期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Using Object Detection Network for Malware Detection and Identification in Network Traffic Packets 被引量:6
1
作者 Chunlai Du Shenghui Liu +2 位作者 Lei Si Yanhui Guo Tong Jin 《Computers, Materials & Continua》 SCIE EI 2020年第9期1785-1796,共12页
In recent years,the number of exposed vulnerabilities has grown rapidly and more and more attacks occurred to intrude on the target computers using these vulnerabilities such as different malware.Malware detection has... In recent years,the number of exposed vulnerabilities has grown rapidly and more and more attacks occurred to intrude on the target computers using these vulnerabilities such as different malware.Malware detection has attracted more attention and still faces severe challenges.As malware detection based traditional machine learning relies on exports’experience to design efficient features to distinguish different malware,it causes bottleneck on feature engineer and is also time-consuming to find efficient features.Due to its promising ability in automatically proposing and selecting significant features,deep learning has gradually become a research hotspot.In this paper,aiming to detect the malicious payload and identify their categories with high accuracy,we proposed a packet-based malicious payload detection and identification algorithm based on object detection deep learning network.A dataset of malicious payload on code execution vulnerability has been constructed under the Metasploit framework and used to evaluate the performance of the proposed malware detection and identification algorithm.The experimental results demonstrated that the proposed object detection network can efficiently find and identify malicious payloads with high accuracy. 展开更多
关键词 Intrusion detection malicious payload deep learning object detection network
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部