期刊文献+
共找到88,968篇文章
< 1 2 250 >
每页显示 20 50 100
Object-based classification of hyperspectral data using Random Forest algorithm 被引量:3
1
作者 Saeid Amini Saeid Homayouni +1 位作者 Abdolreza Safari Ali A.Darvishsefat 《Geo-Spatial Information Science》 SCIE CSCD 2018年第2期127-138,共12页
This paper presents a new framework for object-based classification of high-resolution hyperspectral data.This multi-step framework is based on multi-resolution segmentation(MRS)and Random Forest classifier(RFC)algori... This paper presents a new framework for object-based classification of high-resolution hyperspectral data.This multi-step framework is based on multi-resolution segmentation(MRS)and Random Forest classifier(RFC)algorithms.The first step is to determine of weights of the input features while using the object-based approach with MRS to processing such images.Given the high number of input features,an automatic method is needed for estimation of this parameter.Moreover,we used the Variable Importance(VI),one of the outputs of the RFC,to determine the importance of each image band.Then,based on this parameter and other required parameters,the image is segmented into some homogenous regions.Finally,the RFC is carried out based on the characteristics of segments for converting them into meaningful objects.The proposed method,as well as,the conventional pixel-based RFC and Support Vector Machine(SVM)method was applied to three different hyperspectral data-sets with various spectral and spatial characteristics.These data were acquired by the HyMap,the Airborne Prism Experiment(APEX),and the Compact Airborne Spectrographic Imager(CASI)hyperspectral sensors.The experimental results show that the proposed method is more consistent for land cover mapping in various areas.The overall classification accuracy(OA),obtained by the proposed method was 95.48,86.57,and 84.29%for the HyMap,the APEX,and the CASI datasets,respectively.Moreover,this method showed better efficiency in comparison to the spectralbased classifications because the OAs of the proposed method was 5.67 and 3.75%higher than the conventional RFC and SVM classifiers,respectively. 展开更多
关键词 object-based classification Random Forest algorithm multi-resolution segmentation(MRS) hyperspectral imagery
原文传递
Object-based classification of cloudy coastal areas using medium-resolution optical and SAR images for vulnerability assessment of marine disaster 被引量:2
2
作者 YANG Fengshuo YANG Xiaomei +3 位作者 WANG Zhihua LU Chen LI Zhi LIU Yueming 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2019年第6期1955-1970,共16页
Efficient and accurate access to coastal land cover information is of great significance for marine disaster prevention and mitigation.Although the popular and common sensors of land resource satellites provide free a... Efficient and accurate access to coastal land cover information is of great significance for marine disaster prevention and mitigation.Although the popular and common sensors of land resource satellites provide free and valuable images to map the land cover,coastal areas often encounter significant cloud cover,especially in tropical areas,which makes the classification in those areas non-ideal.To solve this problem,we proposed a framework of combining medium-resolution optical images and synthetic aperture radar(SAR)data with the recently popular object-based image analysis(OBIA)method and used the Landsat Operational Land Imager(OLI)and Phased Array type L-band Synthetic Aperture Radar(PALSAR)images acquired in Singapore in 2017 as a case study.We designed experiments to confirm two critical factors of this framework:one is the segmentation scale that determines the average object size,and the other is the classification feature.Accuracy assessments of the land cover indicated that the optimal segmentation scale was between 40 and 80,and the features of the combination of OLI and SAR resulted in higher accuracy than any individual features,especially in areas with cloud cover.Based on the land cover generated by this framework,we assessed the vulnerability of the marine disasters of Singapore in 2008 and 2017 and found that the high-vulnerability areas mainly located in the southeast and increased by 118.97 km2 over the past decade.To clarify the disaster response plan for different geographical environments,we classified risk based on altitude and distance from shore.The newly increased high-vulnerability regions within 4 km offshore and below 30 m above sea level are at high risk;these regions may need to focus on strengthening disaster prevention construction.This study serves as a typical example of using remote sensing techniques for the vulnerability assessment of marine disasters,especially those in cloudy coastal areas. 展开更多
关键词 COASTAL area marine DISASTER VULNERABILITY assessment remote sensing LAND use/cover object-based image analysis(OBIA)
在线阅读 下载PDF
Object-based Classification of Baltic Sea Ice Extent and Concentration in Winter 2011 被引量:2
3
作者 Aleksandra Mazur Adam Krezel 《Journal of Earth Science and Engineering》 2012年第8期488-495,共8页
The Baltic Sea is a brackish, mediterranean sea located in the middle latitudes of Europe. It is seasonally covered with ice. The ice covered areas during a typical winter are the Bothnian Bay, the Gulf of Finnland an... The Baltic Sea is a brackish, mediterranean sea located in the middle latitudes of Europe. It is seasonally covered with ice. The ice covered areas during a typical winter are the Bothnian Bay, the Gulf of Finnland and the Gulf of Riga. Sea ice plays an important role in dynamic and thermodynamic processes and also has a strong impact on the heat budget of the sea. Also a large part of transport goes by sea, and there is a need to create ice charts to make the marine transport safe. Because of high cloudiness in winter season and small amount of light in the northern part of the Baltic Sea, radar data are the most important remote sensing source of sea ice information. The main goal of the following studies is classification of the Baltic sea ice cover using radar data. The ENVISAT ASAR (Advanced Synthetic Aperture Radar) acquires data in five different modes. In the following studies ASAR Wide Swath Mode data were used. The Wide Swath Mode, using the ScanSAR technique provides medium resolution images (150 m) over a swath of 405 kin, at HH or VV polarization. In following work data from February 13th, February 24th and April 6th, 2011, representing three different sea ice situations were chosen. OBIA (object-based image analysis) methods and texture parameters were used to create sea ice extent and sea ice concentration charts. Based on object-based methods, it can separate single sea ice floes within the ice pack and calculate more accurately sea ice concentration. 展开更多
关键词 Baltic Sea sea ice ENVISAT ASAR object-based image analysis.
在线阅读 下载PDF
Object-Based Classification of Urban Distinct Sub-Elements Using High Spatial Resolution Orthoimages and DSM Layers
4
作者 Ali Nouh Mabdeh A'kif Al-Fugara Mu’men Al jarah 《Journal of Geographic Information System》 2018年第4期323-343,共21页
This paper aims to assess the ways in which multi-resolution object-based classification methods can be used to group urban environments made up of a mixture of buildings, sub-elements such as car parks, roads, shades... This paper aims to assess the ways in which multi-resolution object-based classification methods can be used to group urban environments made up of a mixture of buildings, sub-elements such as car parks, roads, shades and pavements and foliage such as grass and trees. This involves using both unmanned aerial vehicles (UAVs) which provide high-resolution mosaic Orthoimages and generate a Digital Surface Model (DSM). For the study area chosen for this paper, 400 Orthoimages with a spatial resolution of 7 cm each were used to build the Orthoimages and DSM, which were georeferenced using well distributed network of ground control points (GCPs) of 12 reference points (RMSE = 8 cm). As these were combined with onboard RTK-GNSS-enabled 2-frequency receivers, they were able to provide absolute block orientation which had a similar accuracy range if the data had been collected by traditional indirect sensor orientation. Traditional indirect sensor orientation involves the GNSS receiver in the UAV receiving a differential signal from the base station through a communication link. This allows for the precise position of the UAV to be established, as the RTK uses correction, allowing position, velocity, altitude and heading to tracked, as well as the measurement of raw sensor data. By assessing the results of the confusion matrices, it can be seen that the overall accuracy of the object-oriented classification was 84.37%. This has an overall Kappa of 0.74 and the data that had poor classification accuracy included shade, parking lots and concrete pavements. These had a producer accuracy (precision) of 81%, 74% and 74% respectively, while lakes and solar panels each scored 100% in comparison, meaning that they had good classification accuracy. 展开更多
关键词 OBJECT-ORIENTED classification Real Time KINEMATICS DSM UAV Orthoimages MOSAIC URBAN DISTINCT Sub-Elements
暂未订购
Identifying Alpine Wetlands in the Damqu River Basin in the Source Area of the Yangtze River Using Object-based Classification Method 被引量:2
5
作者 张继平 张镱锂 +2 位作者 刘林山 丁明军 张学儒 《Journal of Resources and Ecology》 CSCD 2011年第2期186-192,共7页
Alpine wetlands are very sensitive to global change, have great impacts on the hydrological condition of rivers, and are closely related to peoples' living in lower reaches. It is essential to monitor alpine wetland ... Alpine wetlands are very sensitive to global change, have great impacts on the hydrological condition of rivers, and are closely related to peoples' living in lower reaches. It is essential to monitor alpine wetland changes to appropriately manage and protect wetland resources; however, it is quite difficult to accurately extract such information from remote sensing images due to spectral confusion and arduous field verification. In this study, we identified different wetland types in the Damqu River Basin located in the Yangze River source region from Landsat remote sensing data using the object-based method. In order to ensure the interpretation accuracy of wetland, a digital elevation model (DEM) and its derived data (slope, aspect), Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Kauth-Thomas transformation were considered as the components of the spectral characteristics of wetland types. The spectral characteristics, texture features and spatial structure characteristics of each wetland type were comprehensively analyzed based on the success of image segmentation. The extraction rules for each wetland type were established by determining the thresholds of the spatial, texture and spectral attributes of typical parameter layers according to their histogram statistics. The classification accuracy was assessed using error matrixes and field survey verification data. According to the accuracy assessment, the total accuracy of image classification was 89%. 展开更多
关键词 alpine wetland remote sensing object-based classification Damqu River Basin
原文传递
Object-based classification approach for greenhouse mapping using Landsat-8 imagery 被引量:10
6
作者 Wu Chaofan Deng Jinsong +2 位作者 Wang Ke Ma Ligang Amir Reza Shah Tahmassebi 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2016年第1期79-88,I0005,共11页
Suburban greenhouses with intensive agricultural productivity have increasingly influenced the daily diet and vegetable supply in Chinese cities.With their enormous input of fertilizers and pesticides,greenhouses have... Suburban greenhouses with intensive agricultural productivity have increasingly influenced the daily diet and vegetable supply in Chinese cities.With their enormous input of fertilizers and pesticides,greenhouses have considerably changed the local soil quality and environmental risk factors.The ability to obtain timely and accurate information regarding the spatial distribution of greenhouses could make an important contribution to local agricultural management and soil protection.This paper attempts to present a practical framework for extracting suburban greenhouses,integrating remote sensing data from Landsat-8 and object-oriented classification.Inheritance classification was implemented,and various properties,including texture and neighborhood features in addition to spectral information,were investigated through the popular random forest technique for feature selection prior to SVM classification to improve the mapping accuracy.The results demonstrated that object-based classification incorporating non-spectral features yielded a significant improvement compared with the classification results obtained using only the spectral information in traditional per-pixel classification.Both the producer’s and user’s accuracy were higher than 85%for greenhouse identification.Although it remained a challenge to completely distinguish greenhouses from sparse plants,the final greenhouse map indicated that the proposed object-based classification scheme,providing multiple feature selections and multi-scale analysis,yielded worthwhile information when applied to a continuous series of the freely available Landsat-8 imagery data. 展开更多
关键词 GREENHOUSE MAPPING Landsat-8 object-based classification feature selection MULTI-SCALE
原文传递
Object-Based vs. Pixel-Based Classification of Mangrove Forest Mapping in Vien An Dong Commune, Ngoc Hien District, Ca Mau Province Using VNREDSat-1 Images 被引量:1
7
作者 Nguyen Thi Quynh Trang Le Quang Toan +2 位作者 Tong Thi Huyen Ai Nguyen Vu Giang Pham Viet Hoa 《Advances in Remote Sensing》 2016年第4期284-295,共12页
Many researches have been performed comparing object-based classification (OBC) and pixel-based classification (PBC), particularly in classifying high-resolution satellite images. VNREDSat-1 is the first optical remot... Many researches have been performed comparing object-based classification (OBC) and pixel-based classification (PBC), particularly in classifying high-resolution satellite images. VNREDSat-1 is the first optical remote sensing satellite of Vietnam with resolution of 2.5 m (Panchromatic) and 10 m (Multispectral). The objective of this research is to compare two classification approaches using VNREDSat-1 image for mapping mangrove forest in Vien An Dong commune, Ngoc Hien district, Ca Mau province. ISODATA algorithm (in PBC method) and membership function classifier (in OBC method) were chosen to classify the same image. The results show that the overall accuracies of OBC and PBC are 73% and 62.16% respectively, and OBC solved the “salt and pepper” which is the main issue of PBC as well. Therefore, OBC is supposed to be the better approach to classify VNREDSat-1 for mapping mangrove forest in Ngoc Hien commune. 展开更多
关键词 object-based classification Pixel-Based classification VNREDSat-1 Mangrove Forest Ca Mau
暂未订购
Urban tree species classification based on multispectral airborne LiDAR 被引量:1
8
作者 HU Pei-Lun CHEN Yu-Wei +3 位作者 Mohammad Imangholiloo Markus Holopainen WANG Yi-Cheng Juha Hyyppä 《红外与毫米波学报》 北大核心 2025年第2期211-216,共6页
Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services... Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services is influenced by species diversity,tree health,and the distribution and the composition of trees.Traditionally,data on urban trees has been collected through field surveys and manual interpretation of remote sensing images.In this study,we evaluated the effectiveness of multispectral airborne laser scanning(ALS)data in classifying 24 common urban roadside tree species in Espoo,Finland.Tree crown structure information,intensity features,and spectral data were used for classification.Eight different machine learning algorithms were tested,with the extra trees(ET)algorithm performing the best,achieving an overall accuracy of 71.7%using multispectral LiDAR data.This result highlights that integrating structural and spectral information within a single framework can improve the classification accuracy.Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy. 展开更多
关键词 multispectral airborne LiDAR machine learning tree species classification
在线阅读 下载PDF
Nondestructive detection and classification of impurities-containing seed cotton based on hyperspectral imaging and one-dimensional convolutional neural network 被引量:1
9
作者 Yeqi Fei Zhenye Li +2 位作者 Tingting Zhu Zengtao Chen Chao Ni 《Digital Communications and Networks》 2025年第2期308-316,共9页
The cleanliness of seed cotton plays a critical role in the pre-treatment of cotton textiles,and the removal of impurity during the harvesting process directly determines the quality and market value of cotton textile... The cleanliness of seed cotton plays a critical role in the pre-treatment of cotton textiles,and the removal of impurity during the harvesting process directly determines the quality and market value of cotton textiles.By fusing band combination optimization with deep learning,this study aims to achieve more efficient and accurate detection of film impurities in seed cotton on the production line.By applying hyperspectral imaging and a one-dimensional deep learning algorithm,we detect and classify impurities in seed cotton after harvest.The main categories detected include pure cotton,conveyor belt,film covering seed cotton,and film adhered to the conveyor belt.The proposed method achieves an impurity detection rate of 99.698%.To further ensure the feasibility and practical application potential of this strategy,we compare our results against existing mainstream methods.In addition,the model shows excellent recognition performance on pseudo-color images of real samples.With a processing time of 11.764μs per pixel from experimental data,it shows a much improved speed requirement while maintaining the accuracy of real production lines.This strategy provides an accurate and efficient method for removing impurities during cotton processing. 展开更多
关键词 Seed cotton Film impurity Hyperspectral imaging Band optimization classification
在线阅读 下载PDF
Multi-Scale Dilated Convolution Network for SPECT-MPI Cardiovascular Disease Classification with Adaptive Denoising and Attenuation Correction
10
作者 A.Robert Singh Suganya Athisayamani +1 位作者 Gyanendra Prasad Joshi Bhanu Shrestha 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期299-327,共29页
Myocardial perfusion imaging(MPI),which uses single-photon emission computed tomography(SPECT),is a well-known estimating tool for medical diagnosis,employing the classification of images to show situations in coronar... Myocardial perfusion imaging(MPI),which uses single-photon emission computed tomography(SPECT),is a well-known estimating tool for medical diagnosis,employing the classification of images to show situations in coronary artery disease(CAD).The automatic classification of SPECT images for different techniques has achieved near-optimal accuracy when using convolutional neural networks(CNNs).This paper uses a SPECT classification framework with three steps:1)Image denoising,2)Attenuation correction,and 3)Image classification.Image denoising is done by a U-Net architecture that ensures effective image denoising.Attenuation correction is implemented by a convolution neural network model that can remove the attenuation that affects the feature extraction process of classification.Finally,a novel multi-scale diluted convolution(MSDC)network is proposed.It merges the features extracted in different scales and makes the model learn the features more efficiently.Three scales of filters with size 3×3 are used to extract features.All three steps are compared with state-of-the-art methods.The proposed denoising architecture ensures a high-quality image with the highest peak signal-to-noise ratio(PSNR)value of 39.7.The proposed classification method is compared with the five different CNN models,and the proposed method ensures better classification with an accuracy of 96%,precision of 87%,sensitivity of 87%,specificity of 89%,and F1-score of 87%.To demonstrate the importance of preprocessing,the classification model was analyzed without denoising and attenuation correction. 展开更多
关键词 SPECT-MPI CAD MSDC DENOISING attenuation correction classification
在线阅读 下载PDF
Various classification methods for diabetes mellitus in the management of blood glucose control 被引量:1
11
作者 Qing Jiang Yun Hu Jian-Hua Ma 《World Journal of Diabetes》 2025年第5期1-7,共7页
In the era of precision medicine,the classification of diabetes mellitus has evolved beyond the traditional categories.Various classification methods now account for a multitude of factors,including variations in spec... In the era of precision medicine,the classification of diabetes mellitus has evolved beyond the traditional categories.Various classification methods now account for a multitude of factors,including variations in specific genes,type ofβ-cell impairment,degree of insulin resistance,and clinical characteristics of metabolic profiles.Improved classification methods enable healthcare providers to formulate blood glucose management strategies more precisely.Applying these updated classification systems,will assist clinicians in further optimising treatment plans,including targeted drug therapies,personalized dietary advice,and specific exercise plans.Ultimately,this will facilitate stricter blood glucose control,minimize the risks of hypoglycaemia and hyperglycaemia,and reduce long-term complications associated with diabetes. 展开更多
关键词 Diabetes classification Glycaemic control Personalised treatment Soft clustering Precision medicine
暂未订购
Three-Stage Transfer Learning with AlexNet50 for MRI Image Multi-Class Classification with Optimal Learning Rate
12
作者 Suganya Athisayamani A.Robert Singh +1 位作者 Gyanendra Prasad Joshi Woong Cho 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期155-183,共29页
In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue... In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue anomalies.Traditionally,radiologists manually interpret these images,which can be labor-intensive and time-consuming due to the vast amount of data.To address this challenge,machine learning,and deep learning approaches can be utilized to improve the accuracy and efficiency of anomaly detection in MRI scans.This manuscript presents the use of the Deep AlexNet50 model for MRI classification with discriminative learning methods.There are three stages for learning;in the first stage,the whole dataset is used to learn the features.In the second stage,some layers of AlexNet50 are frozen with an augmented dataset,and in the third stage,AlexNet50 with an augmented dataset with the augmented dataset.This method used three publicly available MRI classification datasets:Harvard whole brain atlas(HWBA-dataset),the School of Biomedical Engineering of Southern Medical University(SMU-dataset),and The National Institute of Neuroscience and Hospitals brain MRI dataset(NINS-dataset)for analysis.Various hyperparameter optimizers like Adam,stochastic gradient descent(SGD),Root mean square propagation(RMS prop),Adamax,and AdamW have been used to compare the performance of the learning process.HWBA-dataset registers maximum classification performance.We evaluated the performance of the proposed classification model using several quantitative metrics,achieving an average accuracy of 98%. 展开更多
关键词 MRI TUMORS classification AlexNet50 transfer learning hyperparameter tuning OPTIMIZER
在线阅读 下载PDF
TMC-GCN: Encrypted Traffic Mapping Classification Method Based on Graph Convolutional Networks 被引量:1
13
作者 Baoquan Liu Xi Chen +2 位作者 Qingjun Yuan Degang Li Chunxiang Gu 《Computers, Materials & Continua》 2025年第2期3179-3201,共23页
With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based... With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%. 展开更多
关键词 Encrypted traffic classification deep learning graph neural networks multi-layer perceptron graph convolutional networks
在线阅读 下载PDF
A novel method for clustering cellular data to improve classification
14
作者 Diek W.Wheeler Giorgio A.Ascoli 《Neural Regeneration Research》 SCIE CAS 2025年第9期2697-2705,共9页
Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subse... Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons. 展开更多
关键词 cellular data clustering dendrogram data classification Levene's one-tailed statistical test unsupervised hierarchical clustering
在线阅读 下载PDF
Congruent Feature Selection Method to Improve the Efficacy of Machine Learning-Based Classification in Medical Image Processing
15
作者 Mohd Anjum Naoufel Kraiem +2 位作者 Hong Min Ashit Kumar Dutta Yousef Ibrahim Daradkeh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期357-384,共28页
Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp... Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset. 展开更多
关键词 Computer vision feature selection machine learning region detection texture analysis image classification medical images
在线阅读 下载PDF
New classification of gastric polyps:An in-depth analysis and critical evaluation 被引量:1
16
作者 Xiao-Hui Liao Ying-Ming Sun Hong-Bin Chen 《World Journal of Gastroenterology》 2025年第7期149-155,共7页
With the widespread use of upper gastrointestinal endoscopy,more and more gastric polyps(GPs)are being detected.Traditional management strategies often rely on histopathologic examination,which can be time-consuming a... With the widespread use of upper gastrointestinal endoscopy,more and more gastric polyps(GPs)are being detected.Traditional management strategies often rely on histopathologic examination,which can be time-consuming and may not guide immediate clinical decisions.This paper aims to introduce a novel classification system for GPs based on their potential risk of malignant transformation,categorizing them as"good","bad",and"ugly".A review of the literature and clinical case analysis were conducted to explore the clinical implications,management strategies,and the system's application in endoscopic practice.Good polyps,mainly including fundic gland polyps and inflammatory fibrous polyps,have a low risk of malignancy and typically require minimal or no intervention.Bad polyps,mainly including hyperplastic polyps and adenomas,pose an intermediate risk of malignancy,necessitating closer monitoring or removal.Ugly polyps,mainly including type 3 neuroendocrine tumors and early gastric cancer,indicate a high potential for malignancy and require urgent and comprehensive treatment.The new classification system provides a simplified and practical framework for diagnosing and managing GPs,improving diagnostic accuracy,guiding individualized treatment,and promoting advancements in endoscopic techniques.Despite some challenges,such as the risk of misclassification due to similar endoscopic appearances,this system is essential for the standardized management of GPs.It also lays the foundation for future research into biomarkers and the development of personalized medicine. 展开更多
关键词 Gastric polyps classification Fundic gland polyps Inflammatory fibroid polyps Hyperplastic polyps ADENOMAS Neuroendocrine tumors Early gastric cancer Patient management
暂未订购
Infrared aircraft few-shot classification method based on cross-correlation network
17
作者 HUANG Zhen ZHANG Yong GONG Jin-Fu 《红外与毫米波学报》 北大核心 2025年第1期103-111,共9页
In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This... In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This method combines two core modules:a simple parameter-free self-attention and cross-attention.By analyzing the self-correlation and cross-correlation between support images and query images,it achieves effective classification of infrared aircraft under few-shot conditions.The proposed cross-correlation network integrates these two modules and is trained in an end-to-end manner.The simple parameter-free self-attention is responsible for extracting the internal structure of the image while the cross-attention can calculate the cross-correlation between images further extracting and fusing the features between images.Compared with existing few-shot infrared target classification models,this model focuses on the geometric structure and thermal texture information of infrared images by modeling the semantic relevance between the features of the support set and query set,thus better attending to the target objects.Experimental results show that this method outperforms existing infrared aircraft classification methods in various classification tasks,with the highest classification accuracy improvement exceeding 3%.In addition,ablation experiments and comparative experiments also prove the effectiveness of the method. 展开更多
关键词 infrared imaging aircraft classification few-shot learning parameter-free attention cross attention
在线阅读 下载PDF
Audiovisual Art Event Classification and Outreach Based on Web Extracted Data
18
作者 Andreas Giannakoulopoulos Minas Pergantis +1 位作者 Aristeidis Lamprogeorgos Stella Lampoura 《Journal of Software Engineering and Applications》 2025年第1期24-43,共20页
The World Wide Web provides a wealth of information about everything, including contemporary audio and visual art events, which are discussed on media outlets, blogs, and specialized websites alike. This information m... The World Wide Web provides a wealth of information about everything, including contemporary audio and visual art events, which are discussed on media outlets, blogs, and specialized websites alike. This information may become a robust source of real-world data, which may form the basis of an objective data-driven analysis. In this study, a methodology for collecting information about audio and visual art events in an automated manner from a large array of websites is presented in detail. This process uses cutting edge Semantic Web, Web Search and Generative AI technologies to convert website documents into a collection of structured data. The value of the methodology is demonstrated by creating a large dataset concerning audiovisual events in Greece. The collected information includes event characteristics, estimated metrics based on their text descriptions, outreach metrics based on the media that reported them, and a multi-layered classification of these events based on their type, subjects and methods used. This dataset is openly provided to the general and academic public through a Web application. Moreover, each event’s outreach is evaluated using these quantitative metrics, the results are analyzed with an emphasis on classification popularity and useful conclusions are drawn concerning the importance of artistic subjects, methods, and media. 展开更多
关键词 Web Data Extraction Art Events classification Artistic Outreach Online Media
在线阅读 下载PDF
Domain-independent adaptive histogram-based features for pomegranate fruit and leaf diseases classification
19
作者 Mohanmuralidhar Prajwala Prabhuswamy Prajwal Kumar +3 位作者 Shanubhog Maheshwarappa Gopinath Shivakumara Palaiahnakote Mahadevappa Basavanna Daniel P.Lopresti 《CAAI Transactions on Intelligence Technology》 2025年第2期317-336,共20页
Disease identification for fruits and leaves in the field of agriculture is important for estimating production,crop yield,and earnings for farmers.In the specific case of pomegranates,this is challenging because of t... Disease identification for fruits and leaves in the field of agriculture is important for estimating production,crop yield,and earnings for farmers.In the specific case of pomegranates,this is challenging because of the wide range of possible diseases and their effects on the plant and the crop.This study presents an adaptive histogram-based method for solving this problem.Our method describe is domain independent in the sense that it can be easily and efficiently adapted to other similar smart agriculture tasks.The approach explores colour spaces,namely,Red,Green,and Blue along with Grey.The histograms of colour spaces and grey space are analysed based on the notion that as the disease changes,the colour also changes.The proximity between the histograms of grey images with individual colour spaces is estimated to find the closeness of images.Since the grey image is the average of colour spaces(R,G,and B),it can be considered a reference image.For estimating the distance between grey and colour spaces,the proposed approach uses a Chi-Square distance measure.Further,the method uses an Artificial Neural Network for classification.The effectiveness of our approach is demonstrated by testing on a dataset of fruit and leaf images affected by different diseases.The results show that the method outperforms existing techniques in terms of average classification rate. 展开更多
关键词 color spaces distance measure fruit classification leaf classification plant disease classification
在线阅读 下载PDF
Variety classification and identification of maize seeds based on hyperspectral imaging method 被引量:1
20
作者 XUE Hang XU Xiping MENG Xiang 《Optoelectronics Letters》 2025年第4期234-241,共8页
In this study,eight different varieties of maize seeds were used as the research objects.Conduct 81 types of combined preprocessing on the original spectra.Through comparison,Savitzky-Golay(SG)-multivariate scattering... In this study,eight different varieties of maize seeds were used as the research objects.Conduct 81 types of combined preprocessing on the original spectra.Through comparison,Savitzky-Golay(SG)-multivariate scattering correction(MSC)-maximum-minimum normalization(MN)was identified as the optimal preprocessing technique.The competitive adaptive reweighted sampling(CARS),successive projections algorithm(SPA),and their combined methods were employed to extract feature wavelengths.Classification models based on back propagation(BP),support vector machine(SVM),random forest(RF),and partial least squares(PLS)were established using full-band data and feature wavelengths.Among all models,the(CARS-SPA)-BP model achieved the highest accuracy rate of 98.44%.This study offers novel insights and methodologies for the rapid and accurate identification of corn seeds as well as other crop seeds. 展开更多
关键词 feature extraction extract feature wavelengthsclassification models variety classification hyperspectral imaging combined preprocessing competitive adaptive reweighted sampling cars successive projections algorithm spa PREPROCESSING maize seeds
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部