To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy...To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy storage systems based on measurement feedback is proposed.First,considering the high charge/discharge losses of hydrogen storage and the low energy density of battery storage,an operational optimization objective is established to enable adaptive energy adjustment in the Battery-hydrogen hybrid energy storage system.Next,an online optimization model minimizing the operational cost of the hybrid system is constructed to suppress grid-injected power deviations with satisfying the operational constraints of hydrogen storage and batteries.Finally,utilizing the online measurement of the energy states of hydrogen storage and batteries,an online optimization strategy based on measurement feedback is designed.Case study results show:before and after smoothing the fluctuations in wind power,the time when the power exceeded the upper and lower limits of the grid-injected power accounted for 24.1%and 1.45%of the total time,respectively,the proposed strategy can effectively keep the grid-injected power deviations of wind farms within the allowable range.Hydrogen storage and batteries respectively undertake long-term and short-term charge/discharge tasks,effectively reducing charge/discharge losses of the Battery-hydrogen hybrid energy storage systems and improving its operational efficiency.展开更多
The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structur...The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structure,environmental friendliness,and cost-effectiveness.Recent advances in controlling the pore structure of these carbons and its relationship between to is energy storage performance are discussed,emphasizing the critical role of a balanced distribution of micropores,mesopores and macropores in determining electrochemical behavior.Particular attention is given to how the intrinsic components of biomass precursors(lignin,cellulose,and hemicellulose)influence pore formation during carbonization.Carbonization and activation strategies to precisely control the pore structure are introduced.Finally,key challenges in the industrial production of these carbons are outlined,and future research directions are proposed.These include the establishment of a database of biomass intrinsic structures and machine learning-assisted pore structure engineering,aimed at providing guidance for the design of high-performance carbon materials for next-generation energy storage devices.展开更多
To address issues such as poor initial population diversity, low stability and local convergence accuracy, and easy local optima in the traditional Multi-Objective Artificial Hummingbird Algorithm (MOAHA), an Improved...To address issues such as poor initial population diversity, low stability and local convergence accuracy, and easy local optima in the traditional Multi-Objective Artificial Hummingbird Algorithm (MOAHA), an Improved MOAHA (IMOAHA) was proposed. The improvements involve Tent mapping based on random variables to initialize the population, a logarithmic decrease strategy for inertia weight to balance search capability, and the improved search operators in the territory foraging phase to enhance the ability to escape from local optima and increase convergence accuracy. The effectiveness of IMOAHA was verified through Matlab/Simulink. The results demonstrate that IMOAHA exhibits superior convergence, diversity, uniformity, and coverage of solutions across 6 test functions, outperforming 4 comparative algorithms. A Wilcoxon rank-sum test further confirmed its exceptional performance. To assess IMOAHA’s ability to solve engineering problems, an optimization model for a multi-track, multi-train urban rail traction power supply system with Supercapacitor Energy Storage Systems (SCESSs) was established, and IMOAHA was successfully applied to solving the capacity allocation problem of SCESSs, demonstrating that it is an effective tool for solving complex Multi-Objective Optimization Problems (MOOPs) in engineering domains.展开更多
The control of battery energy storage systems(BESSs)plays an important role in the management of microgrids.In this paper,the problem of balancing the state-ofcharge(SoC)of the networked battery units in a BESS while ...The control of battery energy storage systems(BESSs)plays an important role in the management of microgrids.In this paper,the problem of balancing the state-ofcharge(SoC)of the networked battery units in a BESS while meeting the total charging/discharging power requirement is formulated and solved as a distributed control problem.Conditions on the communication topology among the battery units are established under which a control law is designed for each battery unit to solve the control problem based on distributed average reference power estimators and distributed average unit state estimators.Two types of estimators are proposed.One achieves asymptotic estimation and the other achieves finite time estimation.We show that,under the proposed control laws,SoC balancing of all battery units is achieved and the total charging/discharging power of the BESS tracks the desired power.A simulation example is shown to verify the theoretical results.展开更多
The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain deg...The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain degradation patterns of repurposed batteries.This paper presents a novel model-free adaptive voltage controlembedded dung beetle-inspired heuristic optimization algorithmfor optimal SLBESS capacity configuration and power dispatch.To simultaneously address the computational complexity and ensure system stability,this paper develops a comprehensive bilevel optimization framework.At the upper level,a dung beetle optimization algorithmdetermines the optimal SLBESS capacity configuration byminimizing total lifecycle costswhile incorporating the charging/discharging power trajectories derived from the model-free adaptive voltage control strategy.At the lower level,a health-priority power dispatch optimization model intelligently allocates power demands among heterogeneous battery groups based on their real-time operational states,state-of-health variations,and degradation constraints.The proposed model-free approach circumvents the need for complex battery charging/discharging power controlmodels and extensive historical data requirements whilemaintaining system stability through adaptive controlmechanisms.A novel cycle life degradation model is developed to quantify the relationship between remaining useful life,depth of discharge,and operational patterns.The integrated framework enables simultaneous strategic planning and operational control,ensuring both economic efficiency and extended battery lifespan.The effectiveness of the proposed method is validated through comprehensive case studies on hybrid energy storage systems,demonstrating superior computational efficiency,robust performance across different network configurations,and significant improvements in battery utilization compared to conventional approaches.展开更多
In distributed cloud storage systems, inevitably there exist multiple node failures at the same time. The existing methods of regenerating codes, including minimum storage regenerating(MSR) codes and minimum bandwidth...In distributed cloud storage systems, inevitably there exist multiple node failures at the same time. The existing methods of regenerating codes, including minimum storage regenerating(MSR) codes and minimum bandwidth regenerating(MBR) codes, are mainly to repair one single or several failed nodes, unable to meet the repair need of distributed cloud storage systems. In this paper, we present locally minimum storage regenerating(LMSR) codes to recover multiple failed nodes at the same time. Specifically, the nodes in distributed cloud storage systems are divided into multiple local groups, and in each local group(4, 2) or(5, 3) MSR codes are constructed. Moreover, the grouping method of storage nodes and the repairing process of failed nodes in local groups are studied. Theoretical analysis shows that LMSR codes can achieve the same storage overhead as MSR codes. Furthermore, we verify by means of simulation that, compared with MSR codes, LMSR codes can reduce the repair bandwidth and disk I/O overhead effectively.展开更多
A smart grid will require, to greater or lesser degrees, advanced tools for planning and operation, broadly accepted communications platforms, smart sensors and controls, and real-time pricing. The smart grid has been...A smart grid will require, to greater or lesser degrees, advanced tools for planning and operation, broadly accepted communications platforms, smart sensors and controls, and real-time pricing. The smart grid has been described as something of an ecosystem with constantly communication, proactive, and virtually self-aware. The use of smart grid has a lot of economical and environmental advantages;however it has a downside of instability and unpredictability introduced by distributed generation (DG) from renewable energy into the public electric systems. Variable energies such as solar and wind power have a lack of stability and to avoid short-term fluctuations in power supplied to the grid, a local storage subsystem could be used to provide higher quality and stability in the fed energy. Energy storage systems (ESSs) would be a facilitator of smart grid deployment and a “small amount” of storage would have a “great impact” on the future power grid. The smart grid, with its various superior communications and control features, would make it possible to integrate the potential application of widely dispersed battery storage systems as well other ESSs. This work deals with a detailed updated review on available ESSs applications in future smart power grids. It also highlights latest projects carried out on different ESSs throughout all around the world.展开更多
In this paper, we present a comparative study between informed and predictive prefetching mechanisms that were presented to leverage the performance gap between I/O storage systems and CPU. In particular, we will focu...In this paper, we present a comparative study between informed and predictive prefetching mechanisms that were presented to leverage the performance gap between I/O storage systems and CPU. In particular, we will focus on transparent informed prefetching (TIP) and predictive prefetching using probability graph approach (PG). Our main objective is to show the main features, motivations, and implementation overview of each mechanism. We also conducted a performance evaluation discussion that shows a comparison between both mechanisms performance when using different cache size values.展开更多
The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To th...The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.展开更多
Introduction of vacancies is a widely practiced method to improve the performance of active materials in differentenergy systems,such as secondary batteries,electrocatalysis,and supercapacitors.Because vacancies can g...Introduction of vacancies is a widely practiced method to improve the performance of active materials in differentenergy systems,such as secondary batteries,electrocatalysis,and supercapacitors.Because vacancies can generateabundant localized electrons and unsaturated cations,the incorporation of vacancies will significantly improvethe electrical conductivity,ion migration,and provides additional active sites of energy storage materials.Thisarticle systematically reviews different methods to generate oxygen,nitrogen,or selenium vacancies,and techniques to characterize these vacancies.We summarize the specific roles that vacancies play for the active materials in each type of energy storage devices.Additionally,we provide insights into the research progress andchallenges associated with the future development of vacancies technology in various energy storage systems.展开更多
In this paper, we present a predictive prefetching mechanism that is based on probability graph approach to perform prefetching between different levels in a parallel hybrid storage system. The fundamental concept of ...In this paper, we present a predictive prefetching mechanism that is based on probability graph approach to perform prefetching between different levels in a parallel hybrid storage system. The fundamental concept of our approach is to invoke parallel hybrid storage system’s parallelism and prefetch data among multiple storage levels (e.g. solid state disks, and hard disk drives) in parallel with the application’s on-demand I/O reading requests. In this study, we show that a predictive prefetching across multiple storage levels is an efficient technique for placing near future needed data blocks in the uppermost levels near the application. Our PPHSS approach extends previous ideas of predictive prefetching in two ways: (1) our approach reduces applications’ execution elapsed time by keeping data blocks that are predicted to be accessed in the near future cached in the uppermost level;(2) we propose a parallel data fetching scheme in which multiple fetching mechanisms (i.e. predictive prefetching and application’s on-demand data requests) can work in parallel;where the first one fetches data blocks among the different levels of the hybrid storage systems (i.e. low-level (slow) to high-level (fast) storage devices) and the other one fetches the data from the storage system to the application. Our PPHSS strategy integrated with the predictive prefetching mechanism significantly reduces overall I/O access time in a hybrid storage system. Finally, we developed a simulator to evaluate the performance of the proposed predictive prefetching scheme in the context of hybrid storage systems. Our results show that our PPHSS can improve system performance by 4% across real-world I/O traces without the need of using large size caches.展开更多
Present-day power conversion and conditioning systems focus on transferring energy from a single type of power source into a single type of load or energy storage system (ESS). While these systems can be optimized wit...Present-day power conversion and conditioning systems focus on transferring energy from a single type of power source into a single type of load or energy storage system (ESS). While these systems can be optimized within their specific topology (e.g. MPPT for solar applications and BMS for batteries), the topologies are not easily adapted to accept a wide range of power flow operating conditions. With a hybrid approach to energy storage and power flow, a system can be designed to operate at its most advantageous point, given the operating conditions. Based on the load demand, the system can select the optimal power source and ESS. This paper will investigate the feasibility of combining two types of power sources (main utility grid and photovoltaics (PV)) along with two types of ESS (ultra-capacitors and batteries). The simulation results will show the impact of a hybrid ESS on a grid-tied residential microgrid system performance under various operating scenarios.展开更多
Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink...Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink through the current energy generating and distribution system. This led to the exploration of other energy sources of which renewable energy (like thermal, solar and wind energy) is fast becoming an integral part of most energy system. However, this innovative and promising energy source is highly unreliable in maintaining a constant peak power that matches demand. Energy storage systems have thus been highlighted as a solution in managing such imbalances and maintaining the stability of supply. Energy storage technologies absorb and store energy, and release it on demand. This includes gravitational potential energy (pumped hydroelectric), chemical energy (batteries), kinetic energy (flywheels or compressed air), and energy in the form of electrical (capacitors) and magnetic fields. This paper provides a detailed and comprehensive overview of some of the state-of-the-art energy storage technologies, its evolution, classification, and comparison along with various area of applications. Also highlighted in this paper is a plethora of power electronic Interface technologies that plays a significant role in enabling optimum performance and utilization of energy storage systems in different areas of application.展开更多
This paper presents a novel Simulink models with an evaluation study of more widely used On-Line Maximum Power Point tracking(MPPT)techniques for Photo-Voltaic based Battery Storage Systems(PV-BSS).To have a full comp...This paper presents a novel Simulink models with an evaluation study of more widely used On-Line Maximum Power Point tracking(MPPT)techniques for Photo-Voltaic based Battery Storage Systems(PV-BSS).To have a full comparative study in terms of the dynamic response,battery state of charge(SOC),and oscillations around the Maximum Power Point(MPP)of the PV-BSS to variations in climate conditions,these techniques are simulated in Matlab/Simulink.The introduced methodologies are classified into two types;the first type is conventional hill-climbing techniques which are based on instantaneous PV data measurements such as Perturb&Observe and Incremental Conductance techniques.The second type is a novel proposed methodology is based on using solar irradiance and cell temperature measurements with pre-build Adaptive Neuro-Fuzzy Inference System(ANFIS)model to predict DC–DC converter optimum duty cycle to track MPP.Then evaluation study is introduced for conventional and proposed On-Line MPPT techniques.This comparative study can be useful in specifying the appropriateness of the MPPT techniques for PV-BSS.Also the introduced model can be used as a valued reference model for future research related to Soft Computing(SC)MPPT techniques.A significant improvement of SOC is achieved by the proposed model and methodology with high accuracy and lower oscillations.展开更多
Variable distributed energy resources (DERs) such as photovoltaic (PV) systems and wind power systems require additional power resources to control the balance between supply and demand. Battery energy storage systems...Variable distributed energy resources (DERs) such as photovoltaic (PV) systems and wind power systems require additional power resources to control the balance between supply and demand. Battery energy storage systems (BESSs) are one such possible resource for providing grid stability. It has been proposed that decentralized BESSs could help support microgrids (MGs) with intelligent control when advanced functionalities are implemented with variable DERs. One key challenge is developing and testing smart inverter controls for DERs. This paper presents a standardized method to test the interoperability and functionality of BESSs. First, a survey of grid-support standards prevalent in several countries was conducted. Then, the following four interoperability functions defined in IEC TR 61850-90-7 were tested: the specified active power from storage test (INV4), the var-priority Volt/VAR test (VV) and the specified power factor test (INV3) and frequency-watt control (FW). This study then out-lines the remaining technical issues related to basic BESS smart inverter test protocols.展开更多
The German Aerospace Center has merged a wide range of technological research and development for future cars in a project called "Next Generation Car". Within this large research project, three vehicle concepts for...The German Aerospace Center has merged a wide range of technological research and development for future cars in a project called "Next Generation Car". Within this large research project, three vehicle concepts for different applications (urban, regional and interurban) and with different powertrains (fuel-cell, battery and hybrid) will be developed. Research questions on different levels from conceptual question about vehicle modularity down to detailed technological aspects like combining hydrogen storage with cabin climatization and a systematic investigation of different thermal energy storage systems for electric vehicles concepts are covered by this project. To the latter, the contribution shows an overview about three thermal storage technologies--sensible solid media, metallic latent and thermochemical thermal energy storage systems--and details about the development of an electrically heated (power-to-heat) solid media storage system to achieve high storage densities and to allow flexible thermal discharging values. Central works target the identification of suitable thermal management solutions in future electric vehicle concepts to increase range, efficiency and flexibility.展开更多
Moran considered a dam whose inflow in a given interval of time is a continuous random variable. He then developed integral equations for the probabilities of emptiness and overflow. These equations are difficult to s...Moran considered a dam whose inflow in a given interval of time is a continuous random variable. He then developed integral equations for the probabilities of emptiness and overflow. These equations are difficult to solve numerically;thus, approximations have been proposed that discretize the input. In this paper, extensions are considered for storage systems with different assumptions for storage losses. We also develop discrete approximations for the probabilities of emptiness and overflow.展开更多
By moving computations from computing nodes to storage nodes, active storage technology provides an efficient for data-intensive high-performance computing applications. The existing studies have neglected the heterog...By moving computations from computing nodes to storage nodes, active storage technology provides an efficient for data-intensive high-performance computing applications. The existing studies have neglected the heterogeneity of storage nodes on the performance of active storage systems. We introduce CADP, a capability-aware data placement scheme for heterogeneous active storage systems to obtain high-performance data processing. The basic idea of CADP is to place data on storage nodes based on their computing capability and storage capability, so that the load-imbalance among heterogeneous servers can be avoided. We have implemented CADP under a parallel I/O system. The experimental results show that the proposed capability-aware data placement scheme can improve the active storage system performance significantly.展开更多
基金Supported by State Grid Zhejiang Electric Power Co.,Ltd.Science and Technology Project Funding(No.B311DS230005).
文摘To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy storage systems based on measurement feedback is proposed.First,considering the high charge/discharge losses of hydrogen storage and the low energy density of battery storage,an operational optimization objective is established to enable adaptive energy adjustment in the Battery-hydrogen hybrid energy storage system.Next,an online optimization model minimizing the operational cost of the hybrid system is constructed to suppress grid-injected power deviations with satisfying the operational constraints of hydrogen storage and batteries.Finally,utilizing the online measurement of the energy states of hydrogen storage and batteries,an online optimization strategy based on measurement feedback is designed.Case study results show:before and after smoothing the fluctuations in wind power,the time when the power exceeded the upper and lower limits of the grid-injected power accounted for 24.1%and 1.45%of the total time,respectively,the proposed strategy can effectively keep the grid-injected power deviations of wind farms within the allowable range.Hydrogen storage and batteries respectively undertake long-term and short-term charge/discharge tasks,effectively reducing charge/discharge losses of the Battery-hydrogen hybrid energy storage systems and improving its operational efficiency.
文摘The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structure,environmental friendliness,and cost-effectiveness.Recent advances in controlling the pore structure of these carbons and its relationship between to is energy storage performance are discussed,emphasizing the critical role of a balanced distribution of micropores,mesopores and macropores in determining electrochemical behavior.Particular attention is given to how the intrinsic components of biomass precursors(lignin,cellulose,and hemicellulose)influence pore formation during carbonization.Carbonization and activation strategies to precisely control the pore structure are introduced.Finally,key challenges in the industrial production of these carbons are outlined,and future research directions are proposed.These include the establishment of a database of biomass intrinsic structures and machine learning-assisted pore structure engineering,aimed at providing guidance for the design of high-performance carbon materials for next-generation energy storage devices.
基金by National Natural Science Foundation of China(62373142,62033014)Natural Science Foundation of Hunan Province(2025JJ70017,2022JJ50074).
文摘To address issues such as poor initial population diversity, low stability and local convergence accuracy, and easy local optima in the traditional Multi-Objective Artificial Hummingbird Algorithm (MOAHA), an Improved MOAHA (IMOAHA) was proposed. The improvements involve Tent mapping based on random variables to initialize the population, a logarithmic decrease strategy for inertia weight to balance search capability, and the improved search operators in the territory foraging phase to enhance the ability to escape from local optima and increase convergence accuracy. The effectiveness of IMOAHA was verified through Matlab/Simulink. The results demonstrate that IMOAHA exhibits superior convergence, diversity, uniformity, and coverage of solutions across 6 test functions, outperforming 4 comparative algorithms. A Wilcoxon rank-sum test further confirmed its exceptional performance. To assess IMOAHA’s ability to solve engineering problems, an optimization model for a multi-track, multi-train urban rail traction power supply system with Supercapacitor Energy Storage Systems (SCESSs) was established, and IMOAHA was successfully applied to solving the capacity allocation problem of SCESSs, demonstrating that it is an effective tool for solving complex Multi-Objective Optimization Problems (MOOPs) in engineering domains.
基金relates to Department of Navy award(N00014-20-1-2858)。
文摘The control of battery energy storage systems(BESSs)plays an important role in the management of microgrids.In this paper,the problem of balancing the state-ofcharge(SoC)of the networked battery units in a BESS while meeting the total charging/discharging power requirement is formulated and solved as a distributed control problem.Conditions on the communication topology among the battery units are established under which a control law is designed for each battery unit to solve the control problem based on distributed average reference power estimators and distributed average unit state estimators.Two types of estimators are proposed.One achieves asymptotic estimation and the other achieves finite time estimation.We show that,under the proposed control laws,SoC balancing of all battery units is achieved and the total charging/discharging power of the BESS tracks the desired power.A simulation example is shown to verify the theoretical results.
基金Financial support was provided by the State Grid Sichuan Electric Power Company Science and Technology Project“Key Research on Development Path Planning and Key Operation Technologies of New Rural Electrification Construction”under Grant No.52199623000G.
文摘The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain degradation patterns of repurposed batteries.This paper presents a novel model-free adaptive voltage controlembedded dung beetle-inspired heuristic optimization algorithmfor optimal SLBESS capacity configuration and power dispatch.To simultaneously address the computational complexity and ensure system stability,this paper develops a comprehensive bilevel optimization framework.At the upper level,a dung beetle optimization algorithmdetermines the optimal SLBESS capacity configuration byminimizing total lifecycle costswhile incorporating the charging/discharging power trajectories derived from the model-free adaptive voltage control strategy.At the lower level,a health-priority power dispatch optimization model intelligently allocates power demands among heterogeneous battery groups based on their real-time operational states,state-of-health variations,and degradation constraints.The proposed model-free approach circumvents the need for complex battery charging/discharging power controlmodels and extensive historical data requirements whilemaintaining system stability through adaptive controlmechanisms.A novel cycle life degradation model is developed to quantify the relationship between remaining useful life,depth of discharge,and operational patterns.The integrated framework enables simultaneous strategic planning and operational control,ensuring both economic efficiency and extended battery lifespan.The effectiveness of the proposed method is validated through comprehensive case studies on hybrid energy storage systems,demonstrating superior computational efficiency,robust performance across different network configurations,and significant improvements in battery utilization compared to conventional approaches.
基金supported in part by the National Natural Science Foundation of China (61640006, 61572188)the Natural Science Foundation of Shaanxi Province, China (2015JM6307, 2016JQ6011)the project of science and technology of Xi’an City (2017088CG/RC051(CADX002))
文摘In distributed cloud storage systems, inevitably there exist multiple node failures at the same time. The existing methods of regenerating codes, including minimum storage regenerating(MSR) codes and minimum bandwidth regenerating(MBR) codes, are mainly to repair one single or several failed nodes, unable to meet the repair need of distributed cloud storage systems. In this paper, we present locally minimum storage regenerating(LMSR) codes to recover multiple failed nodes at the same time. Specifically, the nodes in distributed cloud storage systems are divided into multiple local groups, and in each local group(4, 2) or(5, 3) MSR codes are constructed. Moreover, the grouping method of storage nodes and the repairing process of failed nodes in local groups are studied. Theoretical analysis shows that LMSR codes can achieve the same storage overhead as MSR codes. Furthermore, we verify by means of simulation that, compared with MSR codes, LMSR codes can reduce the repair bandwidth and disk I/O overhead effectively.
文摘A smart grid will require, to greater or lesser degrees, advanced tools for planning and operation, broadly accepted communications platforms, smart sensors and controls, and real-time pricing. The smart grid has been described as something of an ecosystem with constantly communication, proactive, and virtually self-aware. The use of smart grid has a lot of economical and environmental advantages;however it has a downside of instability and unpredictability introduced by distributed generation (DG) from renewable energy into the public electric systems. Variable energies such as solar and wind power have a lack of stability and to avoid short-term fluctuations in power supplied to the grid, a local storage subsystem could be used to provide higher quality and stability in the fed energy. Energy storage systems (ESSs) would be a facilitator of smart grid deployment and a “small amount” of storage would have a “great impact” on the future power grid. The smart grid, with its various superior communications and control features, would make it possible to integrate the potential application of widely dispersed battery storage systems as well other ESSs. This work deals with a detailed updated review on available ESSs applications in future smart power grids. It also highlights latest projects carried out on different ESSs throughout all around the world.
文摘In this paper, we present a comparative study between informed and predictive prefetching mechanisms that were presented to leverage the performance gap between I/O storage systems and CPU. In particular, we will focus on transparent informed prefetching (TIP) and predictive prefetching using probability graph approach (PG). Our main objective is to show the main features, motivations, and implementation overview of each mechanism. We also conducted a performance evaluation discussion that shows a comparison between both mechanisms performance when using different cache size values.
基金supported by the National Natural Science Foundation of China(No.12171145)。
文摘The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.
基金supported by the National Natural Science Foundation of China(No.52372176)Sichuan Science and Technology Program(2023YFH0026).
文摘Introduction of vacancies is a widely practiced method to improve the performance of active materials in differentenergy systems,such as secondary batteries,electrocatalysis,and supercapacitors.Because vacancies can generateabundant localized electrons and unsaturated cations,the incorporation of vacancies will significantly improvethe electrical conductivity,ion migration,and provides additional active sites of energy storage materials.Thisarticle systematically reviews different methods to generate oxygen,nitrogen,or selenium vacancies,and techniques to characterize these vacancies.We summarize the specific roles that vacancies play for the active materials in each type of energy storage devices.Additionally,we provide insights into the research progress andchallenges associated with the future development of vacancies technology in various energy storage systems.
文摘In this paper, we present a predictive prefetching mechanism that is based on probability graph approach to perform prefetching between different levels in a parallel hybrid storage system. The fundamental concept of our approach is to invoke parallel hybrid storage system’s parallelism and prefetch data among multiple storage levels (e.g. solid state disks, and hard disk drives) in parallel with the application’s on-demand I/O reading requests. In this study, we show that a predictive prefetching across multiple storage levels is an efficient technique for placing near future needed data blocks in the uppermost levels near the application. Our PPHSS approach extends previous ideas of predictive prefetching in two ways: (1) our approach reduces applications’ execution elapsed time by keeping data blocks that are predicted to be accessed in the near future cached in the uppermost level;(2) we propose a parallel data fetching scheme in which multiple fetching mechanisms (i.e. predictive prefetching and application’s on-demand data requests) can work in parallel;where the first one fetches data blocks among the different levels of the hybrid storage systems (i.e. low-level (slow) to high-level (fast) storage devices) and the other one fetches the data from the storage system to the application. Our PPHSS strategy integrated with the predictive prefetching mechanism significantly reduces overall I/O access time in a hybrid storage system. Finally, we developed a simulator to evaluate the performance of the proposed predictive prefetching scheme in the context of hybrid storage systems. Our results show that our PPHSS can improve system performance by 4% across real-world I/O traces without the need of using large size caches.
文摘Present-day power conversion and conditioning systems focus on transferring energy from a single type of power source into a single type of load or energy storage system (ESS). While these systems can be optimized within their specific topology (e.g. MPPT for solar applications and BMS for batteries), the topologies are not easily adapted to accept a wide range of power flow operating conditions. With a hybrid approach to energy storage and power flow, a system can be designed to operate at its most advantageous point, given the operating conditions. Based on the load demand, the system can select the optimal power source and ESS. This paper will investigate the feasibility of combining two types of power sources (main utility grid and photovoltaics (PV)) along with two types of ESS (ultra-capacitors and batteries). The simulation results will show the impact of a hybrid ESS on a grid-tied residential microgrid system performance under various operating scenarios.
文摘Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink through the current energy generating and distribution system. This led to the exploration of other energy sources of which renewable energy (like thermal, solar and wind energy) is fast becoming an integral part of most energy system. However, this innovative and promising energy source is highly unreliable in maintaining a constant peak power that matches demand. Energy storage systems have thus been highlighted as a solution in managing such imbalances and maintaining the stability of supply. Energy storage technologies absorb and store energy, and release it on demand. This includes gravitational potential energy (pumped hydroelectric), chemical energy (batteries), kinetic energy (flywheels or compressed air), and energy in the form of electrical (capacitors) and magnetic fields. This paper provides a detailed and comprehensive overview of some of the state-of-the-art energy storage technologies, its evolution, classification, and comparison along with various area of applications. Also highlighted in this paper is a plethora of power electronic Interface technologies that plays a significant role in enabling optimum performance and utilization of energy storage systems in different areas of application.
基金The Deanship of Scientific Research at Najran University has supported this work,under the General Research Funding program grant code(NU/-/SERC/10/650).
文摘This paper presents a novel Simulink models with an evaluation study of more widely used On-Line Maximum Power Point tracking(MPPT)techniques for Photo-Voltaic based Battery Storage Systems(PV-BSS).To have a full comparative study in terms of the dynamic response,battery state of charge(SOC),and oscillations around the Maximum Power Point(MPP)of the PV-BSS to variations in climate conditions,these techniques are simulated in Matlab/Simulink.The introduced methodologies are classified into two types;the first type is conventional hill-climbing techniques which are based on instantaneous PV data measurements such as Perturb&Observe and Incremental Conductance techniques.The second type is a novel proposed methodology is based on using solar irradiance and cell temperature measurements with pre-build Adaptive Neuro-Fuzzy Inference System(ANFIS)model to predict DC–DC converter optimum duty cycle to track MPP.Then evaluation study is introduced for conventional and proposed On-Line MPPT techniques.This comparative study can be useful in specifying the appropriateness of the MPPT techniques for PV-BSS.Also the introduced model can be used as a valued reference model for future research related to Soft Computing(SC)MPPT techniques.A significant improvement of SOC is achieved by the proposed model and methodology with high accuracy and lower oscillations.
文摘Variable distributed energy resources (DERs) such as photovoltaic (PV) systems and wind power systems require additional power resources to control the balance between supply and demand. Battery energy storage systems (BESSs) are one such possible resource for providing grid stability. It has been proposed that decentralized BESSs could help support microgrids (MGs) with intelligent control when advanced functionalities are implemented with variable DERs. One key challenge is developing and testing smart inverter controls for DERs. This paper presents a standardized method to test the interoperability and functionality of BESSs. First, a survey of grid-support standards prevalent in several countries was conducted. Then, the following four interoperability functions defined in IEC TR 61850-90-7 were tested: the specified active power from storage test (INV4), the var-priority Volt/VAR test (VV) and the specified power factor test (INV3) and frequency-watt control (FW). This study then out-lines the remaining technical issues related to basic BESS smart inverter test protocols.
文摘The German Aerospace Center has merged a wide range of technological research and development for future cars in a project called "Next Generation Car". Within this large research project, three vehicle concepts for different applications (urban, regional and interurban) and with different powertrains (fuel-cell, battery and hybrid) will be developed. Research questions on different levels from conceptual question about vehicle modularity down to detailed technological aspects like combining hydrogen storage with cabin climatization and a systematic investigation of different thermal energy storage systems for electric vehicles concepts are covered by this project. To the latter, the contribution shows an overview about three thermal storage technologies--sensible solid media, metallic latent and thermochemical thermal energy storage systems--and details about the development of an electrically heated (power-to-heat) solid media storage system to achieve high storage densities and to allow flexible thermal discharging values. Central works target the identification of suitable thermal management solutions in future electric vehicle concepts to increase range, efficiency and flexibility.
文摘Moran considered a dam whose inflow in a given interval of time is a continuous random variable. He then developed integral equations for the probabilities of emptiness and overflow. These equations are difficult to solve numerically;thus, approximations have been proposed that discretize the input. In this paper, extensions are considered for storage systems with different assumptions for storage losses. We also develop discrete approximations for the probabilities of emptiness and overflow.
基金Supported by the National Science and Technology Foundation of China(61572377)the Natural Science Foundation of Hubei Province(2014CFB239)+2 种基金the Open Fund from HPCL(201512-02)the Open Fund from SKLSE(2015-A-06)the US National Science Foundation(CNS-1162540)
文摘By moving computations from computing nodes to storage nodes, active storage technology provides an efficient for data-intensive high-performance computing applications. The existing studies have neglected the heterogeneity of storage nodes on the performance of active storage systems. We introduce CADP, a capability-aware data placement scheme for heterogeneous active storage systems to obtain high-performance data processing. The basic idea of CADP is to place data on storage nodes based on their computing capability and storage capability, so that the load-imbalance among heterogeneous servers can be avoided. We have implemented CADP under a parallel I/O system. The experimental results show that the proposed capability-aware data placement scheme can improve the active storage system performance significantly.