Data augmentation plays an important role in boosting the performance of 3D models,while very few studies handle the 3D point cloud data with this technique.Global augmentation and cut-paste are commonly used augmenta...Data augmentation plays an important role in boosting the performance of 3D models,while very few studies handle the 3D point cloud data with this technique.Global augmentation and cut-paste are commonly used augmentation techniques for point clouds,where global augmentation is applied to the entire point cloud of the scene,and cut-paste samples objects from other frames into the current frame.Both types of data augmentation can improve performance,but the cut-paste technique cannot effectively deal with the occlusion relationship between the foreground object and the background scene and the rationality of object sampling,which may be counterproductive and may hurt the overall performance.In addition,LiDAR is susceptible to signal loss,external occlusion,extreme weather and other factors,which can easily cause object shape changes,while global augmentation and cut-paste cannot effectively enhance the robustness of the model.To this end,we propose Syn-Aug,a synchronous data augmentation framework for LiDAR-based 3D object detection.Specifically,we first propose a novel rendering-based object augmentation technique(Ren-Aug)to enrich training data while enhancing scene realism.Second,we propose a local augmentation technique(Local-Aug)to generate local noise by rotating and scaling objects in the scene while avoiding collisions,which can improve generalisation performance.Finally,we make full use of the structural information of 3D labels to make the model more robust by randomly changing the geometry of objects in the training frames.We verify the proposed framework with four different types of 3D object detectors.Experimental results show that our proposed Syn-Aug significantly improves the performance of various 3D object detectors in the KITTI and nuScenes datasets,proving the effectiveness and generality of Syn-Aug.On KITTI,four different types of baseline models using Syn-Aug improved mAP by 0.89%,1.35%,1.61%and 1.14%respectively.On nuScenes,four different types of baseline models using Syn-Aug improved mAP by 14.93%,10.42%,8.47%and 6.81%respectively.The code is available at https://github.com/liuhuaijjin/Syn-Aug.展开更多
Object detection in occluded environments remains a core challenge in computer vision(CV),especially in domains such as autonomous driving and robotics.While Convolutional Neural Network(CNN)-based twodimensional(2D)a...Object detection in occluded environments remains a core challenge in computer vision(CV),especially in domains such as autonomous driving and robotics.While Convolutional Neural Network(CNN)-based twodimensional(2D)and three-dimensional(3D)object detection methods havemade significant progress,they often fall short under severe occlusion due to depth ambiguities in 2D imagery and the high cost and deployment limitations of 3D sensors such as Light Detection and Ranging(LiDAR).This paper presents a comparative review of recent 2D and 3D detection models,focusing on their occlusion-handling capabilities and the impact of sensor modalities such as stereo vision,Time-of-Flight(ToF)cameras,and LiDAR.In this context,we introduce FuDensityNet,our multimodal occlusion-aware detection framework that combines Red-Green-Blue(RGB)images and LiDAR data to enhance detection performance.As a forward-looking direction,we propose a monocular depth-estimation extension to FuDensityNet,aimed at replacing expensive 3D sensors with a more scalable CNN-based pipeline.Although this enhancement is not experimentally evaluated in this manuscript,we describe its conceptual design and potential for future implementation.展开更多
3D object detection is one of the most challenging research tasks in computer vision. In order to solve the problem of template information dependency of 3D object proposal in the method of 3D object detection based o...3D object detection is one of the most challenging research tasks in computer vision. In order to solve the problem of template information dependency of 3D object proposal in the method of 3D object detection based on 2.5D information, we proposed a 3D object detector based on fusion of vanishing point and prior orientation, which estimates an accurate 3D proposal from 2.5D data, and provides an excellent start point for 3D object classification and localization. The algorithm first calculates three mutually orthogonal vanishing points by the Euler angle principle and projects them into the pixel coordinate system. Then, the top edge of the 2D proposal is sampled by the preset sampling pitch, and the first one vertex is taken. Finally, the remaining seven vertices of the 3D proposal are calculated according to the linear relationship between the three vanishing points and the vertices, and the complete information of the 3D proposal is obtained. The experimental results show that this proposed method improves the Mean Average Precision score by 2.7% based on the Amodal3Det method.展开更多
Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,w...Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,we propose Rail-PillarNet,a three-dimensional(3D)LIDAR(Light Detection and Ranging)railway foreign object detection method based on the improvement of PointPillars.Firstly,the parallel attention pillar encoder(PAPE)is designed to fully extract the features of the pillars and alleviate the problem of local fine-grained information loss in PointPillars pillars encoder.Secondly,a fine backbone network is designed to improve the feature extraction capability of the network by combining the coding characteristics of LIDAR point cloud feature and residual structure.Finally,the initial weight parameters of the model were optimised by the transfer learning training method to further improve accuracy.The experimental results on the OSDaR23 dataset show that the average accuracy of Rail-PillarNet reaches 58.51%,which is higher than most mainstream models,and the number of parameters is 5.49 M.Compared with PointPillars,the accuracy of each target is improved by 10.94%,3.53%,16.96%and 19.90%,respectively,and the number of parameters only increases by 0.64M,which achieves a balance between the number of parameters and accuracy.展开更多
LIDAR point cloud-based 3D object detection aims to sense the surrounding environment by anchoring objects with the Bounding Box(BBox).However,under the three-dimensional space of autonomous driving scenes,the previou...LIDAR point cloud-based 3D object detection aims to sense the surrounding environment by anchoring objects with the Bounding Box(BBox).However,under the three-dimensional space of autonomous driving scenes,the previous object detection methods,due to the pre-processing of the original LIDAR point cloud into voxels or pillars,lose the coordinate information of the original point cloud,slow detection speed,and gain inaccurate bounding box positioning.To address the issues above,this study proposes a new two-stage network structure to extract point cloud features directly by PointNet++,which effectively preserves the original point cloud coordinate information.To improve the detection accuracy,a shell-based modeling method is proposed.It roughly determines which spherical shell the coordinates belong to.Then,the results are refined to ground truth,thereby narrowing the localization range and improving the detection accuracy.To improve the recall of 3D object detection with bounding boxes,this paper designs a self-attention module for 3D object detection with a skip connection structure.Some of these features are highlighted by weighting them on the feature dimensions.After training,it makes the feature weights that are favorable for object detection get larger.Thus,the extracted features are more adapted to the object detection task.Extensive comparison experiments and ablation experiments conducted on the KITTI dataset verify the effectiveness of our proposed method in improving recall and precision.展开更多
The inherent limitations of 2D object detection,such as inadequate spatial reasoning and susceptibility to environmental occlusions,pose significant risks to the safety and reliability of autonomous driving systems.To...The inherent limitations of 2D object detection,such as inadequate spatial reasoning and susceptibility to environmental occlusions,pose significant risks to the safety and reliability of autonomous driving systems.To address these challenges,this paper proposes an enhanced 3D object detection framework(FastSECOND)based on an optimized SECOND architecture,designed to achieve rapid and accurate perception in autonomous driving scenarios.Key innovations include:(1)Replacing the Rectified Linear Unit(ReLU)activation functions with the Gaussian Error Linear Unit(GELU)during voxel feature encoding and region proposal network stages,leveraging partial convolution to balance computational efficiency and detection accuracy;(2)Integrating a Swin-Transformer V2 module into the voxel backbone network to enhance feature extraction capabilities in sparse data;and(3)Introducing an optimized position regression loss combined with a geometry-aware Focal-EIoU loss function,which incorporates bounding box geometric correlations to accelerate network convergence.While this study currently focuses exclusively on the detection of the Car category,with experiments conducted on the Car class of the KITTI dataset,future work will extend to other categories such as Pedestrian and Cyclist to more comprehensively evaluate the generalization capability of the proposed framework.Extensive experimental results demonstrate that our framework achieves a more effective trade-off between detection accuracy and speed.Compared to the baseline SECOND model,it achieves a 21.9%relative improvement in 3D bounding box detection accuracy on the hard subset,while reducing inference time by 14 ms.These advancements underscore the framework’s potential for enabling real-time,high-precision perception in autonomous driving applications.展开更多
As the number and complexity of sensors in autonomous vehicles continue to rise,multimodal fusionbased object detection algorithms are increasingly being used to detect 3D environmental information,significantly advan...As the number and complexity of sensors in autonomous vehicles continue to rise,multimodal fusionbased object detection algorithms are increasingly being used to detect 3D environmental information,significantly advancing the development of perception technology in autonomous driving.To further promote the development of fusion algorithms and improve detection performance,this paper discusses the advantages and recent advancements of multimodal fusion-based object detection algorithms.Starting fromsingle-modal sensor detection,the paper provides a detailed overview of typical sensors used in autonomous driving and introduces object detection methods based on images and point clouds.For image-based detection methods,they are categorized into monocular detection and binocular detection based on different input types.For point cloud-based detection methods,they are classified into projection-based,voxel-based,point cluster-based,pillar-based,and graph structure-based approaches based on the technical pathways for processing point cloud features.Additionally,multimodal fusion algorithms are divided into Camera-LiDAR fusion,Camera-Radar fusion,Camera-LiDAR-Radar fusion,and other sensor fusion methods based on the types of sensors involved.Furthermore,the paper identifies five key future research directions in this field,aiming to provide insights for researchers engaged in multimodal fusion-based object detection algorithms and to encourage broader attention to the research and application of multimodal fusion-based object detection.展开更多
In computer vision fields,3D object recognition is one of the most important tasks for many real-world applications.Three-dimensional convolutional neural networks(CNNs)have demonstrated their advantages in 3D object ...In computer vision fields,3D object recognition is one of the most important tasks for many real-world applications.Three-dimensional convolutional neural networks(CNNs)have demonstrated their advantages in 3D object recognition.In this paper,we propose to use the principal curvature directions of 3D objects(using a CAD model)to represent the geometric features as inputs for the 3D CNN.Our framework,namely CurveNet,learns perceptually relevant salient features and predicts object class labels.Curvature directions incorporate complex surface information of a 3D object,which helps our framework to produce more precise and discriminative features for object recognition.Multitask learning is inspired by sharing features between two related tasks,where we consider pose classification as an auxiliary task to enable our CurveNet to better generalize object label classification.Experimental results show that our proposed framework using curvature vectors performs better than voxels as an input for 3D object classification.We further improved the performance of CurveNet by combining two networks with both curvature direction and voxels of a 3D object as the inputs.A Cross-Stitch module was adopted to learn effective shared features across multiple representations.We evaluated our methods using three publicly available datasets and achieved competitive performance in the 3D object recognition task.展开更多
The self-attention networks and Transformer have dominated machine translation and natural language processing fields,and shown great potential in image vision tasks such as image classification and object detection.I...The self-attention networks and Transformer have dominated machine translation and natural language processing fields,and shown great potential in image vision tasks such as image classification and object detection.Inspired by the great progress of Transformer,we propose a novel general and robust voxel feature encoder for 3D object detection based on the traditional Transformer.We first investigate the permutation invariance of sequence data of the self-attention and apply it to point cloud processing.Then we construct a voxel feature layer based on the self-attention to adaptively learn local and robust context of a voxel according to the spatial relationship and context information exchanging between all points within the voxel.Lastly,we construct a general voxel feature learning framework with the voxel feature layer as the core for 3D object detection.The voxel feature with Transformer(VFT)can be plugged into any other voxel-based 3D object detection framework easily,and serves as the backbone for voxel feature extractor.Experiments results on the KITTI dataset demonstrate that our method achieves the state-of-the-art performance on 3D object detection.展开更多
Nowadays, 3D object detection, which uses the color and depth information to find object localization in the 3D world and estimate their physical size and pose, is one of the most important 3D perception tasks in the ...Nowadays, 3D object detection, which uses the color and depth information to find object localization in the 3D world and estimate their physical size and pose, is one of the most important 3D perception tasks in the field of computer vision. In order to solve the problem of mixed segmentation results when multiple instances appear in one frustum in the F-PointNet method and in the occlusion that leads to the loss of depth information, a 3D object detection approach based on instance segmentation and image restoration is proposed in this paper. Firstly, instance segmentation with Mask R-CNN on an RGB image is used to avoid mixed segmentation results. Secondly, for the detected occluded objects, we remove the occluding object first in the depth map and then restore the empty pixel region by utilizing the Criminisi Algorithm to recover the missing depth information of the object. The experimental results show that the proposed method improves the average precision score compared with the F-PointNet method.展开更多
Multi-modal 3D object detection has achieved remarkable progress,but it is often limited in practical industrial production because of its high cost and low efficiency.The multi-view camera-based method provides a fea...Multi-modal 3D object detection has achieved remarkable progress,but it is often limited in practical industrial production because of its high cost and low efficiency.The multi-view camera-based method provides a feasible solution due to its low cost.However,camera data lacks geometric depth,and only using camera data to obtain high accuracy is challenging.This paper proposes a multi-modal Bird-Eye-View(BEV)distillation framework(MMDistill)to make a trade-off between them.MMDistill is a carefully crafted two-stage distillation framework based on teacher and student models for learning cross-modal knowledge and generating multi-modal features.It can improve the performance of unimodal detectors without introducing additional costs during inference.Specifically,our method can effectively solve the cross-gap caused by the heterogeneity between data.Furthermore,we further propose a Light Detection and Ranging(LiDAR)-guided geometric compensation module,which can assist the student model in obtaining effective geometric features and reduce the gap between different modalities.Our proposed method generally requires fewer computational resources and faster inference speed than traditional multi-modal models.This advancement enables multi-modal technology to be applied more widely in practical scenarios.Through experiments,we validate the effectiveness and superiority of MMDistill on the nuScenes dataset,achieving an improvement of 4.1%mean Average Precision(mAP)and 4.6%NuScenes Detection Score(NDS)over the baseline detector.In addition,we also present detailed ablation studies to validate our method.展开更多
In complex traffic environment scenarios,it is very important for autonomous vehicles to accurately perceive the dynamic information of other vehicles around the vehicle in advance.The accuracy of 3D object detection ...In complex traffic environment scenarios,it is very important for autonomous vehicles to accurately perceive the dynamic information of other vehicles around the vehicle in advance.The accuracy of 3D object detection will be affected by problems such as illumination changes,object occlusion,and object detection distance.To this purpose,we face these challenges by proposing a multimodal feature fusion network for 3D object detection(MFF-Net).In this research,this paper first uses the spatial transformation projection algorithm to map the image features into the feature space,so that the image features are in the same spatial dimension when fused with the point cloud features.Then,feature channel weighting is performed using an adaptive expression augmentation fusion network to enhance important network features,suppress useless features,and increase the directionality of the network to features.Finally,this paper increases the probability of false detection and missed detection in the non-maximum suppression algo-rithm by increasing the one-dimensional threshold.So far,this paper has constructed a complete 3D target detection network based on multimodal feature fusion.The experimental results show that the proposed achieves an average accuracy of 82.60%on the Karlsruhe Institute of Technology and Toyota Technological Institute(KITTI)dataset,outperforming previous state-of-the-art multimodal fusion networks.In Easy,Moderate,and hard evaluation indicators,the accuracy rate of this paper reaches 90.96%,81.46%,and 75.39%.This shows that the MFF-Net network has good performance in 3D object detection.展开更多
Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input t...Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input to augment the RGB images.Depth-based methods attempt to convert estimated depth maps to pseudo-LiDAR and then use LiDAR-based object detectors or focus on the perspective of image and depth fusion learning.However,they demonstrate limited performance and efficiency as a result of depth inaccuracy and complex fusion mode with convolutions.Different from these approaches,our proposed depth-guided vision transformer with a normalizing flows(NF-DVT)network uses normalizing flows to build priors in depth maps to achieve more accurate depth information.Then we develop a novel Swin-Transformer-based backbone with a fusion module to process RGB image patches and depth map patches with two separate branches and fuse them using cross-attention to exchange information with each other.Furthermore,with the help of pixel-wise relative depth values in depth maps,we develop new relative position embeddings in the cross-attention mechanism to capture more accurate sequence ordering of input tokens.Our method is the first Swin-Transformer-based backbone architecture for monocular 3D object detection.The experimental results on the KITTI and the challenging Waymo Open datasets show the effectiveness of our proposed method and superior performance over previous counterparts.展开更多
The high bandwidth and low latency of 6G network technology enable the successful application of monocular 3D object detection on vehicle platforms.Monocular 3D-object-detection-based Pseudo-LiDAR is a low-cost,lowpow...The high bandwidth and low latency of 6G network technology enable the successful application of monocular 3D object detection on vehicle platforms.Monocular 3D-object-detection-based Pseudo-LiDAR is a low-cost,lowpower solution compared to LiDAR solutions in the field of autonomous driving.However,this technique has some problems,i.e.,(1)the poor quality of generated Pseudo-LiDAR point clouds resulting from the nonlinear error distribution of monocular depth estimation and(2)the weak representation capability of point cloud features due to the neglected global geometric structure features of point clouds existing in LiDAR-based 3D detection networks.Therefore,we proposed a Pseudo-LiDAR confidence sampling strategy and a hierarchical geometric feature extraction module for monocular 3D object detection.We first designed a point cloud confidence sampling strategy based on a 3D Gaussian distribution to assign small confidence to the points with great error in depth estimation and filter them out according to the confidence.Then,we present a hierarchical geometric feature extraction module by aggregating the local neighborhood features and a dual transformer to capture the global geometric features in the point cloud.Finally,our detection framework is based on Point-Voxel-RCNN(PV-RCNN)with high-quality Pseudo-LiDAR and enriched geometric features as input.From the experimental results,our method achieves satisfactory results in monocular 3D object detection.展开更多
Precise and robust three-dimensional object detection(3DOD)presents a promising opportunity in the field of mobile robot(MR)navigation.Monocular 3DOD techniques typically involve extending existing twodimensional obje...Precise and robust three-dimensional object detection(3DOD)presents a promising opportunity in the field of mobile robot(MR)navigation.Monocular 3DOD techniques typically involve extending existing twodimensional object detection(2DOD)frameworks to predict the three-dimensional bounding box(3DBB)of objects captured in 2D RGB images.However,these methods often require multiple images,making them less feasible for various real-time scenarios.To address these challenges,the emergence of agile convolutional neural networks(CNNs)capable of inferring depth froma single image opens a new avenue for investigation.The paper proposes a novel ELDENet network designed to produce cost-effective 3DBounding Box Estimation(3D-BBE)froma single image.This novel framework comprises the PP-LCNet as the encoder and a fast convolutional decoder.Additionally,this integration includes a Squeeze-Exploit(SE)module utilizing the Math Kernel Library for Deep Neural Networks(MKLDNN)optimizer to enhance convolutional efficiency and streamline model size during effective training.Meanwhile,the proposed multi-scale sub-pixel decoder generates high-quality depth maps while maintaining a compact structure.Furthermore,the generated depthmaps provide a clear perspective with distance details of objects in the environment.These depth insights are combined with 2DOD for precise evaluation of 3D Bounding Boxes(3DBB),facilitating scene understanding and optimal route planning for mobile robots.Based on the estimated object center of the 3DBB,the Deep Reinforcement Learning(DRL)-based obstacle avoidance strategy for MRs is developed.Experimental results demonstrate that our model achieves state-of-the-art performance across three datasets:NYU-V2,KITTI,and Cityscapes.Overall,this framework shows significant potential for adaptation in intelligent mechatronic systems,particularly in developing knowledge-driven systems for mobile robot navigation.展开更多
Road accident detection plays an important role in abnormal scene reconstruction for Intelligent Transportation Systems and abnormal events warning for autonomous driving.This paper presents a novel 3D object detector...Road accident detection plays an important role in abnormal scene reconstruction for Intelligent Transportation Systems and abnormal events warning for autonomous driving.This paper presents a novel 3D object detector and adaptive space partitioning algorithm to infer traffic accidents quantitatively.Using 2D region proposals in an RGB image,this method generates deformable frustums based on point cloud for each 2D region proposal and then frustum-wisely extracts features based on the farthest point sampling network(FPS-Net)and feature extraction network(FE-Net).Subsequently,the encoder-decoder network(ED-Net)implements 3D-oriented bounding box(OBB)regression.Meanwhile,the adaptive least square regression(ALSR)method is proposed to split 3D OBB.Finally,the reduced OBB intersection test is carried out to detect traffic accidents via separating surface theorem(SST).In the experiments of KITTI benchmark,our proposed 3D object detector outperforms other state-of-theartmethods.Meanwhile,collision detection algorithm achieves the satisfactory performance of 91.8%accuracy on our SHTA dataset.展开更多
Mural paintings hold significant historical information and possess substantial artistic and cultural value.However,murals are inevitably damaged by natural environmental factors such as wind and sunlight,as well as b...Mural paintings hold significant historical information and possess substantial artistic and cultural value.However,murals are inevitably damaged by natural environmental factors such as wind and sunlight,as well as by human activities.For this reason,the study of damaged areas is crucial for mural restoration.These damaged regions differ significantly from undamaged areas and can be considered abnormal targets.Traditional manual visual processing lacks strong characterization capabilities and is prone to omissions and false detections.Hyperspectral imaging can reflect the material properties more effectively than visual characterization methods.Thus,this study employs hyperspectral imaging to obtain mural information and proposes a mural anomaly detection algorithm based on a hyperspectral multi-scale residual attention network(HM-MRANet).The innovations of this paper include:(1)Constructing mural painting hyperspectral datasets.(2)Proposing a multi-scale residual spectral-spatial feature extraction module based on a 3D CNN(Convolutional Neural Networks)network to better capture multiscale information and improve performance on small-sample hyperspectral datasets.(3)Proposing the Enhanced Residual Attention Module(ERAM)to address the feature redundancy problem,enhance the network’s feature discrimination ability,and further improve abnormal area detection accuracy.The experimental results show that the AUC(Area Under Curve),Specificity,and Accuracy of this paper’s algorithm reach 85.42%,88.84%,and 87.65%,respectively,on this dataset.These results represent improvements of 3.07%,1.11%and 2.68%compared to the SSRN algorithm,demonstrating the effectiveness of this method for mural anomaly detection.展开更多
In this paper, a collection of three-dimensional(3D)numerical breast models are developed based on clinical magnetic resonance images(MRIs). A hybrid contour detection method is used to create the contour, and the int...In this paper, a collection of three-dimensional(3D)numerical breast models are developed based on clinical magnetic resonance images(MRIs). A hybrid contour detection method is used to create the contour, and the internal space is filled with different breast tissues, with each corresponding to a specified interval of MRI pixel intensity. The developed models anatomically describe the complex tissue structure and dielectric properties in breasts. Besides, they are compatible with finite-difference-time-domain(FDTD)grid cells. Convolutional perfect matched layer(CPML)is applied in conjunction with FDTD to simulate the open boundary outside the model. In the test phase, microwave breast cancer detection simulations are performed in four models with varying radiographic densities. Then, confocal algorithm is utilized to reconstruct the tumor images. Imaging results show that the tumor voxels can be recognized in every case, with 2 mm location error in two low density cases and 7 mm─8 mm location errors in two high density cases, demonstrating that the MRI-derived models can characterize the individual difference between patients' breasts.展开更多
In order to solve difficult detection of far and hard objects due to the sparseness and insufficient semantic information of LiDAR point cloud,a 3D object detection network with multi-modal data adaptive fusion is pro...In order to solve difficult detection of far and hard objects due to the sparseness and insufficient semantic information of LiDAR point cloud,a 3D object detection network with multi-modal data adaptive fusion is proposed,which makes use of multi-neighborhood information of voxel and image information.Firstly,design an improved ResNet that maintains the structure information of far and hard objects in low-resolution feature maps,which is more suitable for detection task.Meanwhile,semantema of each image feature map is enhanced by semantic information from all subsequent feature maps.Secondly,extract multi-neighborhood context information with different receptive field sizes to make up for the defect of sparseness of point cloud which improves the ability of voxel features to represent the spatial structure and semantic information of objects.Finally,propose a multi-modal feature adaptive fusion strategy which uses learnable weights to express the contribution of different modal features to the detection task,and voxel attention further enhances the fused feature expression of effective target objects.The experimental results on the KITTI benchmark show that this method outperforms VoxelNet with remarkable margins,i.e.increasing the AP by 8.78%and 5.49%on medium and hard difficulty levels.Meanwhile,our method achieves greater detection performance compared with many mainstream multi-modal methods,i.e.outperforming the AP by 1%compared with that of MVX-Net on medium and hard difficulty levels.展开更多
Light detection and ranging(LiDAR)sensors play a vital role in acquiring 3D point cloud data and extracting valuable information about objects for tasks such as autonomous driving,robotics,and virtual reality(VR).Howe...Light detection and ranging(LiDAR)sensors play a vital role in acquiring 3D point cloud data and extracting valuable information about objects for tasks such as autonomous driving,robotics,and virtual reality(VR).However,the sparse and disordered nature of the 3D point cloud poses significant challenges to feature extraction.Overcoming limitations is critical for 3D point cloud processing.3D point cloud object detection is a very challenging and crucial task,in which point cloud processing and feature extraction methods play a crucial role and have a significant impact on subsequent object detection performance.In this overview of outstanding work in object detection from the 3D point cloud,we specifically focus on summarizing methods employed in 3D point cloud processing.We introduce the way point clouds are processed in classical 3D object detection algorithms,and their improvements to solve the problems existing in point cloud processing.Different voxelization methods and point cloud sampling strategies will influence the extracted features,thereby impacting the final detection performance.展开更多
基金supported by National Natural Science Foundation of China(61673186 and 61871196)Beijing Normal University Education Reform Project(jx2024040)Guangdong Undergraduate Universities Teaching Quality and Reform Project(jx2024309).
文摘Data augmentation plays an important role in boosting the performance of 3D models,while very few studies handle the 3D point cloud data with this technique.Global augmentation and cut-paste are commonly used augmentation techniques for point clouds,where global augmentation is applied to the entire point cloud of the scene,and cut-paste samples objects from other frames into the current frame.Both types of data augmentation can improve performance,but the cut-paste technique cannot effectively deal with the occlusion relationship between the foreground object and the background scene and the rationality of object sampling,which may be counterproductive and may hurt the overall performance.In addition,LiDAR is susceptible to signal loss,external occlusion,extreme weather and other factors,which can easily cause object shape changes,while global augmentation and cut-paste cannot effectively enhance the robustness of the model.To this end,we propose Syn-Aug,a synchronous data augmentation framework for LiDAR-based 3D object detection.Specifically,we first propose a novel rendering-based object augmentation technique(Ren-Aug)to enrich training data while enhancing scene realism.Second,we propose a local augmentation technique(Local-Aug)to generate local noise by rotating and scaling objects in the scene while avoiding collisions,which can improve generalisation performance.Finally,we make full use of the structural information of 3D labels to make the model more robust by randomly changing the geometry of objects in the training frames.We verify the proposed framework with four different types of 3D object detectors.Experimental results show that our proposed Syn-Aug significantly improves the performance of various 3D object detectors in the KITTI and nuScenes datasets,proving the effectiveness and generality of Syn-Aug.On KITTI,four different types of baseline models using Syn-Aug improved mAP by 0.89%,1.35%,1.61%and 1.14%respectively.On nuScenes,four different types of baseline models using Syn-Aug improved mAP by 14.93%,10.42%,8.47%and 6.81%respectively.The code is available at https://github.com/liuhuaijjin/Syn-Aug.
文摘Object detection in occluded environments remains a core challenge in computer vision(CV),especially in domains such as autonomous driving and robotics.While Convolutional Neural Network(CNN)-based twodimensional(2D)and three-dimensional(3D)object detection methods havemade significant progress,they often fall short under severe occlusion due to depth ambiguities in 2D imagery and the high cost and deployment limitations of 3D sensors such as Light Detection and Ranging(LiDAR).This paper presents a comparative review of recent 2D and 3D detection models,focusing on their occlusion-handling capabilities and the impact of sensor modalities such as stereo vision,Time-of-Flight(ToF)cameras,and LiDAR.In this context,we introduce FuDensityNet,our multimodal occlusion-aware detection framework that combines Red-Green-Blue(RGB)images and LiDAR data to enhance detection performance.As a forward-looking direction,we propose a monocular depth-estimation extension to FuDensityNet,aimed at replacing expensive 3D sensors with a more scalable CNN-based pipeline.Although this enhancement is not experimentally evaluated in this manuscript,we describe its conceptual design and potential for future implementation.
基金Supported by the National Natural Science Foundation of China(61772328,61802253,61831018)
文摘3D object detection is one of the most challenging research tasks in computer vision. In order to solve the problem of template information dependency of 3D object proposal in the method of 3D object detection based on 2.5D information, we proposed a 3D object detector based on fusion of vanishing point and prior orientation, which estimates an accurate 3D proposal from 2.5D data, and provides an excellent start point for 3D object classification and localization. The algorithm first calculates three mutually orthogonal vanishing points by the Euler angle principle and projects them into the pixel coordinate system. Then, the top edge of the 2D proposal is sampled by the preset sampling pitch, and the first one vertex is taken. Finally, the remaining seven vertices of the 3D proposal are calculated according to the linear relationship between the three vanishing points and the vertices, and the complete information of the 3D proposal is obtained. The experimental results show that this proposed method improves the Mean Average Precision score by 2.7% based on the Amodal3Det method.
基金supported by a grant from the National Key Research and Development Project(2023YFB4302100)Key Research and Development Project of Jiangxi Province(No.20232ACE01011)Independent Deployment Project of Ganjiang Innovation Research Institute,Chinese Academy of Sciences(E255J001).
文摘Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,we propose Rail-PillarNet,a three-dimensional(3D)LIDAR(Light Detection and Ranging)railway foreign object detection method based on the improvement of PointPillars.Firstly,the parallel attention pillar encoder(PAPE)is designed to fully extract the features of the pillars and alleviate the problem of local fine-grained information loss in PointPillars pillars encoder.Secondly,a fine backbone network is designed to improve the feature extraction capability of the network by combining the coding characteristics of LIDAR point cloud feature and residual structure.Finally,the initial weight parameters of the model were optimised by the transfer learning training method to further improve accuracy.The experimental results on the OSDaR23 dataset show that the average accuracy of Rail-PillarNet reaches 58.51%,which is higher than most mainstream models,and the number of parameters is 5.49 M.Compared with PointPillars,the accuracy of each target is improved by 10.94%,3.53%,16.96%and 19.90%,respectively,and the number of parameters only increases by 0.64M,which achieves a balance between the number of parameters and accuracy.
基金This work was supported,in part,by the National Nature Science Foundation of China under grant numbers 62272236in part,by the Natural Science Foundation of Jiangsu Province under grant numbers BK20201136,BK20191401in part,by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fund.
文摘LIDAR point cloud-based 3D object detection aims to sense the surrounding environment by anchoring objects with the Bounding Box(BBox).However,under the three-dimensional space of autonomous driving scenes,the previous object detection methods,due to the pre-processing of the original LIDAR point cloud into voxels or pillars,lose the coordinate information of the original point cloud,slow detection speed,and gain inaccurate bounding box positioning.To address the issues above,this study proposes a new two-stage network structure to extract point cloud features directly by PointNet++,which effectively preserves the original point cloud coordinate information.To improve the detection accuracy,a shell-based modeling method is proposed.It roughly determines which spherical shell the coordinates belong to.Then,the results are refined to ground truth,thereby narrowing the localization range and improving the detection accuracy.To improve the recall of 3D object detection with bounding boxes,this paper designs a self-attention module for 3D object detection with a skip connection structure.Some of these features are highlighted by weighting them on the feature dimensions.After training,it makes the feature weights that are favorable for object detection get larger.Thus,the extracted features are more adapted to the object detection task.Extensive comparison experiments and ablation experiments conducted on the KITTI dataset verify the effectiveness of our proposed method in improving recall and precision.
基金funded by the National Key R&D Program of China(Grant No.2022YFB4703400)the China Three Gorges Corporation(Grant No.2324020012)+2 种基金the National Natural Science Foundation of China(Grant No.62476080)the Jiangsu Province Natural Science Foundation(Grant No.BK20231186)Key Laboratory about Maritime Intelligent Network Information Technology of the Ministry of Education(EKLMIC202405).
文摘The inherent limitations of 2D object detection,such as inadequate spatial reasoning and susceptibility to environmental occlusions,pose significant risks to the safety and reliability of autonomous driving systems.To address these challenges,this paper proposes an enhanced 3D object detection framework(FastSECOND)based on an optimized SECOND architecture,designed to achieve rapid and accurate perception in autonomous driving scenarios.Key innovations include:(1)Replacing the Rectified Linear Unit(ReLU)activation functions with the Gaussian Error Linear Unit(GELU)during voxel feature encoding and region proposal network stages,leveraging partial convolution to balance computational efficiency and detection accuracy;(2)Integrating a Swin-Transformer V2 module into the voxel backbone network to enhance feature extraction capabilities in sparse data;and(3)Introducing an optimized position regression loss combined with a geometry-aware Focal-EIoU loss function,which incorporates bounding box geometric correlations to accelerate network convergence.While this study currently focuses exclusively on the detection of the Car category,with experiments conducted on the Car class of the KITTI dataset,future work will extend to other categories such as Pedestrian and Cyclist to more comprehensively evaluate the generalization capability of the proposed framework.Extensive experimental results demonstrate that our framework achieves a more effective trade-off between detection accuracy and speed.Compared to the baseline SECOND model,it achieves a 21.9%relative improvement in 3D bounding box detection accuracy on the hard subset,while reducing inference time by 14 ms.These advancements underscore the framework’s potential for enabling real-time,high-precision perception in autonomous driving applications.
基金funded by the Yangtze River Delta Science and Technology Innovation Community Joint Research Project(2023CSJGG1600)the Natural Science Foundation of Anhui Province(2208085MF173)Wuhu“ChiZhu Light”Major Science and Technology Project(2023ZD01,2023ZD03).
文摘As the number and complexity of sensors in autonomous vehicles continue to rise,multimodal fusionbased object detection algorithms are increasingly being used to detect 3D environmental information,significantly advancing the development of perception technology in autonomous driving.To further promote the development of fusion algorithms and improve detection performance,this paper discusses the advantages and recent advancements of multimodal fusion-based object detection algorithms.Starting fromsingle-modal sensor detection,the paper provides a detailed overview of typical sensors used in autonomous driving and introduces object detection methods based on images and point clouds.For image-based detection methods,they are categorized into monocular detection and binocular detection based on different input types.For point cloud-based detection methods,they are classified into projection-based,voxel-based,point cluster-based,pillar-based,and graph structure-based approaches based on the technical pathways for processing point cloud features.Additionally,multimodal fusion algorithms are divided into Camera-LiDAR fusion,Camera-Radar fusion,Camera-LiDAR-Radar fusion,and other sensor fusion methods based on the types of sensors involved.Furthermore,the paper identifies five key future research directions in this field,aiming to provide insights for researchers engaged in multimodal fusion-based object detection algorithms and to encourage broader attention to the research and application of multimodal fusion-based object detection.
基金This paper was partially supported by a project of the Shanghai Science and Technology Committee(18510760300)Anhui Natural Science Foundation(1908085MF178)Anhui Excellent Young Talents Support Program Project(gxyqZD2019069).
文摘In computer vision fields,3D object recognition is one of the most important tasks for many real-world applications.Three-dimensional convolutional neural networks(CNNs)have demonstrated their advantages in 3D object recognition.In this paper,we propose to use the principal curvature directions of 3D objects(using a CAD model)to represent the geometric features as inputs for the 3D CNN.Our framework,namely CurveNet,learns perceptually relevant salient features and predicts object class labels.Curvature directions incorporate complex surface information of a 3D object,which helps our framework to produce more precise and discriminative features for object recognition.Multitask learning is inspired by sharing features between two related tasks,where we consider pose classification as an auxiliary task to enable our CurveNet to better generalize object label classification.Experimental results show that our proposed framework using curvature vectors performs better than voxels as an input for 3D object classification.We further improved the performance of CurveNet by combining two networks with both curvature direction and voxels of a 3D object as the inputs.A Cross-Stitch module was adopted to learn effective shared features across multiple representations.We evaluated our methods using three publicly available datasets and achieved competitive performance in the 3D object recognition task.
基金National Natural Science Foundation of China(No.61806006)Innovation Program for Graduate of Jiangsu Province(No.KYLX160-781)University Superior Discipline Construction Project of Jiangsu Province。
文摘The self-attention networks and Transformer have dominated machine translation and natural language processing fields,and shown great potential in image vision tasks such as image classification and object detection.Inspired by the great progress of Transformer,we propose a novel general and robust voxel feature encoder for 3D object detection based on the traditional Transformer.We first investigate the permutation invariance of sequence data of the self-attention and apply it to point cloud processing.Then we construct a voxel feature layer based on the self-attention to adaptively learn local and robust context of a voxel according to the spatial relationship and context information exchanging between all points within the voxel.Lastly,we construct a general voxel feature learning framework with the voxel feature layer as the core for 3D object detection.The voxel feature with Transformer(VFT)can be plugged into any other voxel-based 3D object detection framework easily,and serves as the backbone for voxel feature extractor.Experiments results on the KITTI dataset demonstrate that our method achieves the state-of-the-art performance on 3D object detection.
基金Supported by the National Natural Science Foundation of China(61603242)Collaborative Innovation Center for Economics Crime Investigation and Prevention Technology of Jiangxi Province(JXJZXTCX-030)
文摘Nowadays, 3D object detection, which uses the color and depth information to find object localization in the 3D world and estimate their physical size and pose, is one of the most important 3D perception tasks in the field of computer vision. In order to solve the problem of mixed segmentation results when multiple instances appear in one frustum in the F-PointNet method and in the occlusion that leads to the loss of depth information, a 3D object detection approach based on instance segmentation and image restoration is proposed in this paper. Firstly, instance segmentation with Mask R-CNN on an RGB image is used to avoid mixed segmentation results. Secondly, for the detected occluded objects, we remove the occluding object first in the depth map and then restore the empty pixel region by utilizing the Criminisi Algorithm to recover the missing depth information of the object. The experimental results show that the proposed method improves the average precision score compared with the F-PointNet method.
基金supported by the National Natural Science Foundation of China(GrantNo.62302086)the Natural Science Foundation of Liaoning Province(Grant No.2023-MSBA-070)the Fundamental Research Funds for the Central Universities(Grant No.N2317005).
文摘Multi-modal 3D object detection has achieved remarkable progress,but it is often limited in practical industrial production because of its high cost and low efficiency.The multi-view camera-based method provides a feasible solution due to its low cost.However,camera data lacks geometric depth,and only using camera data to obtain high accuracy is challenging.This paper proposes a multi-modal Bird-Eye-View(BEV)distillation framework(MMDistill)to make a trade-off between them.MMDistill is a carefully crafted two-stage distillation framework based on teacher and student models for learning cross-modal knowledge and generating multi-modal features.It can improve the performance of unimodal detectors without introducing additional costs during inference.Specifically,our method can effectively solve the cross-gap caused by the heterogeneity between data.Furthermore,we further propose a Light Detection and Ranging(LiDAR)-guided geometric compensation module,which can assist the student model in obtaining effective geometric features and reduce the gap between different modalities.Our proposed method generally requires fewer computational resources and faster inference speed than traditional multi-modal models.This advancement enables multi-modal technology to be applied more widely in practical scenarios.Through experiments,we validate the effectiveness and superiority of MMDistill on the nuScenes dataset,achieving an improvement of 4.1%mean Average Precision(mAP)and 4.6%NuScenes Detection Score(NDS)over the baseline detector.In addition,we also present detailed ablation studies to validate our method.
基金The authors would like to thank the financial support of Natural Science Foundation of Anhui Province(No.2208085MF173)the key research and development projects of Anhui(202104a05020003)+2 种基金the anhui development and reform commission supports R&D and innovation project([2020]479)the national natural science foundation of China(51575001)Anhui university scientific research platform innovation team building project(2016-2018).
文摘In complex traffic environment scenarios,it is very important for autonomous vehicles to accurately perceive the dynamic information of other vehicles around the vehicle in advance.The accuracy of 3D object detection will be affected by problems such as illumination changes,object occlusion,and object detection distance.To this purpose,we face these challenges by proposing a multimodal feature fusion network for 3D object detection(MFF-Net).In this research,this paper first uses the spatial transformation projection algorithm to map the image features into the feature space,so that the image features are in the same spatial dimension when fused with the point cloud features.Then,feature channel weighting is performed using an adaptive expression augmentation fusion network to enhance important network features,suppress useless features,and increase the directionality of the network to features.Finally,this paper increases the probability of false detection and missed detection in the non-maximum suppression algo-rithm by increasing the one-dimensional threshold.So far,this paper has constructed a complete 3D target detection network based on multimodal feature fusion.The experimental results show that the proposed achieves an average accuracy of 82.60%on the Karlsruhe Institute of Technology and Toyota Technological Institute(KITTI)dataset,outperforming previous state-of-the-art multimodal fusion networks.In Easy,Moderate,and hard evaluation indicators,the accuracy rate of this paper reaches 90.96%,81.46%,and 75.39%.This shows that the MFF-Net network has good performance in 3D object detection.
基金supported in part by the Major Project for New Generation of AI (2018AAA0100400)the National Natural Science Foundation of China (61836014,U21B2042,62072457,62006231)the InnoHK Program。
文摘Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input to augment the RGB images.Depth-based methods attempt to convert estimated depth maps to pseudo-LiDAR and then use LiDAR-based object detectors or focus on the perspective of image and depth fusion learning.However,they demonstrate limited performance and efficiency as a result of depth inaccuracy and complex fusion mode with convolutions.Different from these approaches,our proposed depth-guided vision transformer with a normalizing flows(NF-DVT)network uses normalizing flows to build priors in depth maps to achieve more accurate depth information.Then we develop a novel Swin-Transformer-based backbone with a fusion module to process RGB image patches and depth map patches with two separate branches and fuse them using cross-attention to exchange information with each other.Furthermore,with the help of pixel-wise relative depth values in depth maps,we develop new relative position embeddings in the cross-attention mechanism to capture more accurate sequence ordering of input tokens.Our method is the first Swin-Transformer-based backbone architecture for monocular 3D object detection.The experimental results on the KITTI and the challenging Waymo Open datasets show the effectiveness of our proposed method and superior performance over previous counterparts.
基金supported by the National Key Research and Development Program of China(2020YFB1807500)the National Natural Science Foundation of China(62072360,62001357,62172438,61901367)+4 种基金the key research and development plan of Shaanxi province(2021ZDLGY02-09,2023-GHZD-44,2023-ZDLGY-54)the Natural Science Foundation of Guangdong Province of China(2022A1515010988)Key Project on Artificial Intelligence of Xi'an Science and Technology Plan(2022JH-RGZN-0003,2022JH-RGZN-0103,2022JH-CLCJ-0053)Xi'an Science and Technology Plan(20RGZN0005)the Proof-ofconcept fund from Hangzhou Research Institute of Xidian University(GNYZ2023QC0201).
文摘The high bandwidth and low latency of 6G network technology enable the successful application of monocular 3D object detection on vehicle platforms.Monocular 3D-object-detection-based Pseudo-LiDAR is a low-cost,lowpower solution compared to LiDAR solutions in the field of autonomous driving.However,this technique has some problems,i.e.,(1)the poor quality of generated Pseudo-LiDAR point clouds resulting from the nonlinear error distribution of monocular depth estimation and(2)the weak representation capability of point cloud features due to the neglected global geometric structure features of point clouds existing in LiDAR-based 3D detection networks.Therefore,we proposed a Pseudo-LiDAR confidence sampling strategy and a hierarchical geometric feature extraction module for monocular 3D object detection.We first designed a point cloud confidence sampling strategy based on a 3D Gaussian distribution to assign small confidence to the points with great error in depth estimation and filter them out according to the confidence.Then,we present a hierarchical geometric feature extraction module by aggregating the local neighborhood features and a dual transformer to capture the global geometric features in the point cloud.Finally,our detection framework is based on Point-Voxel-RCNN(PV-RCNN)with high-quality Pseudo-LiDAR and enriched geometric features as input.From the experimental results,our method achieves satisfactory results in monocular 3D object detection.
文摘Precise and robust three-dimensional object detection(3DOD)presents a promising opportunity in the field of mobile robot(MR)navigation.Monocular 3DOD techniques typically involve extending existing twodimensional object detection(2DOD)frameworks to predict the three-dimensional bounding box(3DBB)of objects captured in 2D RGB images.However,these methods often require multiple images,making them less feasible for various real-time scenarios.To address these challenges,the emergence of agile convolutional neural networks(CNNs)capable of inferring depth froma single image opens a new avenue for investigation.The paper proposes a novel ELDENet network designed to produce cost-effective 3DBounding Box Estimation(3D-BBE)froma single image.This novel framework comprises the PP-LCNet as the encoder and a fast convolutional decoder.Additionally,this integration includes a Squeeze-Exploit(SE)module utilizing the Math Kernel Library for Deep Neural Networks(MKLDNN)optimizer to enhance convolutional efficiency and streamline model size during effective training.Meanwhile,the proposed multi-scale sub-pixel decoder generates high-quality depth maps while maintaining a compact structure.Furthermore,the generated depthmaps provide a clear perspective with distance details of objects in the environment.These depth insights are combined with 2DOD for precise evaluation of 3D Bounding Boxes(3DBB),facilitating scene understanding and optimal route planning for mobile robots.Based on the estimated object center of the 3DBB,the Deep Reinforcement Learning(DRL)-based obstacle avoidance strategy for MRs is developed.Experimental results demonstrate that our model achieves state-of-the-art performance across three datasets:NYU-V2,KITTI,and Cityscapes.Overall,this framework shows significant potential for adaptation in intelligent mechatronic systems,particularly in developing knowledge-driven systems for mobile robot navigation.
基金National Natural Science Foundation of China(No.51805312)in part by Shanghai Sailing Program(No.18YF1409400)+4 种基金in part by Training and Funding Program of Shanghai College young teachers(No.ZZGCD15102)in part by Scientific Research Project of Shanghai University of Engineering Science(No.2016-19)in part by Science and Technology Commission of Shanghai Municipality(No.19030501100)in part by the Shanghai University of Engineering Science Innovation Fund for Graduate Students(No.18KY0613)in part by National Key R&D Program of China(No.2016YFC0802900).
文摘Road accident detection plays an important role in abnormal scene reconstruction for Intelligent Transportation Systems and abnormal events warning for autonomous driving.This paper presents a novel 3D object detector and adaptive space partitioning algorithm to infer traffic accidents quantitatively.Using 2D region proposals in an RGB image,this method generates deformable frustums based on point cloud for each 2D region proposal and then frustum-wisely extracts features based on the farthest point sampling network(FPS-Net)and feature extraction network(FE-Net).Subsequently,the encoder-decoder network(ED-Net)implements 3D-oriented bounding box(OBB)regression.Meanwhile,the adaptive least square regression(ALSR)method is proposed to split 3D OBB.Finally,the reduced OBB intersection test is carried out to detect traffic accidents via separating surface theorem(SST).In the experiments of KITTI benchmark,our proposed 3D object detector outperforms other state-of-theartmethods.Meanwhile,collision detection algorithm achieves the satisfactory performance of 91.8%accuracy on our SHTA dataset.
基金supported by Key Research and Development Plan of Ministry of Science and Technology(No.2023YFF0906200)Shaanxi Key Research and Development Plan(No.2018ZDXM-SF-093)+3 种基金Shaanxi Province Key Industrial Innovation Chain(Nos.S2022-YF-ZDCXL-ZDLGY-0093 and 2023-ZDLGY-45)Light of West China(No.XAB2022YN10)The China Postdoctoral Science Foundation(No.2023M740760)Shaanxi Key Research and Development Plan(No.2024SF-YBXM-678).
文摘Mural paintings hold significant historical information and possess substantial artistic and cultural value.However,murals are inevitably damaged by natural environmental factors such as wind and sunlight,as well as by human activities.For this reason,the study of damaged areas is crucial for mural restoration.These damaged regions differ significantly from undamaged areas and can be considered abnormal targets.Traditional manual visual processing lacks strong characterization capabilities and is prone to omissions and false detections.Hyperspectral imaging can reflect the material properties more effectively than visual characterization methods.Thus,this study employs hyperspectral imaging to obtain mural information and proposes a mural anomaly detection algorithm based on a hyperspectral multi-scale residual attention network(HM-MRANet).The innovations of this paper include:(1)Constructing mural painting hyperspectral datasets.(2)Proposing a multi-scale residual spectral-spatial feature extraction module based on a 3D CNN(Convolutional Neural Networks)network to better capture multiscale information and improve performance on small-sample hyperspectral datasets.(3)Proposing the Enhanced Residual Attention Module(ERAM)to address the feature redundancy problem,enhance the network’s feature discrimination ability,and further improve abnormal area detection accuracy.The experimental results show that the AUC(Area Under Curve),Specificity,and Accuracy of this paper’s algorithm reach 85.42%,88.84%,and 87.65%,respectively,on this dataset.These results represent improvements of 3.07%,1.11%and 2.68%compared to the SSRN algorithm,demonstrating the effectiveness of this method for mural anomaly detection.
基金Supported by the National Natural Science Foundation of China(No.61271323)
文摘In this paper, a collection of three-dimensional(3D)numerical breast models are developed based on clinical magnetic resonance images(MRIs). A hybrid contour detection method is used to create the contour, and the internal space is filled with different breast tissues, with each corresponding to a specified interval of MRI pixel intensity. The developed models anatomically describe the complex tissue structure and dielectric properties in breasts. Besides, they are compatible with finite-difference-time-domain(FDTD)grid cells. Convolutional perfect matched layer(CPML)is applied in conjunction with FDTD to simulate the open boundary outside the model. In the test phase, microwave breast cancer detection simulations are performed in four models with varying radiographic densities. Then, confocal algorithm is utilized to reconstruct the tumor images. Imaging results show that the tumor voxels can be recognized in every case, with 2 mm location error in two low density cases and 7 mm─8 mm location errors in two high density cases, demonstrating that the MRI-derived models can characterize the individual difference between patients' breasts.
基金National Youth Natural Science Foundation of China(No.61806006)Innovation Program for Graduate of Jiangsu Province(No.KYLX160-781)Jiangsu University Superior Discipline Construction Project。
文摘In order to solve difficult detection of far and hard objects due to the sparseness and insufficient semantic information of LiDAR point cloud,a 3D object detection network with multi-modal data adaptive fusion is proposed,which makes use of multi-neighborhood information of voxel and image information.Firstly,design an improved ResNet that maintains the structure information of far and hard objects in low-resolution feature maps,which is more suitable for detection task.Meanwhile,semantema of each image feature map is enhanced by semantic information from all subsequent feature maps.Secondly,extract multi-neighborhood context information with different receptive field sizes to make up for the defect of sparseness of point cloud which improves the ability of voxel features to represent the spatial structure and semantic information of objects.Finally,propose a multi-modal feature adaptive fusion strategy which uses learnable weights to express the contribution of different modal features to the detection task,and voxel attention further enhances the fused feature expression of effective target objects.The experimental results on the KITTI benchmark show that this method outperforms VoxelNet with remarkable margins,i.e.increasing the AP by 8.78%and 5.49%on medium and hard difficulty levels.Meanwhile,our method achieves greater detection performance compared with many mainstream multi-modal methods,i.e.outperforming the AP by 1%compared with that of MVX-Net on medium and hard difficulty levels.
文摘Light detection and ranging(LiDAR)sensors play a vital role in acquiring 3D point cloud data and extracting valuable information about objects for tasks such as autonomous driving,robotics,and virtual reality(VR).However,the sparse and disordered nature of the 3D point cloud poses significant challenges to feature extraction.Overcoming limitations is critical for 3D point cloud processing.3D point cloud object detection is a very challenging and crucial task,in which point cloud processing and feature extraction methods play a crucial role and have a significant impact on subsequent object detection performance.In this overview of outstanding work in object detection from the 3D point cloud,we specifically focus on summarizing methods employed in 3D point cloud processing.We introduce the way point clouds are processed in classical 3D object detection algorithms,and their improvements to solve the problems existing in point cloud processing.Different voxelization methods and point cloud sampling strategies will influence the extracted features,thereby impacting the final detection performance.