期刊文献+
共找到494篇文章
< 1 2 25 >
每页显示 20 50 100
Point-voxel dual transformer for LiDAR 3D object detection
1
作者 TONG Jigang YANG Fanhang +1 位作者 YANG Sen DU Shengzhi 《Optoelectronics Letters》 2025年第9期547-554,共8页
In this paper,a two-stage light detection and ranging(LiDAR) three-dimensional(3D) object detection framework is presented,namely point-voxel dual transformer(PV-DT3D),which is a transformer-based method.In the propos... In this paper,a two-stage light detection and ranging(LiDAR) three-dimensional(3D) object detection framework is presented,namely point-voxel dual transformer(PV-DT3D),which is a transformer-based method.In the proposed PV-DT3D,point-voxel fusion features are used for proposal refinement.Specifically,keypoints are sampled from entire point cloud scene and used to encode representative scene features via a proposal-aware voxel set abstraction module.Subsequently,following the generation of proposals by the region proposal networks(RPN),the internal encoded keypoints are fed into the dual transformer encoder-decoder architecture.In 3D object detection,the proposed PV-DT3D takes advantage of both point-wise transformer and channel-wise architecture to capture contextual information from the spatial and channel dimensions.Experiments conducted on the highly competitive KITTI 3D car detection leaderboard show that the PV-DT3D achieves superior detection accuracy among state-of-the-art point-voxel-based methods. 展开更多
关键词 proposal refinement encode representative scene features point voxel dual transformer object detection LIDAR d object detection generation proposals proposal refinementspecificallykeypoints
原文传递
Infrared road object detection algorithm based on spatial depth channel attention network and improved YOLOv8
2
作者 LI Song SHI Tao +1 位作者 JING Fangke CUI Jie 《Optoelectronics Letters》 2025年第8期491-498,共8页
Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm f... Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm for infrared images,F-YOLOv8,is proposed.First,a spatial-to-depth network replaces the traditional backbone network's strided convolution or pooling layer.At the same time,it combines with the channel attention mechanism so that the neural network focuses on the channels with large weight values to better extract low-resolution image feature information;then an improved feature pyramid network of lightweight bidirectional feature pyramid network(L-BiFPN)is proposed,which can efficiently fuse features of different scales.In addition,a loss function of insertion of union based on the minimum point distance(MPDIoU)is introduced for bounding box regression,which obtains faster convergence speed and more accurate regression results.Experimental results on the FLIR dataset show that the improved algorithm can accurately detect infrared road targets in real time with 3%and 2.2%enhancement in mean average precision at 50%IoU(mAP50)and mean average precision at 50%—95%IoU(mAP50-95),respectively,and 38.1%,37.3%and 16.9%reduction in the number of model parameters,the model weight,and floating-point operations per second(FLOPs),respectively.To further demonstrate the detection capability of the improved algorithm,it is tested on the public dataset PASCAL VOC,and the results show that F-YOLO has excellent generalized detection performance. 展开更多
关键词 feature pyramid network infrared road object detection infrared imagesf yolov backbone networks channel attention mechanism spatial depth channel attention network object detection improved YOLOv
原文传递
Hybrid receptive field network for small object detection on drone view
3
作者 Zhaodong CHEN Hongbing JI +2 位作者 Yongquan ZHANG Wenke LIU Zhigang ZHU 《Chinese Journal of Aeronautics》 2025年第2期322-338,共17页
Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones... Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones and lack of detail information for small-scale objects make drone-based small object detection a formidable challenge. To address these issues, we first develop a mathematical model to explore how changing receptive fields impacts the polynomial fitting results. Subsequently, based on the obtained conclusions, we propose a simple but effective Hybrid Receptive Field Network (HRFNet), whose modules include Hybrid Feature Augmentation (HFA), Hybrid Feature Pyramid (HFP) and Dual Scale Head (DSH). Specifically, HFA employs parallel dilated convolution kernels of different sizes to extend shallow features with different receptive fields, committed to improving the multi-scale adaptability of the network;HFP enhances the perception of small objects by capturing contextual information across layers, while DSH reconstructs the original prediction head utilizing a set of high-resolution features and ultrahigh-resolution features. In addition, in order to train HRFNet, the corresponding dual-scale loss function is designed. Finally, comprehensive evaluation results on public benchmarks such as VisDrone-DET and TinyPerson demonstrate the robustness of the proposed method. Most impressively, the proposed HRFNet achieves a mAP of 51.0 on VisDrone-DET with 29.3 M parameters, which outperforms the extant state-of-the-art detectors. HRFNet also performs excellently in complex scenarios captured by drones, achieving the best performance on the CS-Drone dataset we built. 展开更多
关键词 Drone remote sensing object detection on drone view Small object detector Hybrid receptive field Feature pyramid network Feature augmentation Multi-scale object detection
原文传递
DAFPN-YOLO: An Improved UAV-Based Object Detection Algorithm Based on YOLOv8s
4
作者 Honglin Wang Yaolong Zhang Cheng Zhu 《Computers, Materials & Continua》 2025年第5期1929-1949,共21页
UAV-based object detection is rapidly expanding in both civilian and military applications,including security surveillance,disaster assessment,and border patrol.However,challenges such as small objects,occlusions,comp... UAV-based object detection is rapidly expanding in both civilian and military applications,including security surveillance,disaster assessment,and border patrol.However,challenges such as small objects,occlusions,complex backgrounds,and variable lighting persist due to the unique perspective of UAV imagery.To address these issues,this paper introduces DAFPN-YOLO,an innovative model based on YOLOv8s(You Only Look Once version 8s).Themodel strikes a balance between detection accuracy and speed while reducing parameters,making itwell-suited for multi-object detection tasks from drone perspectives.A key feature of DAFPN-YOLO is the enhanced Drone-AFPN(Adaptive Feature Pyramid Network),which adaptively fuses multi-scale features to optimize feature extraction and enhance spatial and small-object information.To leverage Drone-AFPN’smulti-scale capabilities fully,a dedicated 160×160 small-object detection head was added,significantly boosting detection accuracy for small targets.In the backbone,the C2f_Dual(Cross Stage Partial with Cross-Stage Feature Fusion Dual)module and SPPELAN(Spatial Pyramid Pooling with Enhanced LocalAttentionNetwork)modulewere integrated.These components improve feature extraction and information aggregationwhile reducing parameters and computational complexity,enhancing inference efficiency.Additionally,Shape-IoU(Shape Intersection over Union)is used as the loss function for bounding box regression,enabling more precise shape-based object matching.Experimental results on the VisDrone 2019 dataset demonstrate the effectiveness ofDAFPN-YOLO.Compared to YOLOv8s,the proposedmodel achieves a 5.4 percentage point increase inmAP@0.5,a 3.8 percentage point improvement in mAP@0.5:0.95,and a 17.2%reduction in parameter count.These results highlight DAFPN-YOLO’s advantages in UAV-based object detection,offering valuable insights for applying deep learning to UAV-specific multi-object detection tasks. 展开更多
关键词 YOLOv8 UAV-based object detection AFPN small-object detection head SPPELAN DualConv loss function
在线阅读 下载PDF
PF-YOLO:An Improved YOLOv8 for Small Object Detection in Fisheye Images
5
作者 Cheng Zhang Cheng Xu Hongzhe Liu 《Journal of Beijing Institute of Technology》 2025年第1期57-70,共14页
Top-view fisheye cameras are widely used in personnel surveillance for their broad field of view,but their unique imaging characteristics pose challenges like distortion,complex scenes,scale variations,and small objec... Top-view fisheye cameras are widely used in personnel surveillance for their broad field of view,but their unique imaging characteristics pose challenges like distortion,complex scenes,scale variations,and small objects near image edges.To tackle these,we proposed peripheral focus you only look once(PF-YOLO),an enhanced YOLOv8n-based method.Firstly,we introduced a cutting-patch data augmentation strategy to mitigate the problem of insufficient small-object samples in various scenes.Secondly,to enhance the model's focus on small objects near the edges,we designed the peripheral focus loss,which uses dynamic focus coefficients to provide greater gradient gains for these objects,improving their regression accuracy.Finally,we designed the three dimensional(3D)spatial-channel coordinate attention C2f module,enhancing spatial and channel perception,suppressing noise,and improving personnel detection.Experimental results demonstrate that PF-YOLO achieves strong performance on the challenging events for person detection from overhead fisheye images(CEPDTOF)and in-the-wild events for people detection and tracking from overhead fisheye cameras(WEPDTOF)datasets.Compared to the original YOLOv8n model,PFYOLO achieves improvements on CEPDTOF with increases of 2.1%,1.7%and 2.9%in mean average precision 50(mAP 50),mAP 50-95,and tively.On WEPDTOF,PF-YOLO achieves substantial improvements with increases of 31.4%,14.9%,61.1%and 21.0%in 91.2%and 57.2%,respectively. 展开更多
关键词 FISHEYE object detection and recognition small object detection deep learning
在线阅读 下载PDF
GFRF R-CNN:Object Detection Algorithm for Transmission Lines
6
作者 Xunguang Yan Wenrui Wang +3 位作者 Fanglin Lu Hongyong Fan Bo Wu Jianfeng Yu 《Computers, Materials & Continua》 SCIE EI 2025年第1期1439-1458,共20页
To maintain the reliability of power systems,routine inspections using drones equipped with advanced object detection algorithms are essential for preempting power-related issues.The increasing resolution of drone-cap... To maintain the reliability of power systems,routine inspections using drones equipped with advanced object detection algorithms are essential for preempting power-related issues.The increasing resolution of drone-captured images has posed a challenge for traditional target detection methods,especially in identifying small objects in high-resolution images.This study presents an enhanced object detection algorithm based on the Faster Regionbased Convolutional Neural Network(Faster R-CNN)framework,specifically tailored for detecting small-scale electrical components like insulators,shock hammers,and screws in transmission line.The algorithm features an improved backbone network for Faster R-CNN,which significantly boosts the feature extraction network’s ability to detect fine details.The Region Proposal Network is optimized using a method of guided feature refinement(GFR),which achieves a balance between accuracy and speed.The incorporation of Generalized Intersection over Union(GIOU)and Region of Interest(ROI)Align further refines themodel’s accuracy.Experimental results demonstrate a notable improvement in mean Average Precision,reaching 89.3%,an 11.1%increase compared to the standard Faster R-CNN.This highlights the effectiveness of the proposed algorithm in identifying electrical components in high-resolution aerial images. 展开更多
关键词 Faster R-CNN transmission line object detection GIOU GFR
在线阅读 下载PDF
Syn-Aug:An Effective and General Synchronous Data Augmentation Framework for 3D Object Detection
7
作者 Huaijin Liu Jixiang Du +2 位作者 Yong Zhang Hongbo Zhang Jiandian Zeng 《CAAI Transactions on Intelligence Technology》 2025年第3期912-928,共17页
Data augmentation plays an important role in boosting the performance of 3D models,while very few studies handle the 3D point cloud data with this technique.Global augmentation and cut-paste are commonly used augmenta... Data augmentation plays an important role in boosting the performance of 3D models,while very few studies handle the 3D point cloud data with this technique.Global augmentation and cut-paste are commonly used augmentation techniques for point clouds,where global augmentation is applied to the entire point cloud of the scene,and cut-paste samples objects from other frames into the current frame.Both types of data augmentation can improve performance,but the cut-paste technique cannot effectively deal with the occlusion relationship between the foreground object and the background scene and the rationality of object sampling,which may be counterproductive and may hurt the overall performance.In addition,LiDAR is susceptible to signal loss,external occlusion,extreme weather and other factors,which can easily cause object shape changes,while global augmentation and cut-paste cannot effectively enhance the robustness of the model.To this end,we propose Syn-Aug,a synchronous data augmentation framework for LiDAR-based 3D object detection.Specifically,we first propose a novel rendering-based object augmentation technique(Ren-Aug)to enrich training data while enhancing scene realism.Second,we propose a local augmentation technique(Local-Aug)to generate local noise by rotating and scaling objects in the scene while avoiding collisions,which can improve generalisation performance.Finally,we make full use of the structural information of 3D labels to make the model more robust by randomly changing the geometry of objects in the training frames.We verify the proposed framework with four different types of 3D object detectors.Experimental results show that our proposed Syn-Aug significantly improves the performance of various 3D object detectors in the KITTI and nuScenes datasets,proving the effectiveness and generality of Syn-Aug.On KITTI,four different types of baseline models using Syn-Aug improved mAP by 0.89%,1.35%,1.61%and 1.14%respectively.On nuScenes,four different types of baseline models using Syn-Aug improved mAP by 14.93%,10.42%,8.47%and 6.81%respectively.The code is available at https://github.com/liuhuaijjin/Syn-Aug. 展开更多
关键词 3D object detection data augmentation DIVERSITY GENERALIZATION point cloud ROBUSTNESS
在线阅读 下载PDF
DI-YOLOv5:An Improved Dual-Wavelet-Based YOLOv5 for Dense Small Object Detection
8
作者 Zi-Xin Li Yu-Long Wang Fei Wang 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期457-459,共3页
Dear Editor,This letter focuses on the fact that small objects with few pixels disappear in feature maps with large receptive fields, as the network deepens, in object detection tasks. Therefore, the detection of dens... Dear Editor,This letter focuses on the fact that small objects with few pixels disappear in feature maps with large receptive fields, as the network deepens, in object detection tasks. Therefore, the detection of dense small objects is challenging. 展开更多
关键词 small objects receptive fields feature maps detection dense small objects object detection dense objects
在线阅读 下载PDF
Bridging 2D and 3D Object Detection:Advances in Occlusion Handling through Depth Estimation
9
作者 Zainab Ouardirhi Mostapha Zbakh Sidi Ahmed Mahmoudi 《Computer Modeling in Engineering & Sciences》 2025年第6期2509-2571,共63页
Object detection in occluded environments remains a core challenge in computer vision(CV),especially in domains such as autonomous driving and robotics.While Convolutional Neural Network(CNN)-based twodimensional(2D)a... Object detection in occluded environments remains a core challenge in computer vision(CV),especially in domains such as autonomous driving and robotics.While Convolutional Neural Network(CNN)-based twodimensional(2D)and three-dimensional(3D)object detection methods havemade significant progress,they often fall short under severe occlusion due to depth ambiguities in 2D imagery and the high cost and deployment limitations of 3D sensors such as Light Detection and Ranging(LiDAR).This paper presents a comparative review of recent 2D and 3D detection models,focusing on their occlusion-handling capabilities and the impact of sensor modalities such as stereo vision,Time-of-Flight(ToF)cameras,and LiDAR.In this context,we introduce FuDensityNet,our multimodal occlusion-aware detection framework that combines Red-Green-Blue(RGB)images and LiDAR data to enhance detection performance.As a forward-looking direction,we propose a monocular depth-estimation extension to FuDensityNet,aimed at replacing expensive 3D sensors with a more scalable CNN-based pipeline.Although this enhancement is not experimentally evaluated in this manuscript,we describe its conceptual design and potential for future implementation. 展开更多
关键词 object detection occlusion handling multimodal fusion MONOCULAR 3D sensors depth estimation
在线阅读 下载PDF
A Systematic Review of YOLO-Based Object Detection in Medical Imaging:Advances,Challenges,and Future Directions
10
作者 Zhenhui Cai Kaiqing Zhou Zhouhua Liao 《Computers, Materials & Continua》 2025年第11期2255-2303,共49页
The YOLO(You Only Look Once)series,a leading single-stage object detection framework,has gained significant prominence in medical-image analysis due to its real-time efficiency and robust performance.Recent iterations... The YOLO(You Only Look Once)series,a leading single-stage object detection framework,has gained significant prominence in medical-image analysis due to its real-time efficiency and robust performance.Recent iterations of YOLO have further enhanced its accuracy and reliability in critical clinical tasks such as tumor detection,lesion segmentation,and microscopic image analysis,thereby accelerating the development of clinical decision support systems.This paper systematically reviews advances in YOLO-based medical object detection from 2018 to 2024.It compares YOLO’s performance with othermodels(e.g.,Faster R-CNN,RetinaNet)inmedical contexts,summarizes standard evaluation metrics(e.g.,mean Average Precision(mAP),sensitivity),and analyzes hardware deployment strategies using public datasets such as LUNA16,BraTS,andCheXpert.Thereviewhighlights the impressive performance of YOLO models,particularly from YOLOv5 to YOLOv8,in achieving high precision(up to 99.17%),sensitivity(up to 97.5%),and mAP exceeding 95%in tasks such as lung nodule,breast cancer,and polyp detection.These results demonstrate the significant potential of YOLO models for early disease detection and real-time clinical applications,indicating their ability to enhance clinical workflows.However,the study also identifies key challenges,including high small-object miss rates,limited generalization in low-contrast images,scarcity of annotated data,and model interpretability issues.Finally,the potential future research directions are also proposed to address these challenges and further advance the application of YOLO models in healthcare. 展开更多
关键词 YOLO medical imaging object detection performance analysis core challenges
在线阅读 下载PDF
Enhanced Multi-Scale Object Detection Algorithm for Foggy Traffic Scenarios
11
作者 Honglin Wang Zitong Shi Cheng Zhu 《Computers, Materials & Continua》 2025年第2期2451-2474,共24页
In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scal... In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scale object detection algorithm based on an improved YOLOv8 has been proposed. Firstly, a lightweight attention mechanism, Triplet Attention, is introduced to enhance the algorithm’s ability to extract multi-dimensional and multi-scale features, thereby improving the receptive capability of the feature maps. Secondly, the Diverse Branch Block (DBB) is integrated into the CSP Bottleneck with two Convolutions (C2F) module to strengthen the fusion of semantic information across different layers. Thirdly, a new decoupled detection head is proposed by redesigning the original network head based on the Diverse Branch Block module to improve detection accuracy and reduce missed and false detections. Finally, the Minimum Point Distance based Intersection-over-Union (MPDIoU) is used to replace the original YOLOv8 Complete Intersection-over-Union (CIoU) to accelerate the network’s training convergence. Comparative experiments and dehazing pre-processing tests were conducted on the RTTS and VOC-Fog datasets. Compared to the baseline YOLOv8 model, the improved algorithm achieved mean Average Precision (mAP) improvements of 4.6% and 3.8%, respectively. After defogging pre-processing, the mAP increased by 5.3% and 4.4%, respectively. The experimental results demonstrate that the improved algorithm exhibits high practicality and effectiveness in foggy traffic scenarios. 展开更多
关键词 Deep learning object detection foggy scenes traffic detection YOLOv8
在线阅读 下载PDF
Research on Real-Time Object Detection and Tracking for UAV Surveillance Based on Deep Learning
12
作者 Fei Liu Lu Jia Sichuan 《Journal of Electronic Research and Application》 2025年第3期235-240,共6页
To address the challenges of low accuracy and insufficient real-time performance in dynamic object detection for UAV surveillance,this paper proposes a novel tracking framework that integrates a lightweight improved Y... To address the challenges of low accuracy and insufficient real-time performance in dynamic object detection for UAV surveillance,this paper proposes a novel tracking framework that integrates a lightweight improved YOLOv5s model with adaptive motion compensation.A UAV-view dynamic feature enhancement strategy is innovatively introduced,and a lightweight detection network combining attention mechanisms and multi-scale fusion is constructed.The robustness of tracking under motion blur scenarios is also optimized.Experimental results demonstrate that the proposed method achieves a mAP@0.5 of 68.2%on the VisDrone dataset and reaches an inference speed of 32 FPS on the NVIDIA Jetson TX2 platform.This significantly improves the balance between accuracy and efficiency in complex scenes,offering reliable technical support for real-time applications such as emergency response. 展开更多
关键词 UAV surveillance Real-time object detection Deep learning Lightweight model Motion compensation
在线阅读 下载PDF
Implicit Feature Contrastive Learning for Few-Shot Object Detection
13
作者 Gang Li Zheng Zhou +6 位作者 Yang Zhang Chuanyun Xu Zihan Ruan Pengfei Lv Ru Wang Xinyu Fan Wei Tan 《Computers, Materials & Continua》 2025年第7期1615-1632,共18页
Although conventional object detection methods achieve high accuracy through extensively annotated datasets,acquiring such large-scale labeled data remains challenging and cost-prohibitive in numerous real-world appli... Although conventional object detection methods achieve high accuracy through extensively annotated datasets,acquiring such large-scale labeled data remains challenging and cost-prohibitive in numerous real-world applications.Few-shot object detection presents a new research idea that aims to localize and classify objects in images using only limited annotated examples.However,the inherent challenge in few-shot object detection lies in the insufficient sample diversity to fully characterize the sample feature distribution,which consequently impacts model performance.Inspired by contrastive learning principles,we propose an Implicit Feature Contrastive Learning(IFCL)module to address this limitation and augment feature diversity for more robust representational learning.This module generates augmented support sample features in a mixed feature space and implicitly contrasts them with query Region of Interest(RoI)features.This approach facilitates more comprehensive learning of both intra-class feature similarity and inter-class feature diversity,thereby enhancing the model’s object classification and localization capabilities.Extensive experiments on PASCAL VOC show that our method achieves a respective improvement of 3.2%,1.8%,and 2.3%on 10-shot of three Novel Sets compared to the baseline model FPD. 展开更多
关键词 Few-shot learning object detection implicit contrastive learning feature mixing feature aggregation
在线阅读 下载PDF
LR-Net:Lossless Feature Fusion and Revised SIoU for Small Object Detection
14
作者 Gang Li Ru Wang +5 位作者 Yang Zhang Chuanyun Xu Xinyu Fan Zheng Zhou Pengfei Lv Zihan Ruan 《Computers, Materials & Continua》 2025年第11期3267-3288,共22页
Currently,challenges such as small object size and occlusion lead to a lack of accuracy and robustness in small object detection.Since small objects occupy only a few pixels in an image,the extracted features are limi... Currently,challenges such as small object size and occlusion lead to a lack of accuracy and robustness in small object detection.Since small objects occupy only a few pixels in an image,the extracted features are limited,and mainstream downsampling convolution operations further exacerbate feature loss.Additionally,due to the occlusionprone nature of small objects and their higher sensitivity to localization deviations,conventional Intersection over Union(IoU)loss functions struggle to achieve stable convergence.To address these limitations,LR-Net is proposed for small object detection.Specifically,the proposed Lossless Feature Fusion(LFF)method transfers spatial features into the channel domain while leveraging a hybrid attentionmechanism to focus on critical features,mitigating feature loss caused by downsampling.Furthermore,RSIoU is proposed to enhance the convergence performance of IoU-based losses for small objects.RSIoU corrects the inherent convergence direction issues in SIoU and proposes a penalty term as a Dynamic Focusing Mechanism parameter,enabling it to dynamically emphasize the loss contribution of small object samples.Ultimately,RSIoU significantly improves the convergence performance of the loss function for small objects,particularly under occlusion scenarios.Experiments demonstrate that LR-Net achieves significant improvements across variousmetrics onmultiple datasets compared with YOLOv8n,achieving a 3.7% increase in mean Average Precision(AP)on the VisDrone2019 dataset,along with improvements of 3.3% on the AI-TOD dataset and 1.2% on the COCO dataset. 展开更多
关键词 Small object detection lossless feature fusion attention mechanisms loss function penalty term
在线阅读 下载PDF
Lightweight real-time micro-object detection framework
15
作者 GE Haitao ZHANG Mingyao +3 位作者 WEI Yonggeng ZHANG Hongshi CAO Xinxin SHI Yong 《黑龙江大学工程学报(中英俄文)》 2025年第2期56-66,共11页
Accurate defect detection plays a critical role in ensuring product quality and equipment reliability.Small-object detection poses unique challenges due to weak feature representation and significant background interf... Accurate defect detection plays a critical role in ensuring product quality and equipment reliability.Small-object detection poses unique challenges due to weak feature representation and significant background interference.To address these issues,this study incorporates three key innovations into the YOLOv8 framework:the use of GhostNet convolution for lightweight and efficient feature extraction,the addition of a P2 detection layer to enhance small-object detection capabilities,and the integration of the Triplet Attention mechanism to capture comprehensive spatial and channel dependencies.These improvements collectively optimize detection performance for small objects while reducing computational complexity.Experimental results demonstrate that the enhanced model achieves a mean average precision(mAP@0.5)of 97.46%and a mAP@0.5∶0.95 of 61.84%,representing a performance improvement of 1.9%and 3.2%,respectively,compared to the baseline YOLOv8 model.Additionally,the model achieves a frame rate of 158 FPS,maintaining real-time detection capabilities while reducing the parameter count by 50%,further underscoring its efficiency and suitability for smallobject detection in complex scenarios. 展开更多
关键词 GhostNet P2 detection layer Triplet Attention YOLOv8 small object detection
在线阅读 下载PDF
DDFNet:real-time salient object detection with dual-branch decoding fusion for steel plate surface defects
16
作者 Tao Wang Wang-zhe Du +5 位作者 Xu-wei Li Hua-xin Liu Yuan-ming Liu Xiao-miao Niu Ya-xing Liu Tao Wang 《Journal of Iron and Steel Research International》 2025年第8期2421-2433,共13页
A novel dual-branch decoding fusion convolutional neural network model(DDFNet)specifically designed for real-time salient object detection(SOD)on steel surfaces is proposed.DDFNet is based on a standard encoder–decod... A novel dual-branch decoding fusion convolutional neural network model(DDFNet)specifically designed for real-time salient object detection(SOD)on steel surfaces is proposed.DDFNet is based on a standard encoder–decoder architecture.DDFNet integrates three key innovations:first,we introduce a novel,lightweight multi-scale progressive aggregation residual network that effectively suppresses background interference and refines defect details,enabling efficient salient feature extraction.Then,we propose an innovative dual-branch decoding fusion structure,comprising the refined defect representation branch and the enhanced defect representation branch,which enhance accuracy in defect region identification and feature representation.Additionally,to further improve the detection of small and complex defects,we incorporate a multi-scale attention fusion module.Experimental results on the public ESDIs-SOD dataset show that DDFNet,with only 3.69 million parameters,achieves detection performance comparable to current state-of-the-art models,demonstrating its potential for real-time industrial applications.Furthermore,our DDFNet-L variant consistently outperforms leading methods in detection performance.The code is available at https://github.com/13140W/DDFNet. 展开更多
关键词 Steel plate surface defect Real-time detection Salient object detection Dual-branch decoder Multi-scale attention fusion Multi-scale residual fusion
原文传递
Coupling the Power of YOLOv9 with Transformer for Small Object Detection in Remote-Sensing Images
17
作者 Mohammad Barr 《Computer Modeling in Engineering & Sciences》 2025年第4期593-616,共24页
Recent years have seen a surge in interest in object detection on remote sensing images for applications such as surveillance andmanagement.However,challenges like small object detection,scale variation,and the presen... Recent years have seen a surge in interest in object detection on remote sensing images for applications such as surveillance andmanagement.However,challenges like small object detection,scale variation,and the presence of closely packed objects in these images hinder accurate detection.Additionally,the motion blur effect further complicates the identification of such objects.To address these issues,we propose enhanced YOLOv9 with a transformer head(YOLOv9-TH).The model introduces an additional prediction head for detecting objects of varying sizes and swaps the original prediction heads for transformer heads to leverage self-attention mechanisms.We further improve YOLOv9-TH using several strategies,including data augmentation,multi-scale testing,multi-model integration,and the introduction of an additional classifier.The cross-stage partial(CSP)method and the ghost convolution hierarchical graph(GCHG)are combined to improve detection accuracy by better utilizing feature maps,widening the receptive field,and precisely extracting multi-scale objects.Additionally,we incorporate the E-SimAM attention mechanism to address low-resolution feature loss.Extensive experiments on the VisDrone2021 and DIOR datasets demonstrate the effectiveness of YOLOv9-TH,showing good improvement in mAP compared to the best existing methods.The YOLOv9-TH-e achieved 54.2% of mAP50 on the VisDrone2021 dataset and 92.3% of mAP on the DIOR dataset.The results confirmthemodel’s robustness and suitability for real-world applications,particularly for small object detection in remote sensing images. 展开更多
关键词 Remote sensing images YOLOv9-TH multi-scale object detection transformer heads VisDrone2021 dataset
在线阅读 下载PDF
An Improved Knowledge Distillation Algorithm and Its Application to Object Detection
18
作者 Min Yao Guofeng Liu +1 位作者 Yaozu Zhang Guangjie Hu 《Computers, Materials & Continua》 2025年第5期2189-2205,共17页
Knowledge distillation(KD)is an emerging model compression technique for learning compact object detector models.Previous KD often focused solely on distilling from the logits layer or the feature intermediate layers,... Knowledge distillation(KD)is an emerging model compression technique for learning compact object detector models.Previous KD often focused solely on distilling from the logits layer or the feature intermediate layers,which may limit the comprehensive learning of the student network.Additionally,the imbalance between the foreground and background also affects the performance of the model.To address these issues,this paper employs feature-based distillation to enhance the detection performance of the bounding box localization part,and logit-based distillation to improve the detection performance of the category prediction part.Specifically,for the intermediate layer feature distillation,we introduce feature resampling to reduce the risk of the student model merely imitating the teacher model.At the same time,we incorporate a Spatial Attention Mechanism(SAM)to highlight the foreground features learned by the student model.In terms of output layer feature distillation,we divide the traditional distillation targets into target-class objects and non-target-class objects,aiming to improve overall distillation performance.Furthermore,we introduce a one-to-many matching distillation strategy based on Feature Alignment Module(FAM),which further enhances the studentmodel’s feature representation ability,making its feature distribution closer to that of the teacher model,and thus demonstrating superior localization and classification capabilities in object detection tasks.Experimental results demonstrate that our proposedmethodology outperforms conventional distillation techniques in terms of object detecting performance. 展开更多
关键词 Deep learning model compression knowledge distillation object detection
在线阅读 下载PDF
Salient Object Detection Based on Multi-Strategy Feature Optimization
19
作者 Libo Han Sha Tao +3 位作者 Wen Xia Weixin Sun Li Yan Wanlin Gao 《Computers, Materials & Continua》 2025年第2期2431-2449,共19页
At present, salient object detection (SOD) has achieved considerable progress. However, the methods that perform well still face the issue of inadequate detection accuracy. For example, sometimes there are problems of... At present, salient object detection (SOD) has achieved considerable progress. However, the methods that perform well still face the issue of inadequate detection accuracy. For example, sometimes there are problems of missed and false detections. Effectively optimizing features to capture key information and better integrating different levels of features to enhance their complementarity are two significant challenges in the domain of SOD. In response to these challenges, this study proposes a novel SOD method based on multi-strategy feature optimization. We propose the multi-size feature extraction module (MSFEM), which uses the attention mechanism, the multi-level feature fusion, and the residual block to obtain finer features. This module provides robust support for the subsequent accurate detection of the salient object. In addition, we use two rounds of feature fusion and the feedback mechanism to optimize the features obtained by the MSFEM to improve detection accuracy. The first round of feature fusion is applied to integrate the features extracted by the MSFEM to obtain more refined features. Subsequently, the feedback mechanism and the second round of feature fusion are applied to refine the features, thereby providing a stronger foundation for accurately detecting salient objects. To improve the fusion effect, we propose the feature enhancement module (FEM) and the feature optimization module (FOM). The FEM integrates the upper and lower features with the optimized features obtained by the FOM to enhance feature complementarity. The FOM uses different receptive fields, the attention mechanism, and the residual block to more effectively capture key information. Experimental results demonstrate that our method outperforms 10 state-of-the-art SOD methods. 展开更多
关键词 Salient object detection multi-strategy feature optimization feedback mechanism
在线阅读 下载PDF
YOLOv8s-DroneNet: Small Object Detection Algorithm Based on Feature Selection and ISIoU
20
作者 Jian Peng Hui He Dengyong Zhang 《Computers, Materials & Continua》 2025年第9期5047-5061,共15页
Object detection plays a critical role in drone imagery analysis,especially in remote sensing applications where accurate and efficient detection of small objects is essential.Despite significant advancements in drone... Object detection plays a critical role in drone imagery analysis,especially in remote sensing applications where accurate and efficient detection of small objects is essential.Despite significant advancements in drone imagery detection,most models still struggle with small object detection due to challenges such as object size,complex backgrounds.To address these issues,we propose a robust detection model based on You Only Look Once(YOLO)that balances accuracy and efficiency.The model mainly contains several major innovation:feature selection pyramid network,Inner-Shape Intersection over Union(ISIoU)loss function and small object detection head.To overcome the limitations of traditional fusion methods in handling multi-level features,we introduce a Feature Selection Pyramid Network integrated into the Neck component,which preserves shallow feature details critical for detecting small objects.Additionally,recognizing that deep network structures often neglect or degrade small object features,we design a specialized small object detection head in the shallow layers to enhance detection accuracy for these challenging targets.To effectively model both local and global dependencies,we introduce a Conv-Former module that simulates Transformer mechanisms using a convolutional structure,thereby improving feature enhancement.Furthermore,we employ ISIoU to address object imbalance and scale variation This approach accelerates model conver-gence and improves regression accuracy.Experimental results show that,compared to the baseline model,the proposed method significantly improves small object detection performance on the VisDrone2019 dataset,with mAP@50 increasing by 4.9%and mAP@50-95 rising by 6.7%.This model also outperforms other state-of-the-art algorithms,demonstrating its reliability and effectiveness in both small object detection and remote sensing image fusion tasks. 展开更多
关键词 Drone imagery small object detection feature selection convolutional attention
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部