To address the scale variance and uneven distribution of objects in scenarios of object-counting tasks,an algorithm called Refinement Network(RefNet) is exploited.The proposed top-down scheme sequentially aggregates m...To address the scale variance and uneven distribution of objects in scenarios of object-counting tasks,an algorithm called Refinement Network(RefNet) is exploited.The proposed top-down scheme sequentially aggregates multiscale features,which are laterally connected with low-level information.Trained by a multiresolution density regression loss,a set of intermediate-density maps are estimated on each scale in a multiscale feature pyramid,and the detailed information of the density map is gradually added through coarse-to-fine granular refinement progress to predict the final density map.We evaluate our RefNet on three crowd-counting benchmark datasets,namely,ShanghaiTech,UCFC0,and UCSD,and our method achieves competitive performances on the mean absolute error and root mean squared error compared to the state-of-the-art approaches.We further extend our RefNet to cell counting,illustrating its effectiveness on relative counting tasks.展开更多
A literature analysis has shown that object search,recognition,and tracking systems are becoming increasingly popular.However,such systems do not achieve high practical results in analyzing small moving living objects...A literature analysis has shown that object search,recognition,and tracking systems are becoming increasingly popular.However,such systems do not achieve high practical results in analyzing small moving living objects ranging from 8 to 14 mm.This article examines methods and tools for recognizing and tracking the class of small moving objects,such as ants.To fulfill those aims,a customized You Only Look Once Ants Recognition(YOLO_AR)Convolutional Neural Network(CNN)has been trained to recognize Messor Structor ants in the laboratory using the LabelImg object marker tool.The proposed model is an extension of the You Only Look Once v4(Yolov4)512×512 model with an additional Self Regularized Non–Monotonic(Mish)activation function.Additionally,the scalable solution for continuous object recognizing and tracking was implemented.This solution is based on the OpenDatacam system,with extended Object Tracking modules that allow for tracking and counting objects that have crossed the custom boundary line.During the study,the methods of the alignment algorithm for finding the trajectory of moving objects were modified.I discovered that the Hungarian algorithm showed better results in tracking small objects than the K–D dimensional tree(k-d tree)matching algorithm used in OpenDataCam.Remarkably,such an algorithm showed better results with the implemented YOLO_AR model due to the lack of False Positives(FP).Therefore,I provided a new tracker module with a Hungarian matching algorithm verified on the Multiple Object Tracking(MOT)benchmark.Furthermore,additional customization parameters for object recognition and tracking results parsing and filtering were added,like boundary angle threshold(BAT)and past frames trajectory prediction(PFTP).Experimental tests confirmed the results of the study on a mobile device.During the experiment,parameters such as the quality of recognition and tracking of moving objects,the PFTP and BAT,and the configuration parameters of the neural network and boundary line model were analyzed.The results showed an increased tracking accuracy with the proposed methods by 50%.The study results confirmed the relevance of the topic and the effectiveness of the implemented methods and tools.展开更多
文摘To address the scale variance and uneven distribution of objects in scenarios of object-counting tasks,an algorithm called Refinement Network(RefNet) is exploited.The proposed top-down scheme sequentially aggregates multiscale features,which are laterally connected with low-level information.Trained by a multiresolution density regression loss,a set of intermediate-density maps are estimated on each scale in a multiscale feature pyramid,and the detailed information of the density map is gradually added through coarse-to-fine granular refinement progress to predict the final density map.We evaluate our RefNet on three crowd-counting benchmark datasets,namely,ShanghaiTech,UCFC0,and UCSD,and our method achieves competitive performances on the mean absolute error and root mean squared error compared to the state-of-the-art approaches.We further extend our RefNet to cell counting,illustrating its effectiveness on relative counting tasks.
文摘A literature analysis has shown that object search,recognition,and tracking systems are becoming increasingly popular.However,such systems do not achieve high practical results in analyzing small moving living objects ranging from 8 to 14 mm.This article examines methods and tools for recognizing and tracking the class of small moving objects,such as ants.To fulfill those aims,a customized You Only Look Once Ants Recognition(YOLO_AR)Convolutional Neural Network(CNN)has been trained to recognize Messor Structor ants in the laboratory using the LabelImg object marker tool.The proposed model is an extension of the You Only Look Once v4(Yolov4)512×512 model with an additional Self Regularized Non–Monotonic(Mish)activation function.Additionally,the scalable solution for continuous object recognizing and tracking was implemented.This solution is based on the OpenDatacam system,with extended Object Tracking modules that allow for tracking and counting objects that have crossed the custom boundary line.During the study,the methods of the alignment algorithm for finding the trajectory of moving objects were modified.I discovered that the Hungarian algorithm showed better results in tracking small objects than the K–D dimensional tree(k-d tree)matching algorithm used in OpenDataCam.Remarkably,such an algorithm showed better results with the implemented YOLO_AR model due to the lack of False Positives(FP).Therefore,I provided a new tracker module with a Hungarian matching algorithm verified on the Multiple Object Tracking(MOT)benchmark.Furthermore,additional customization parameters for object recognition and tracking results parsing and filtering were added,like boundary angle threshold(BAT)and past frames trajectory prediction(PFTP).Experimental tests confirmed the results of the study on a mobile device.During the experiment,parameters such as the quality of recognition and tracking of moving objects,the PFTP and BAT,and the configuration parameters of the neural network and boundary line model were analyzed.The results showed an increased tracking accuracy with the proposed methods by 50%.The study results confirmed the relevance of the topic and the effectiveness of the implemented methods and tools.