Small storage space for photographs in formal documents is increasingly necessary in today's needs for huge amounts of data communication and storage. Traditional compression algorithms do not sufficiently utilize th...Small storage space for photographs in formal documents is increasingly necessary in today's needs for huge amounts of data communication and storage. Traditional compression algorithms do not sufficiently utilize the distinctness of formal photographs. That is, the object is an image of the human head, and the background is in unicolor. Therefore, the compression is of low efficiency and the image after compression is still space-consuming. This paper presents an image compression algorithm based on object segmentation for practical high-efficiency applications. To achieve high coding efficiency, shape-adaptive discrete wavelet transforms are used to transformation arbitrarily shaped objects. The areas of the human head and its background are compressed separately to reduce the coding redundancy of the background. Two methods, lossless image contour coding based on differential chain, and modified set partitioning in hierarchical trees (SPIHT) algorithm of arbitrary shape, are discussed in detail. The results of experiments show that when bit per pixel (bpp)is equal to 0.078, peak signal-to-noise ratio (PSNR) of reconstructed photograph will exceed the standard of SPIHT by nearly 4dB.展开更多
Object-based audio coding is the main technique of audio scene coding. It can effectively reconstruct each object trajectory, besides provide sufficient flexibility for personalized audio scene reconstruction. So more...Object-based audio coding is the main technique of audio scene coding. It can effectively reconstruct each object trajectory, besides provide sufficient flexibility for personalized audio scene reconstruction. So more and more attentions have been paid to the object-based audio coding. However, existing object-based techniques have poor sound quality because of low parameter frequency domain resolution. In order to achieve high quality audio object coding, we propose a new coding framework with introducing the non-negative matrix factorization(NMF) method. We extract object parameters with high resolution to improve sound quality, and apply NMF method to parameter coding to reduce the high bitrate caused by high resolution. And the experimental results have shown that the proposed framework can improve the coding quality by 25%, so it can provide a better solution to encode audio scene in a more flexible and higher quality way.展开更多
Classic sparse representation, as one of prevalent feature learning methods, is successfully applied for different computer vision tasks. However it has some intrinsic defects in object detection. Firstly, how to lear...Classic sparse representation, as one of prevalent feature learning methods, is successfully applied for different computer vision tasks. However it has some intrinsic defects in object detection. Firstly, how to learn a discriminative dictionary for object detection is a hard problem. Secondly, it is usually very time-consuming to learn dictionary based features in a traditional exhaustive search manner like sliding window. In this paper, we propose a novel feature learning framework for object detection with the structure sparsity constraint and classification error minimization constraint to learn a discriminative dictionary. For improving the efficiency, we just learn sparse representation coefficients from object candidate regions and feed them to a kernelized SVM classifier. Experiments on INRIA Person Dataset and Pascal VOC 2007 challenge dataset clearly demonstrate the effectiveness of the proposed approach compared with two state-of-the-art baselines.展开更多
Man-made object detection is of great significance in both military and civil areas, such as search-and-rescue missions at sea, traffic signs recognition during visual navigation, and targets location in a military st...Man-made object detection is of great significance in both military and civil areas, such as search-and-rescue missions at sea, traffic signs recognition during visual navigation, and targets location in a military strike. Contours of man-made objects usually consist of straight lines, corner points, and simple curves. Motivated by this observation, a man-made object detection method is proposed based on complexity evaluation of object contours. After salient contours which keep the crucial information of objects are accurately extracted using an improved mean-shift clustering algorithm, a novel approach is presented to evaluate the complexity of contours. By comparing the entropy values of contours before/after sampling and linear interpolation, it is easy to distinguish between man-made objects and natural ones according to the complexity of their contours.Experimental results show that the presented method can effectively detect man-made objects when compared to the existing ones.展开更多
基金This work was supported by National Natural Science Foundation of China (No.60372066)
文摘Small storage space for photographs in formal documents is increasingly necessary in today's needs for huge amounts of data communication and storage. Traditional compression algorithms do not sufficiently utilize the distinctness of formal photographs. That is, the object is an image of the human head, and the background is in unicolor. Therefore, the compression is of low efficiency and the image after compression is still space-consuming. This paper presents an image compression algorithm based on object segmentation for practical high-efficiency applications. To achieve high coding efficiency, shape-adaptive discrete wavelet transforms are used to transformation arbitrarily shaped objects. The areas of the human head and its background are compressed separately to reduce the coding redundancy of the background. Two methods, lossless image contour coding based on differential chain, and modified set partitioning in hierarchical trees (SPIHT) algorithm of arbitrary shape, are discussed in detail. The results of experiments show that when bit per pixel (bpp)is equal to 0.078, peak signal-to-noise ratio (PSNR) of reconstructed photograph will exceed the standard of SPIHT by nearly 4dB.
基金supported by National High Technology Research and Development Program of China (863 Program) (No.2015AA016306)National Nature Science Foundation of China (No.61231015)National Nature Science Foundation of China (No.61671335)
文摘Object-based audio coding is the main technique of audio scene coding. It can effectively reconstruct each object trajectory, besides provide sufficient flexibility for personalized audio scene reconstruction. So more and more attentions have been paid to the object-based audio coding. However, existing object-based techniques have poor sound quality because of low parameter frequency domain resolution. In order to achieve high quality audio object coding, we propose a new coding framework with introducing the non-negative matrix factorization(NMF) method. We extract object parameters with high resolution to improve sound quality, and apply NMF method to parameter coding to reduce the high bitrate caused by high resolution. And the experimental results have shown that the proposed framework can improve the coding quality by 25%, so it can provide a better solution to encode audio scene in a more flexible and higher quality way.
基金Supported by the National Natural Science Foundation of China(61231015,61170023)National High Technology Research and Development Program of China(863 Program,2015AA016306)+3 种基金Internet of Things Development Funding Project of Ministry of Industry in 2013(No.25)Technology Research Program of Ministry of Public Security(2014JSYJA016)Major Science and Technology Innovation Plan of Hubei Province(2013AAA020)the Natural Science Foundation of Hubei Province(2014CFB712)
文摘Classic sparse representation, as one of prevalent feature learning methods, is successfully applied for different computer vision tasks. However it has some intrinsic defects in object detection. Firstly, how to learn a discriminative dictionary for object detection is a hard problem. Secondly, it is usually very time-consuming to learn dictionary based features in a traditional exhaustive search manner like sliding window. In this paper, we propose a novel feature learning framework for object detection with the structure sparsity constraint and classification error minimization constraint to learn a discriminative dictionary. For improving the efficiency, we just learn sparse representation coefficients from object candidate regions and feed them to a kernelized SVM classifier. Experiments on INRIA Person Dataset and Pascal VOC 2007 challenge dataset clearly demonstrate the effectiveness of the proposed approach compared with two state-of-the-art baselines.
基金co-supported by the National Natural Science Foundation of China (61473148)the Funding of Jiangsu Innovation Program for Graduate Education (No. KYLX16_0337)
文摘Man-made object detection is of great significance in both military and civil areas, such as search-and-rescue missions at sea, traffic signs recognition during visual navigation, and targets location in a military strike. Contours of man-made objects usually consist of straight lines, corner points, and simple curves. Motivated by this observation, a man-made object detection method is proposed based on complexity evaluation of object contours. After salient contours which keep the crucial information of objects are accurately extracted using an improved mean-shift clustering algorithm, a novel approach is presented to evaluate the complexity of contours. By comparing the entropy values of contours before/after sampling and linear interpolation, it is easy to distinguish between man-made objects and natural ones according to the complexity of their contours.Experimental results show that the presented method can effectively detect man-made objects when compared to the existing ones.