通常含有大量的冗余样本,从而导致面对较大规模数据集时SVM计算复杂度受到限制的问题,提出一种局部密度最小不确定性的SVM样本选择算法。该方法对决策面影响较大的边界数据进行有效选择,通过提取可能含有... 为解决支持向量机(SVM)在分类时通常含有大量的冗余样本,从而导致面对较大规模数据集时SVM计算复杂度受到限制的问题,提出一种局部密度最小不确定性的SVM样本选择算法。该方法对决策面影响较大的边界数据进行有效选择,通过提取可能含有支持向量的训练样本,降低计算开销,进而提高SVM性能。首先,计算训练样本的K互近邻个数与高斯核密度估计。其次,将K互近邻个数与高斯核密度估计进行加和得到每个样本点的K局部密度并获取密度矩阵。然后,利用局部密度不确定性平衡优化方法,将密度矩阵进行三值映射后使不确定性改变量达到最小时得到最优阈值,并划分密度矩阵为中心数据与边界数据。最后,提取边界数据并作为SVM的训练样本建立分类模型。结果表明:利用该方法在UCI数据集上与其他6种常用样本选择方法进行实验对比,以准确率、保存率作为性能指标,文中提出的算法可以迅速划分中心数据与边界数据并删除大量冗余的训练样本,有效降低SVM的训练负担的同时提高了分类性能。 展开更多
关键词 支持向量机(svm) 样本选择 局部密度 不确定性平衡 分类
在线阅读 下载PDF
深基坑开挖致高铁桥墩位移的SVM预测方法 被引量:1
9
作者 宋旭明 李小龙 +2 位作者 唐冕 王天良 程丽娟 《浙江大学学报(工学版)》 北大核心 2025年第6期1233-1240,1252,共9页
为了研究邻近基坑开挖引起的高铁桥梁墩顶附加位移对铁路运营安全的影响,依托某深基坑开挖工程,建立考虑地下水影响的土体-桥梁三维有限元模型.分析高铁桥墩附加位移的单因素敏感性.采用Box-Behnken design(BBD)试验设计方法结合支持向... 为了研究邻近基坑开挖引起的高铁桥梁墩顶附加位移对铁路运营安全的影响,依托某深基坑开挖工程,建立考虑地下水影响的土体-桥梁三维有限元模型.分析高铁桥墩附加位移的单因素敏感性.采用Box-Behnken design(BBD)试验设计方法结合支持向量机算法(SVM)建立高铁桥墩墩顶位移预测模型,结合蒙特卡洛法,对参数进行107次抽样计算,得到墩顶附加位移的可靠概率.研究结果表明:基坑与高铁桥墩距离的变化对墩顶横向位移和竖向位移的影响最大.在8组不同超参数组合的SVM模型中,最优模型的预测值与有限元计算值的最大误差小于6%,最优模型可代替有限元进行计算.在墩顶横向位移为2 mm的限值下,背景工程基坑与桥墩距离为35 m时,墩顶横向附加位移的可靠概率为33.12%;当基坑与桥墩距离增加到39 m时,墩顶横向附加位移的可靠概率为99.68%.所采用的分析方法可以削减因土层力学参数离散性大而产生的评估结果不确定性,为类似工程的安全评估提供参考. 展开更多
关键词 高速铁路 深基坑 墩顶附加位移 支持向量机(svm) 可靠度
在线阅读 下载PDF
基于KNN-SVM的混合气体检测方法研究 被引量:5
10
作者 孙超 胡润泽 +2 位作者 吴中旭 刘年松 丁建军 《光谱学与光谱分析》 SCIE EI CAS 北大核心 2025年第1期117-124,共8页
当今混合气体检测的研究中,针对多组分气体数据进行分类预测的数学算法百花齐放,如何快速且准确的检测出气体的成分和浓度逐渐成为当今研究的热门。然而在一些研究中,气体数据特征难以捕捉和判断,泛化能力不足,对气体数据进行分类预测... 当今混合气体检测的研究中,针对多组分气体数据进行分类预测的数学算法百花齐放,如何快速且准确的检测出气体的成分和浓度逐渐成为当今研究的热门。然而在一些研究中,气体数据特征难以捕捉和判断,泛化能力不足,对气体数据进行分类预测的精度和效率表现较差。为此,针对一些数据偏差和泛化误差无界的问题,提出了一种K最近邻-支持向量机(KNN-SVM)算法,对一些难以作出分类的模糊气体数据进行二次分类,采用KNN和SVM两种算法共同抉择,更加全面的捕捉数据特征,根据实验确定各自算法的权重比从而提高判别气体类别的准确率,两种算法的集成也能提高算法的效率,对于不同种类的气体也能有良好的适应性的稳定性。该实验气体组分由12 mg·L^(-1)的C_(2)H_(2)、NO_(2)、SF_(6),10 mg·L^(-1)的NO_(2)、SF_(6)和5 mg·L^(-1)的C_(2)H_(2)(背景气体皆为N_(2))以及两瓶纯N_(2)的气瓶组成;通过互相混合和与N_(2)配比制备出实验设定的气体浓度。实验过程通过单一气体的检测可分别对三种气体获得60组训练集,并通过这60组数据可进行线性拟合得到每种气体的拟合线,得到气体浓度与气体吸收峰值的关系,通过实验检测得到的三种气体拟合线,其中C_(2)H_(2)拟合线的调整后R^(2)为0.991,NO_(2)拟合线的调整后R^(2)为0.981,SF_(6)拟合线的调整后R^(2)为0.987,可得气体检测的准确性。再通过互相混合进行检测可分别获得40组训练集,采用KNN-SVM算法对混合气体进行分类和预测,后通过拟合线即可反演出混合气体中每种气体的浓度。将该算法与传统SVM算法进行各种分类指标对比均可显示出该算法的有效性和优越性。实验结果表明,KNN-SVM算法在气体分类预测方面表现出卓越的性能,准确率高达99.167%,AUC(area under curve)值达99.375%。这一算法不仅提高了气体检测的准确性,还增强了泛化能力可适应多样化的气体组分,为实时气体检测系统提供了有力支持。 展开更多
关键词 光声光谱 气体检测 KNN-svm 分类预测
在线阅读 下载PDF
基于SVM的列车制动预测模型 被引量:1
11
作者 房楠 朱亚男 《时代汽车》 2025年第3期187-189,共3页
列车制动系统是保障列车行车安全和高效运行的关键组成部分,本文提出了一种基于支持向量机(SVM)方法的列车制动预测模型。该模型分析列车制动过程,采用制动实车数据构建适用于SVM的训练数据集,通过优化调节模型参数,利用SVM算法实现了... 列车制动系统是保障列车行车安全和高效运行的关键组成部分,本文提出了一种基于支持向量机(SVM)方法的列车制动预测模型。该模型分析列车制动过程,采用制动实车数据构建适用于SVM的训练数据集,通过优化调节模型参数,利用SVM算法实现了列车制动预测。经线路实车数据验证评估,该模型在3分钟内预测准确度高于97.3%,在列车制动预测中具有可靠的时效性和准确性,能够有效应用于实际列车运行中的制动预测任务。 展开更多
关键词 支持向量机(svm) 列车制动 运行数据
在线阅读 下载PDF
基于IPSO算法优化SVM的睡眠分期模型 被引量:2
12
作者 张宇 白国长 王成 《传感器与微系统》 北大核心 2025年第8期138-142,共5页
针对目前睡眠分期中存在的依赖人工判别效率低、睡眠分期精度不高等问题,提出了一种基于改进粒子群优化算法优化支持向量机(IPSO-SVM)的睡眠分期模型,通过脑电(EEG)信号对睡眠过程进行准确分期。首先,对EEG信号进行滤波、分段等预处理;... 针对目前睡眠分期中存在的依赖人工判别效率低、睡眠分期精度不高等问题,提出了一种基于改进粒子群优化算法优化支持向量机(IPSO-SVM)的睡眠分期模型,通过脑电(EEG)信号对睡眠过程进行准确分期。首先,对EEG信号进行滤波、分段等预处理;其次,提取EEG信号的时域、频域、非线性特征;最后,通过IPSO-SVM算法建立睡眠分期模型。该模型在PSO算法中引入模拟退火算法来提升算法的搜索能力,同时引入惯性权重自适应变异使粒子能够跳出局部最优解。使用ISRUC-Sleep数据集的前6位受试者数据对IPSO-SVM分类模型进行验证。结果表明:IPSO-SVM模型的平均睡眠分期准确率为92.34%,K系数为0.88,改进的睡眠分期模型具有较高的准确率和系统稳定性。 展开更多
关键词 粒子群优化算法 支持向量机 模拟退火 自适应变异
在线阅读 下载PDF
融合SVM-RFE与层次分析-信息量模型的地质灾害易发性评价 被引量:3
13
作者 李文杰 巨能攀 +2 位作者 王栋 陈浩 解明礼 《自然灾害学报》 北大核心 2025年第3期99-109,共11页
我国地质灾害频发,严重威胁人民群众的生命及财产安全,开展地质灾害易发性评价工作对地质灾害防治起着重要的作用。目前,针对地质灾害易发性评价,其评价因子的选取多为单一定性分析,主观性较强,缺乏科学性,同时因子之间的相互关系考虑... 我国地质灾害频发,严重威胁人民群众的生命及财产安全,开展地质灾害易发性评价工作对地质灾害防治起着重要的作用。目前,针对地质灾害易发性评价,其评价因子的选取多为单一定性分析,主观性较强,缺乏科学性,同时因子之间的相互关系考虑较少。文中以林芝市为例,选取高程、坡度、坡向等14个初始影响因子,通过基于支持向量机的递归特征消除(support vector machine-recursive feature elimination,SVM-RFE)算法对因子进行重要性排序及筛选,采用皮尔逊相关性分析考虑因子之间的相互关系,结合重要性排序消除相关性较高的因子,从而确定出了12组易发性评价因子,并基于层次分析-信息量模型开展林芝市地质灾害易发性评价,采用成功率曲线进行结果精度检验。结果表明:研究区内地质灾害极高易发区和高易发区主要集中在主道路及其附近,以及主要水系延伸地区;高易发区是研究区内所占面积最广的区域,面积为45 312.16 km^(2),占林芝市总面积的30.37%。根据评价结果精度检验得到曲线下面积(area under curve,AUC)值为0.846,表明本方法开展地质灾害易发性评价的准确率较高,可为林芝市地质灾害防治和经济建设提供科学依据。 展开更多
关键词 svm-RFE 层次分析-信息量模型 地质灾害 评价因子 易发性评价
原文传递
基于SVM-KNN算法的高铁行车调度员认知负荷脑电评估方法 被引量:1
14
作者 张光远 王敬儒 +3 位作者 梁心怡 秦诗雨 李莎 朱泊霖 《中国安全生产科学技术》 北大核心 2025年第7期166-172,共7页
为准确评估高铁行车调度员认知负荷,根据脑电特征解析其动态变化,从而提升工作效率,保障列车运行安全。通过采集模拟调度任务下的脑电信号,采用最大相关最小冗余算法(mRMR)对Welch法提取后的脑电特征进行进一步降维,并基于SVM-KNN融合... 为准确评估高铁行车调度员认知负荷,根据脑电特征解析其动态变化,从而提升工作效率,保障列车运行安全。通过采集模拟调度任务下的脑电信号,采用最大相关最小冗余算法(mRMR)对Welch法提取后的脑电特征进行进一步降维,并基于SVM-KNN融合分类算法建立高铁行车调度员认知负荷分级识别模型。研究结果表明:该模型以较少的特征维度实现较高的识别准确率,总体准确率达87.03%。对比得出,使用mRMR方法进行降维处理能够有效提高分类模型的识别准确率,同时SVM-KNN融合分类算法的识别准确率要高于单分类算法。研究结果可为实现高铁行车调度员认知负荷监测预警提供理论基础。 展开更多
关键词 高速铁路行车调度员 认知负荷 脑电信号 最大相关最小冗余 支持向量机 K近邻
在线阅读 下载PDF
基于MWIWOA-SVM的海底长输管道腐蚀速率预测
15
作者 骆正山 吕海鹏 骆济豪 《油气储运》 北大核心 2025年第5期551-559,共9页
【目的】为保障海底长输油气管道安全运行,需提高海底长输油气管道内腐蚀速率预测精度。现有模型多基于支持向量机(Support Vector Machine,SVM)建立,存在收敛精度低、寻优失衡以及易陷入局部最优等缺点。【方法】为解决以上问题,提出... 【目的】为保障海底长输油气管道安全运行,需提高海底长输油气管道内腐蚀速率预测精度。现有模型多基于支持向量机(Support Vector Machine,SVM)建立,存在收敛精度低、寻优失衡以及易陷入局部最优等缺点。【方法】为解决以上问题,提出一种基于多途径提升的鲸鱼优化算法(Multi-Way Improved Whale Optimization Algorithm,MWIWOA)优化SVM的海底长输管道内腐蚀速率预测模型。通过Tent混沌映射结合反向学习机制初始化种群,引入自适应权重及非线性收敛因子平衡全局寻优和局部搜索功能,融合单纯形法改进拓张搜索方式,采用Levy飞行改进步长提升鲸鱼优化算法(Whale Optimization Algorithm,WOA)的寻优能力。基于MWIWOA对SVM模型核函数参数及惩罚因子寻优,提高参数选择的科学性。【结果】以SP74-FPSO管道段内管腐蚀数据为例,综合多种算法模型改进策略,分别构建MWIWOA-SVM、WOA-SVM、PSO-SVM以及SVM海底长输管道内腐蚀速率预测模型,并分别进行训练、预测及模拟结果对比。MWIWOA-SVM海底长输管道内腐蚀速率预测模型的平均绝对百分比误差及均方根误差均低于2%,处于极低水平,且决定系数与拟合度均达到98%以上,内腐蚀速率预测值与真实值的相对误差不超过0.99%。其各项性能指标均显著优于其他预测模型,预测精度更高。【结论】通过引入MWIWOA提高预测精度,其表现较对比模型更优,证明了改进算法的可行性,解决了算法模型初期所具有的收敛精度低、易局部最优以及算力不平衡易失衡等问题。根据实验结果,MWIWOA-SVM海底长输管道内腐蚀速率预测模型具有良好的预测性能,可为后续海底管道风险评估及维修建议研究提供参考。 展开更多
关键词 长输管道 svm回归预测 多途径提升的鲸鱼优化算法 内腐蚀速率
原文传递
基于SVM模型的亚像素位移测量方法的研究 被引量:1
16
作者 沈澍 孙磊磊 +2 位作者 孙义杰 张浩 王森 《小型微型计算机系统》 北大核心 2025年第5期1156-1160,共5页
亚像素位移测量算法常见的有曲面拟合法、梯度法和插值法等,论文介绍了一种基于支持向量机(SVM)模型的亚像素位移测量方法,提出一种用于计算物体移动前后两幅图像的相关值来表征亚像素位移的梯度加权求和法.利用计算机模拟生成一系列以0... 亚像素位移测量算法常见的有曲面拟合法、梯度法和插值法等,论文介绍了一种基于支持向量机(SVM)模型的亚像素位移测量方法,提出一种用于计算物体移动前后两幅图像的相关值来表征亚像素位移的梯度加权求和法.利用计算机模拟生成一系列以0.001pixel步调的图像,其中70%作为训练集,30%作为测试集,为了检验该模型抗噪性,在生成的图像中添加不同方差的高斯噪声,并将其与曲面拟合法和梯度法进行比较,结果表明在精度要求为0.01pixel时,采用SVM法在保证高精度的情况下其抗噪性优于曲面拟合法和梯度法,其噪声方差上限为0.015,具有很好的鲁棒性可用于实际物体位移的高精度测量. 展开更多
关键词 支持向量机(svm) 亚像素位移 数字图像相关法(DICM) 梯度加权求和法 高斯噪声
在线阅读 下载PDF
基于DBSCAN-IHHO-SVM模型的煤与瓦斯突出预测
17
作者 郑晓亮 王琦 +2 位作者 来文豪 张贺 张玉婷 《湖北民族大学学报(自然科学版)》 2025年第1期53-59,共7页
针对煤与瓦斯突出事故的复杂性以及数据获取困难导致预测准确率低的问题,提出基于密度的噪声应用空间聚类-改进哈里斯鹰优化-支持向量机(density based spatial clustering of applications with noise-improved Harris hawks optimizat... 针对煤与瓦斯突出事故的复杂性以及数据获取困难导致预测准确率低的问题,提出基于密度的噪声应用空间聚类-改进哈里斯鹰优化-支持向量机(density based spatial clustering of applications with noise-improved Harris hawks optimization-support vector machine, DBSCAN-IHHO-SVM)预测模型。首先,选取瓦斯含量、瓦斯压力、煤层孔隙率、煤层坚固性系数作为预测指标,对数据中的缺失值采用均值填补处理,利用生成式对抗网络(generative adversarial network, GAN)扩充突出数据量。接着,采用DBSCAN从非突出数据中识别潜在危险数据,并将其作为新的突出数据。最后,引入IHHO调整SVM模型参数,将处理后的数据输入IHHO-SVM模型进行预测分析。结果表明,相比于原始SVM模型,DBSCAN-IHHO-SVM模型的整体预测准确率、危险数据识别率分别提升了5.87%、38.46%。在突出数据样本有限的情况下,DBSCAN-IHHO-SVM模型能有效挖掘非突出数据潜在信息,实现精准预警,为该领域研究提供了新思路。 展开更多
关键词 煤与瓦斯突出 预测 危险数据识别 数据扩充 IHHO svm
在线阅读 下载PDF
基于1DCNN-SVM的天然气水合物风险防控边界预测方法
18
作者 吕晓方 陈书楷 +5 位作者 徐孝轩 柳扬 钱瑞祥 王传硕 李晓伟 周诗岽 《管道保护》 2025年第1期14-21,共8页
为了保障油气管道的流动安全,准确预测天然气水合物的生成条件非常重要。传统方法依赖于实验经验公式或简单物理模型,但这些方法计算复杂、适用范围有限且精度较低。为此,提出了一种基于一维卷积神经网络(1DCNN)-支持向量机(SVM)的天然... 为了保障油气管道的流动安全,准确预测天然气水合物的生成条件非常重要。传统方法依赖于实验经验公式或简单物理模型,但这些方法计算复杂、适用范围有限且精度较低。为此,提出了一种基于一维卷积神经网络(1DCNN)-支持向量机(SVM)的天然气水合物相平衡预测方法。在实验中,探讨了不同迭代次数对模型性能的影响,确定2000次迭代时模型性能最佳。对比1DCNN-SVM模型与传统SVM、CNN、BP模型和OLGA的预测效果,结果显示1DCNN-SVM模型具有优异的预测性能,R2达到0.9761,MSE为1.8236,MAE为0.5889,均优于其他模型。此外,1DCNN-SVM模型在面对新数据时,表现出良好的适用性与稳定性。该预测方法为油气管道水合物生成的预测、监测预警及防控提供了新的思路。 展开更多
关键词 天然气水合物 相平衡 一维卷积神经网络(1DCNN) 支持向量机(svm)
在线阅读 下载PDF
基于SARIMA-SVM模型的季节性PM_(2.5)浓度预测 被引量:1
19
作者 宋英华 徐亚安 张远进 《计算机工程》 北大核心 2025年第1期51-59,共9页
空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARI... 空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARIMA-SVM)融合模型。该融合模型为串联型融合模型,将数据拆分为线性部分与非线性部分。SARIMA模型在差分自回归滑动平均(ARIMA)模型的基础上增加了季节性因素提取参数,能有效分析PM_(2.5)浓度数据的季节性规律变化趋势,较好地预测数据未来的线性变化趋势。结合SVM模型对预测数据的残差序列进行优化,利用滑动步长预测法确定残差序列的最优预测步长,通过网格搜索确定最优模型参数,实现对PM_(2.5)浓度数据的长期预测,同时提高整体预测精度。通过对武汉市近5年的PM_(2.5)浓度监测数据进行分析,结果表明该融合模型的预测准确率相较于单一模型有很大提升,在相同的实验环境下比单一的ARIMA、Auto ARIMA、SARIMA模型分别提升了99%、99%、98%,稳定性也更好,为PM_(2.5)浓度预测研究提供了新的思路。 展开更多
关键词 季节性差分自回归滑动平均 支持向量机 融合模型 PM_(2.5)浓度 季节性预测
在线阅读 下载PDF
基于SAA-SVM的油田注水管网系统管道故障诊断研究 被引量:1
20
作者 王妍 郭旭东 +3 位作者 安梦雯 赵亮 马瑞鑫 高生亮 《化工自动化及仪表》 2025年第3期441-448,469,共9页
针对油田注水管网系统不易检修、故障频发的问题,提出了一种基于模拟退火算法(SAA)优化支持向量机(SVM)的故障诊断方法。基于SAA的突跳特性,对支持向量机中的惩罚因子和核函数两个参数进行优化,并将仿真模拟与智能算法训练相结合,计算... 针对油田注水管网系统不易检修、故障频发的问题,提出了一种基于模拟退火算法(SAA)优化支持向量机(SVM)的故障诊断方法。基于SAA的突跳特性,对支持向量机中的惩罚因子和核函数两个参数进行优化,并将仿真模拟与智能算法训练相结合,计算系统故障工况,得出管段的各故障诊断结果。该方法能准确诊断注水系统故障点位置一级故障、故障类型二级故障及故障程度三级故障,通过实验对比分析验证了方法的高效性,优化后的模型收敛精度提高48.6%,且优化后模型对故障点位置的诊断结果误差均值降低1.31%。该模型为油田注水网络诊断技术的进一步研究提供思路,可对大型网络诊断提供依据和方向。 展开更多
关键词 油田注水系统 支持向量机 模拟退火算法 故障诊断
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部