Sessile oak(Quercus petraea(Matt.)Liebl.)is widely distributed across most of Europe particularly the hills and lower mountain ranges,so is considered“the oak of the mountains”.This species grows on a wide variety o...Sessile oak(Quercus petraea(Matt.)Liebl.)is widely distributed across most of Europe particularly the hills and lower mountain ranges,so is considered“the oak of the mountains”.This species grows on a wide variety of soils and at altitudes ranging from sea level to 2200 m,especially in Atlantic and sub-Mediterranean climates,and it is sensitive to low winter temperatures,early and late frosts,as well as high summer temperatures.Sessile oak forms both pure and mixed stands especially with broadleaves such as European beech,European hornbeam,small-leaved lime and Acer spp.These form the understorey of sessile oak stands,promoting the natural shedding of lower branches of the oak and protecting the trunk against epicormic branches.Sessile oak is a long-lived,light-demanding and wind-firm species,owing to its taproot and heart-shaped root system.Its timber,one of the most valuable in Europe,is important for fur-niture-making(both solid wood and veneer),construction,barrels,railway sleepers,and is also used as fuelwood.It is one of the few major tree species in Europe that is regener-ated by seed(naturally or artificially)and by stump shoots in high forest,coppice-with-standards and coppice forests.Sessile oak forests are treated in both regular and irregular systems involving silvicultural techniques such as uniform shelterwood,group shelterwood,irregular shelterwood,irregular high forest,coppice-with-standards and simple coppice.Young naturally regenerated stands are managed by weeding,release cutting and cleaning-respacing,keeping the stands quite dense for good natural pruning.Plantations are based on(1)2-4-year old bare-root or container-grown seedlings produced in nurseries using seeds from genetic resources,seed stands and seed orchards.The density of sessile oak plantations(mostly in rows,but also in clusters)is usually between 4000 and 6000 ind.ha^(−1).Sessile oak silviculture of mature stands includes crown thinning,focus-ing on final crop trees(usually a maximum of 100 ind.ha^(−1))and targeting the production of large-diameter and high quality trees at long rotation ages(mostly over 120 years,sometimes 250-300 years).In different parts of Europe,conversion of simple coppices and coppice-with-standards to high forests is continuing.Even though manage-ment of sessile oak forests is very intensive and expensive,requiring active human intervention,the importance of this species in future European forests will increase in the con-text of climate change due to its high resistance to distur-bance,superior drought tolerance and heat stress resistance.展开更多
Acorn production in oaks(Quercus spp.)shows considerable inter-annual variation,known as masting.The effects of pollen sourced from trees within or outside the stand on acorn production were investigated in pedunculat...Acorn production in oaks(Quercus spp.)shows considerable inter-annual variation,known as masting.The effects of pollen sourced from trees within or outside the stand on acorn production were investigated in pedunculate oak(Quercus robur L.)in an ancient mixed woodland during two moderate masting years.Comparisons were made between natural pollination,hand pollinations with out-of-stand pollen,in-stand pollen or a 1:1 combination of the two pollen sources,and for bagged flowers left unpollinated.After all treatments,>85%of the flowers or developing acorns were aborted between May and August of both years.When flowers were protected with pollen bags and no pollen added,no acorns were produced.In contrast,hand pollination with out-of-stand pollen produced the most acorns both years and significantly more than within-stand pollen or natural pollination in 2022.Hand pollination with out-of-stand or within-stand pollen provided significantly more acorns than natural pollination in 2023.In 2022,hand pollination with a 1:1 mixture of out-of-stand and within-stand pollen yielded an intermediate number of mature acorns between those for the out-of-stand and within-stand pollination treatments.The study provides clear evidence of maternal choice during acorn development in pedunculate oak and of the benefits of pollen supplementation.It also confirms that pedunculate oak is a fruit-maturation masting species;abortion of pollinated flowers and immature acorns determines a mast year(rather than the number of flowers produced)at this site.展开更多
Increasing human activity is altering the struc-ture of forests,which affects the composition of communi-ties,including birds.However,little is known about the key forest structure variables that determine the richnes...Increasing human activity is altering the struc-ture of forests,which affects the composition of communi-ties,including birds.However,little is known about the key forest structure variables that determine the richness of bird communities in European temperate oak forests.We,there-fore,aimed to identify key variables in these habitats that could contribute to the design of management strategies for forest conservation by surveying 11 oak-dominated forest sites throughout the mid-mountain range of Hungary at 86 survey points to reveal the role of different compositional and structural variables for forest stands that influence the breeding bird assemblages in the forests at the functional group and individual species levels.Based on decision tree modelling,our results showed that the density of trees larger than 30 cm DBH was an overall important variable,indi-cating that large-diameter trees were essential to provide diverse bird communities.The total abundance of birds,the foliage-gleaners,primary and secondary cavity nest-ers,residents,and five specific bird species were related to the density of high trunk diameter trees.The abundance of shrub nesters was negatively influenced by a high density of trees over 10 cm DBH.The density of the shrub layer positively affected total bird abundance and the abundance of foliage gleaners,secondary cavity nesters and residents.Analysis of the co-dominant tree species showed that the presence of linden,beech,and hornbeam was important in influencing the abundance of various bird species,e.g.,Eur-asian Treecreeper(Certhia familiaris),Marsh Tit(Poecile palustris)and Wood Warbler(Phylloscopus sibilatrix).Our results indicated that large trees,high tree diversity,and dense shrub layer were essential for forest bird communities and are critical targets for protection to maintain diverse and abundant bird communities in oak-dominated forest habitats.展开更多
Aging in oak barrels is widely used in enology which could bring flavor changes and aromatic complexity to wines.In the present study,the aroma compounds were analyzed from the‘Merlot’dry red wines,which were fermen...Aging in oak barrels is widely used in enology which could bring flavor changes and aromatic complexity to wines.In the present study,the aroma compounds were analyzed from the‘Merlot’dry red wines,which were fermented in two types of fermenters(stainless steel tank and rotated oak barrel)and aged in six types of oak barrels(three geographic origins×two toasting degrees)for different time(0,3,6 and 9 months,respectively).Results showed that 30 volatiles were associated with barrels and increased during oak aging.The fermenters could influence the intensities of the toast,leathery,smoky,fruity,floral and caramel aromas.The concentration of whisky lactone,eugenol,cis-isoeugenol,and the intensities of the toast and spicy aromas were highest in the wines aged in American oak and were lowest in the wines aged in French oak barrels.The concentrations of guaiacol,syringol,trans-isoeugenol,furfural alcohol,vanilla,cis-whisky lactone enabled the medium toasting barrels to be distinguished from the light toasting ones.The compounds originating from the barrels could be used to distinguish the types of different barrels,but the other general grape-derived and fermentation-derived volatiles could not.The fermenters,oak species and toasting degrees of the barrels all had significant effects on the aroma profiles of the aged‘Merlot’dry red wines,but the influence of the geographic origin was not obvious.展开更多
Acorn production in oak(Quercus spp.)shows considerable inter-annual variation,known as masting,which provides a natural defence against seed predators but a highly-variable supply of acorns for uses such as in commer...Acorn production in oak(Quercus spp.)shows considerable inter-annual variation,known as masting,which provides a natural defence against seed predators but a highly-variable supply of acorns for uses such as in commercial tree planting each year.Anthropogenic emissions of greenhouse gases have been very widely reported to influence plant growth and seed or fruit size and quantity via the‘fertilisation effect’that leads to enhanced photosynthesis.To examine if acorn production in mature woodland communities will be affected by further increase in CO_(2),the contents of litter traps from a Free Air Carbon Enrichment(FACE)experiment in deciduous woodland in central England were analysed for numbers of flowers and acorns of pedunculate oak(Quercus robur L.)at different stages of development and their predation levels under ambient and elevated CO_(2) concentrations.Inter-annual variation in acorn numbers was considerable and cyclical between 2015 and 2021,with the greatest numbers of mature acorns in 2015,2017 and 2020 but almost none in 2018.The numbers of flowers,enlarged cups,immature acorns,empty acorn cups,and galls in the litter traps also varied amongst years;comparatively high numbers of enlarged cups were recorded in 2018,suggesting Q.robur at this site is a fruit maturation masting species(i.e.,the extent of abortion of pollinated flowers during acorn development affects mature acorn numbers greatly).Raising the atmospheric CO_(2) concentration by 150μL L^(−1),from early 2017,increased the numbers of immature acorns,and all acorn evidence(empty cups+immature acorns+mature acorns)detected in the litter traps compared to ambient controls by 2021,but did not consistently affect the numbers of flowers,enlarged cups,empty cups,or mature acorns.The number of flowers in the elevated CO_(2) plots’litter traps was greater in 2018 than 2017,one year after CO_(2) enrichment began,whereas numbers declined in ambient plots.Enrichment with CO_(2) also increased the number of oak knopper galls(Andricus quercuscalicis Burgsdorf).We conclude that elevated CO_(2) increased the occurrence of acorns developing from flowers,but the putative benefit to mature acorn numbers may have been hidden by excessive pre-and/or post-dispersal predation.There was no evidence that elevated CO_(2) altered masting behaviour.展开更多
Quercus arkansana(Arkansas oak)is at risk of becoming endangered,as the total known population size is represented by a few isolated populations.The potential impact of climate change on this species in the near futur...Quercus arkansana(Arkansas oak)is at risk of becoming endangered,as the total known population size is represented by a few isolated populations.The potential impact of climate change on this species in the near future is high,yet knowledge of its predicted effects is limited.Our study utilized the biomod2 R package to develop habi-tat suitability ensemble models based on bioclimatic and topographic environmental variables and the known loca-tions of current distribution of Q.arkansana.We predicted suitable habitats across three climate change scenarios(SSP1-2.6,SSP2-4.5,and SSP5-8.5)for 2050,2070,and 2090.Our findings reveal that the current suitable habitat for Q.arkansana is approximately 127,881 km^(2) across seven states(Texas,Arkansas,Alabama,Louisiana,Mississippi,Georgia,and Florida);approximately 9.5%is encompassed within state and federally managed protected areas.Our models predict that all current suitable habitats will disap-pear by 2050 due to climate change,resulting in a northward shift into new regions such as Tennessee and Kentucky.The large extent of suitable habitat outside protected areas sug-gests that a species-specific action plan incorporating pro-tected areas and other areas may be crucial for its conserva-tion.Moreover,protection of Q.arkansana habitat against climate change may require locally and regionally focused conservation policies,adaptive management strategies,and educational outreach among local people.展开更多
[Objective] The aim was to study the regression relationship between water index (WI) and fuel moisture content (FMC) of different growth periods of sawtooth oaks leaf.[Method] Taking sawtooth oaks in Huaguo Mount...[Objective] The aim was to study the regression relationship between water index (WI) and fuel moisture content (FMC) of different growth periods of sawtooth oaks leaf.[Method] Taking sawtooth oaks in Huaguo Mountain,Lianyungang City as research object,the sensitivity of WI to leaf FMC was studied at leaf level,and statistical characteristics were analyzed.[Result] The WI of sawtooth oaks leaves was sensitive to the changes of FMC,and the line regression level between them was significant.A fitting curve between leaf FMC and WI was obtained.[Conclusion] The research provides reference for acquisition methods of vegetation water remote sensing within the range of study area.展开更多
采用激光粒度分析法测定超细 OAK 木炭及竹炭粉粒度,探讨了分散剂种类、分散时间、搅拌速度、超声时间等因素对超细 OAK 木炭及竹炭粉粒度的影响。结果表明:以六偏磷酸钠为分散剂时分散效果最佳,其用量为0.06g/(100mlOAK 木炭及竹炭粉乳...采用激光粒度分析法测定超细 OAK 木炭及竹炭粉粒度,探讨了分散剂种类、分散时间、搅拌速度、超声时间等因素对超细 OAK 木炭及竹炭粉粒度的影响。结果表明:以六偏磷酸钠为分散剂时分散效果最佳,其用量为0.06g/(100mlOAK 木炭及竹炭粉乳液);在测定时选择循环搅拌泵速为2200~2400r/min 较好;超声时间为200s 左右时,可达到最佳分散效果。展开更多
Fire affects the physical and chemical properties and soil biological activity of natural ecosystems. This study was conducted in the Miyan Tang region, Ilam Province in western Iran. The study site was 110 hectares, ...Fire affects the physical and chemical properties and soil biological activity of natural ecosystems. This study was conducted in the Miyan Tang region, Ilam Province in western Iran. The study site was 110 hectares, where we sampled soils in areas that were classified by fire severity: low (LS), high (HS) and medium severity (MS), and unburned (UB), which served as the control. In each severity class, 25 transect points were randomly selected for measurement. Around each transect plot center, 3 soil samples were selected randomly and soils collected from the 0 to 20 cm depth were combined into a composite sample that was used in laboratory analysis to represent conditions at that point. Plots in the UB and LS fire classes had similar soil conditions and had higher values of factors such as saturated moisture, organic carbon, carbon dioxide, and silt and clay content. In contrast, plots in the HS and MS fire severity classes were clustered in the positive direction along the first axis that represented gradients in soil acidity, electrical conductivity, cation exchange capacity, accessible phosphorus, accessible potassium, bulk density, and sand. Soil attributes were similar in areas of HS and MS fire severity classes, whereas soil conditions in the LS class and UB controls were most similar. Fire in the LS areas either did not significantly alter the physicalchemical soil properties and microbial basal respiration, or soils were able to recover quickly after being burned.展开更多
This paper deals with a study on the effects of Chinese fir, loblolly pine and deciduous oak forests on thenutrient status of soils in northern subtropics of China, adopting the principle of forest ecology in the case...This paper deals with a study on the effects of Chinese fir, loblolly pine and deciduous oak forests on thenutrient status of soils in northern subtropics of China, adopting the principle of forest ecology in the caseof similar climate and soil type. The experimental area was situated in the Xiashu Experimental Centre ofForest, where the soil is yellow-brown soil derived from siliceous slope wash. Sample plots of these 3 standswere established to study the nutrient status in litter, the amount of nutrient uptake by roots, the quantityof nutrient output by percolating water outside the deep layer of soil, and the seasonal dynamics of availablenutrient in surface soil. It was shown that the intensity of nutrient cycling in soil under deciduous oak wasthe highest, and the effect of oak in improving soil fertility was the best. The result of improving soil fertilityby Chinese fir was the most inferior, though the intensity of nutrient cycling under that stand was higherthan that under loblolly pine stand. The influence of loblolly pine on the improvement of soil fertility wasbetter than that of Chinese fir, in spite of its lowest intensity of nutrient cycling.展开更多
This study aimed to investigate the interaction between regions with different climatic conditions(arid vs. semi-arid) and management(protected vs. unprotected) on the turnover and nestedness of vegetation in relation...This study aimed to investigate the interaction between regions with different climatic conditions(arid vs. semi-arid) and management(protected vs. unprotected) on the turnover and nestedness of vegetation in relation to physical, chemical and biological properties of soils in the Ilam Province of Iran. In each of the two regions, we sampled 8 sites(4 managed and 4 unmanaged sites) within each of which we established 4 circular plots(1000 m^2) that were used to investigate woody species, while two micro-plots(1 m×1 m) were established in each 1000-m^2 plot to analyze herbaceous species. In each sample unit, we also extracted three soil samples(0–20 cm depth) for measuring soil properties. The results indicated that the interaction between region and conservational management significantly affected the percent of canopy cover of Persian oak(Quercus brantii Linddl), soil respiration, substrate-induced respiration, as well as beta and gamma diversities and turnover of plant species. The percent of oak canopy cover was positively correlated with soil silt, electrical conductivity, available potassium, and alpha diversity, whereas it was negatively correlated with plant turnover. In addition, plant turnover was positively related to available phosphorus, while nestedness of species was positively related to organic carbon and total nitrogen. According to these results, we concluded that physical, chemical, and biological characteristics of limited ecological niche generally influenced plant diversity. Also, this study demonstrated the major contribution of the beta diversity on gamma diversity, especially in semi-arid region, because of the higher heterogeneity of vegetation in this area.展开更多
The consequence of land-use change from forest to agriculture and other uses has become one of the world’s greatest concerns.The soil,one of the most important components of forests and containing all the required pl...The consequence of land-use change from forest to agriculture and other uses has become one of the world’s greatest concerns.The soil,one of the most important components of forests and containing all the required plant nutrients as soluble ions,is highly impacted by these changes.Because vast areas of the Zagros forests in western Iran have changed in use during the last few decades,the present study investigated the effects of landuse changes of forest area to agriculture,orchard,and agroforestry on soil chemical and physical properties.Soil was sampled at four land-use areas:less-disturbed forest areas(control)and agricultural,orchard,and agroforestry areas.Among each of the two forest-use areas(agroforestry and orchard),we selected five trees with similar-sized crowns and sampled under each tree crown at 0-15 and>15-30 cm depths.Five soil samples also were taken in agriculture area at each depth.The findings indicated that during land-use changes,soil sand particles decreased,and clay and silt particles of soil increased,resulting in a fine soil texture.Moreover,the amount of nitrogen(N),phosphorus(P),organic carbon(OC),and electrical conductivity(EC)of soil decreased at both depths due to the decrease in organic matter.Soil pH and magnesium(Mg)level rose during land-use change at both depths except at agricultural sites.Soil potassium(K)content decreased during agricultural use due to the elimination of tree cover.The level of K decreased only at the depth of 0-15 cm because of K dependency on parent materials.Generally,most soil nutrients were affected by plant removal in the conversion.Forest and agricultural soil are distinguishable by their properties,while land-uses such as agroforestry-orchard separated from the others.Soil nutrients were severely affected by the decrease and elimination of tree cover,plowing,and continuous harvesting,resulting in a decline in soil quality and fertility.展开更多
With both field investigation and pure culture experiments, the occurrence and optimal essential growth of mycorrhizal fungi with oaks in Dandong Region of Liaoning Province, China were investigated from 1997-2002 A t...With both field investigation and pure culture experiments, the occurrence and optimal essential growth of mycorrhizal fungi with oaks in Dandong Region of Liaoning Province, China were investigated from 1997-2002 A total of 36 species of mycorrhizal fungi associated with oaks were observed. The results showed that the occurrence of mycorrhizal fungi was related to tree species, tree ages, and months of the year, with at least 20 fungi species being associated with more than two oak species. The highest Sim…展开更多
This review summarizes the current state of knowledge on pine and oak forest dynamics in the midmontane central Himalayan forest and the ecosystem services associated with these vegetation types. Forest ecosystems pla...This review summarizes the current state of knowledge on pine and oak forest dynamics in the midmontane central Himalayan forest and the ecosystem services associated with these vegetation types. Forest ecosystems play a crucial role in the livelihood of the central Himalayas as well as the adjacent plains, providing a number of tangible and intangible ecosystem services, at each stage of succession. The successional sequence starts from warm temperate grasslands, followed by early successional pine forests, mid-successional pine-oak mixed forests and eventually culminating in a late successional oak community. This successional sequence is considerably influenced by disturbances like fire, grazing, and lopping, which maintain the vegetation types in their current form and can act as potential drivers of change. Fire and grazing in grasslands and pine forests inhibit the successional process by hindering the establishment of pioneer and late successional species, respectively. Potential land-cover changes with forest succession can lead to changes in ecosystem services supply. We found that the number of ecosystem services associated with these vegetation types increase from early to late successional community. Current management approaches fail to include the dynamic nature of vegetation, which is essential for maintenance of ecosystem service supply. In conclusion, the trade-offs between ES of global (biodiversity and carbon) and local importance (fuel wood and fodder) have to be examined carefully in order to have effective conservation and management plans for the region.展开更多
Reforestation or natural forest regeneration is an alternative measure for controlling soil erosion in degraded land on the Chinese Loess Plateau(CLP). However, our understanding of the temporal dynamics and the spa...Reforestation or natural forest regeneration is an alternative measure for controlling soil erosion in degraded land on the Chinese Loess Plateau(CLP). However, our understanding of the temporal dynamics and the spatial patterns of forest regeneration remains inadequate. Two oak forests at different development stages were investigated to determine the spatial patterns of competitions(intraspecies and interspecies) during different successional stages. The intraspecies and interspecies spatial relationships among different tree diameters at breast height were analyzed at multiple scales by Kriging interpolation method and univariate and bivariate O-ring statistics. Our analytical results indicated that self-correlation and competition intensity were relatively high between oak and pine trees in the early development stage of oak forests due to their clumped distributions of heavy seeds. Birch trees had a lower competition in comparison to oak trees although birch was the dominant species. Therefore, asymmetric competition of oak trees was most likely to have led to their edge dispersal and their success in replacing the pioneer species. Asymmetric competition means that larger individuals obtained a disproportionately large share of the resources and suppressed the growth of smaller individuals. Kriging interpolation analysis showed a tendency towards homogenization caused by interspecies competition during the succession of oak forests. Our results demonstrated that the competition was the driving factor in the spatial distribution of oak forests on the CLP.展开更多
Intraspecific variability in morphological and ecophysiological leaf traits might be theorized to be present in declining populations,since they seem to be exposed to stress and plasticity could be advantageous.Here w...Intraspecific variability in morphological and ecophysiological leaf traits might be theorized to be present in declining populations,since they seem to be exposed to stress and plasticity could be advantageous.Here we focused on declining Persian oaks(Quercus brantii Lindl.var.persica(Jaub and Spach)Zohary)in the Zagros Mountains of western Iran,representing the most important tree species of this region.We selected trees with contrasting crown dieback,from healthy to severely defoliated,to investigate the relationships between canopy dieback and leaf morphology,water content and pigments.We also measured esterase and peroxidase,as enzymatic antioxidants and indicators of contrasting genotypes.Trees showing moderate to severe defoliation showed higher leaf mass area(LMA),reduced relative water content(RWC),and lower stomatal density(SD).Increasing LMA indicates a more sclerophyllic structure,according to drier conditions.We did not find significant differences in leaf pigments(chlorophyll a and b,and carotenoids)among crown dieback classes,suggesting that Persian oak trees are able to maintain accurate photochemical efficiency,while reduced RWC and SD suggest hydraulic limitations.Our results do not provide a consistent pattern as regards enzymatic antioxidant defense in Persian oak.Morphological leaf traits would be important drivers of future adaptive evolution in Persian oak,leading to smaller and thicker leaves,which have fitness benefits in dry environments.Nonetheless,drought responses may be critically affecting carbon uptake,as photosynthetic compounds are less effectively used in leaves with higher sclerophylly.展开更多
We assessed the effect of mulching and tree shelters on the establishment and early growth of zeen oak(Quercus canariensis Willd.) during the first 4 years after planting in Northwestern Tunisia. Five mulch types(Ital...We assessed the effect of mulching and tree shelters on the establishment and early growth of zeen oak(Quercus canariensis Willd.) during the first 4 years after planting in Northwestern Tunisia. Five mulch types(Italian Stone Pine(Pinus pinea L.), Lentisk(Pistacia lentiscus L.),and a combination of Italian Stone Pine and Lentisk(organic mulches), gravel(inorganic mulch) and control), and three tree shelter types(non-vented and vented tree shelters, and control) were tested. An increase in the number of internodes occurred under the gravel mulch, while a reduction in survival was found for the lentisk mulch. Tree shelters had no effect on survival, but increased mean height growth and reduced mean diameter growth during the 4 years(excepting a non-significant effect for vented tree shelter at year four). Comparison of the annual shoots and growth units(GU) between sheltered and unsheltered plants according to year of formation revealed two growth phases. In first phase, shoots were totally or partially inside the shelters; mean length of annual shoots and GU were greater for sheltered plants. The second phase was characterized by shoots emerging from shelters; mean length of annual shoots and GU were similar for all plants, with or without tree shelters. Results suggest that the use of tree shelters, particularly vented shelters, could contribute to the improvement of the artificial regeneration of zeen oak.The use of mulching alone or in combination with tree shelters did not improve zeen oak performance in the field.展开更多
In order to realize the significance of oak forests for ecology and economy of the Himalayan region,the present study attempts to objectively characterize disturbance intensities and their impacts on compositional fea...In order to realize the significance of oak forests for ecology and economy of the Himalayan region,the present study attempts to objectively characterize disturbance intensities and their impacts on compositional features of identified Oak forests, i.e.Banj-oak(Quercus leucotrichophora A.Camus), Tilonj-oak(Q.floribunda Lindley)and Kharsu-oak(Q. semecarpifolia J.E.Smith)in west Himalaya. Amongst studied forests,Q.leucotrichophora and Q. semecarpifolia forests exhibited high sensitivity towards disturbance intensities.In both forests, increasing level of disturbance significantly lowered tree density,dominance and natural recruitment (seedling and sapling density).Q.floribunda forests, however,appeared relatively more resilient to anthropogenic disturbances.Amongst studied oak forests,Q.semecarpifolia forests with overall poor natural regeneration are in a most critically endangered demographic state.However,a slightly improved regeneration(i.e.,seedling density)in moderately disturbed plots is indicative that such plots may be utilized most suitably for in situ revival of these forests.Effect of disturbance intensities on tree population is an important subject for forest ecology and management and the present study highlights a need for adopting different management strategies across disturbance intensities in diverse oak forests of west Himalaya.展开更多
文摘Sessile oak(Quercus petraea(Matt.)Liebl.)is widely distributed across most of Europe particularly the hills and lower mountain ranges,so is considered“the oak of the mountains”.This species grows on a wide variety of soils and at altitudes ranging from sea level to 2200 m,especially in Atlantic and sub-Mediterranean climates,and it is sensitive to low winter temperatures,early and late frosts,as well as high summer temperatures.Sessile oak forms both pure and mixed stands especially with broadleaves such as European beech,European hornbeam,small-leaved lime and Acer spp.These form the understorey of sessile oak stands,promoting the natural shedding of lower branches of the oak and protecting the trunk against epicormic branches.Sessile oak is a long-lived,light-demanding and wind-firm species,owing to its taproot and heart-shaped root system.Its timber,one of the most valuable in Europe,is important for fur-niture-making(both solid wood and veneer),construction,barrels,railway sleepers,and is also used as fuelwood.It is one of the few major tree species in Europe that is regener-ated by seed(naturally or artificially)and by stump shoots in high forest,coppice-with-standards and coppice forests.Sessile oak forests are treated in both regular and irregular systems involving silvicultural techniques such as uniform shelterwood,group shelterwood,irregular shelterwood,irregular high forest,coppice-with-standards and simple coppice.Young naturally regenerated stands are managed by weeding,release cutting and cleaning-respacing,keeping the stands quite dense for good natural pruning.Plantations are based on(1)2-4-year old bare-root or container-grown seedlings produced in nurseries using seeds from genetic resources,seed stands and seed orchards.The density of sessile oak plantations(mostly in rows,but also in clusters)is usually between 4000 and 6000 ind.ha^(−1).Sessile oak silviculture of mature stands includes crown thinning,focus-ing on final crop trees(usually a maximum of 100 ind.ha^(−1))and targeting the production of large-diameter and high quality trees at long rotation ages(mostly over 120 years,sometimes 250-300 years).In different parts of Europe,conversion of simple coppices and coppice-with-standards to high forests is continuing.Even though manage-ment of sessile oak forests is very intensive and expensive,requiring active human intervention,the importance of this species in future European forests will increase in the con-text of climate change due to its high resistance to distur-bance,superior drought tolerance and heat stress resistance.
基金supported by Future Trees TrustThe Patsy Wood Trust+2 种基金Scottish Forestry TrustAitchinson Tait TrustAction Oak
文摘Acorn production in oaks(Quercus spp.)shows considerable inter-annual variation,known as masting.The effects of pollen sourced from trees within or outside the stand on acorn production were investigated in pedunculate oak(Quercus robur L.)in an ancient mixed woodland during two moderate masting years.Comparisons were made between natural pollination,hand pollinations with out-of-stand pollen,in-stand pollen or a 1:1 combination of the two pollen sources,and for bagged flowers left unpollinated.After all treatments,>85%of the flowers or developing acorns were aborted between May and August of both years.When flowers were protected with pollen bags and no pollen added,no acorns were produced.In contrast,hand pollination with out-of-stand pollen produced the most acorns both years and significantly more than within-stand pollen or natural pollination in 2022.Hand pollination with out-of-stand or within-stand pollen provided significantly more acorns than natural pollination in 2023.In 2022,hand pollination with a 1:1 mixture of out-of-stand and within-stand pollen yielded an intermediate number of mature acorns between those for the out-of-stand and within-stand pollination treatments.The study provides clear evidence of maternal choice during acorn development in pedunculate oak and of the benefits of pollen supplementation.It also confirms that pedunculate oak is a fruit-maturation masting species;abortion of pollinated flowers and immature acorns determines a mast year(rather than the number of flowers produced)at this site.
基金supported part ia l l y by LIFE4Oak Forests Project LIFE16NAT/IT/000245)the RRF 2.3.121202200008 projectthe MERLiN project funded under the European Commission H2020 Programme(101036337 MERLiN H2020 LC GD 2020)。
文摘Increasing human activity is altering the struc-ture of forests,which affects the composition of communi-ties,including birds.However,little is known about the key forest structure variables that determine the richness of bird communities in European temperate oak forests.We,there-fore,aimed to identify key variables in these habitats that could contribute to the design of management strategies for forest conservation by surveying 11 oak-dominated forest sites throughout the mid-mountain range of Hungary at 86 survey points to reveal the role of different compositional and structural variables for forest stands that influence the breeding bird assemblages in the forests at the functional group and individual species levels.Based on decision tree modelling,our results showed that the density of trees larger than 30 cm DBH was an overall important variable,indi-cating that large-diameter trees were essential to provide diverse bird communities.The total abundance of birds,the foliage-gleaners,primary and secondary cavity nest-ers,residents,and five specific bird species were related to the density of high trunk diameter trees.The abundance of shrub nesters was negatively influenced by a high density of trees over 10 cm DBH.The density of the shrub layer positively affected total bird abundance and the abundance of foliage gleaners,secondary cavity nesters and residents.Analysis of the co-dominant tree species showed that the presence of linden,beech,and hornbeam was important in influencing the abundance of various bird species,e.g.,Eur-asian Treecreeper(Certhia familiaris),Marsh Tit(Poecile palustris)and Wood Warbler(Phylloscopus sibilatrix).Our results indicated that large trees,high tree diversity,and dense shrub layer were essential for forest bird communities and are critical targets for protection to maintain diverse and abundant bird communities in oak-dominated forest habitats.
基金the financial support received from The Key Project of R&D Program of Ningxia Hui Autonomous Region,China(2022BBF01003)China Agriculture Research System of MOF and MARA(CARS-29).
文摘Aging in oak barrels is widely used in enology which could bring flavor changes and aromatic complexity to wines.In the present study,the aroma compounds were analyzed from the‘Merlot’dry red wines,which were fermented in two types of fermenters(stainless steel tank and rotated oak barrel)and aged in six types of oak barrels(three geographic origins×two toasting degrees)for different time(0,3,6 and 9 months,respectively).Results showed that 30 volatiles were associated with barrels and increased during oak aging.The fermenters could influence the intensities of the toast,leathery,smoky,fruity,floral and caramel aromas.The concentration of whisky lactone,eugenol,cis-isoeugenol,and the intensities of the toast and spicy aromas were highest in the wines aged in American oak and were lowest in the wines aged in French oak barrels.The concentrations of guaiacol,syringol,trans-isoeugenol,furfural alcohol,vanilla,cis-whisky lactone enabled the medium toasting barrels to be distinguished from the light toasting ones.The compounds originating from the barrels could be used to distinguish the types of different barrels,but the other general grape-derived and fermentation-derived volatiles could not.The fermenters,oak species and toasting degrees of the barrels all had significant effects on the aroma profiles of the aged‘Merlot’dry red wines,but the influence of the geographic origin was not obvious.
基金supported by Future Trees Trust,The Patsy Wood Trust,Scottish Forestry Trust,Aitchinson Tait Trust,and Action Oak for fundingsupport from the UK Natural Environment Research Council (NE/S015833/1 (QUINTUS))+1 种基金support from the JABBS Trust,Norbury Park Estate,The John Horseman Trust,Ecological Continuity Trust,and the University of BirminghamAccess to BIFoR Core Data was funded by Royal Society University Research Fellowship URFR1191326
文摘Acorn production in oak(Quercus spp.)shows considerable inter-annual variation,known as masting,which provides a natural defence against seed predators but a highly-variable supply of acorns for uses such as in commercial tree planting each year.Anthropogenic emissions of greenhouse gases have been very widely reported to influence plant growth and seed or fruit size and quantity via the‘fertilisation effect’that leads to enhanced photosynthesis.To examine if acorn production in mature woodland communities will be affected by further increase in CO_(2),the contents of litter traps from a Free Air Carbon Enrichment(FACE)experiment in deciduous woodland in central England were analysed for numbers of flowers and acorns of pedunculate oak(Quercus robur L.)at different stages of development and their predation levels under ambient and elevated CO_(2) concentrations.Inter-annual variation in acorn numbers was considerable and cyclical between 2015 and 2021,with the greatest numbers of mature acorns in 2015,2017 and 2020 but almost none in 2018.The numbers of flowers,enlarged cups,immature acorns,empty acorn cups,and galls in the litter traps also varied amongst years;comparatively high numbers of enlarged cups were recorded in 2018,suggesting Q.robur at this site is a fruit maturation masting species(i.e.,the extent of abortion of pollinated flowers during acorn development affects mature acorn numbers greatly).Raising the atmospheric CO_(2) concentration by 150μL L^(−1),from early 2017,increased the numbers of immature acorns,and all acorn evidence(empty cups+immature acorns+mature acorns)detected in the litter traps compared to ambient controls by 2021,but did not consistently affect the numbers of flowers,enlarged cups,empty cups,or mature acorns.The number of flowers in the elevated CO_(2) plots’litter traps was greater in 2018 than 2017,one year after CO_(2) enrichment began,whereas numbers declined in ambient plots.Enrichment with CO_(2) also increased the number of oak knopper galls(Andricus quercuscalicis Burgsdorf).We conclude that elevated CO_(2) increased the occurrence of acorns developing from flowers,but the putative benefit to mature acorn numbers may have been hidden by excessive pre-and/or post-dispersal predation.There was no evidence that elevated CO_(2) altered masting behaviour.
基金The work was partially supported by research project funding from the Undergraduate Research Grant,Arkansas Tech University.
文摘Quercus arkansana(Arkansas oak)is at risk of becoming endangered,as the total known population size is represented by a few isolated populations.The potential impact of climate change on this species in the near future is high,yet knowledge of its predicted effects is limited.Our study utilized the biomod2 R package to develop habi-tat suitability ensemble models based on bioclimatic and topographic environmental variables and the known loca-tions of current distribution of Q.arkansana.We predicted suitable habitats across three climate change scenarios(SSP1-2.6,SSP2-4.5,and SSP5-8.5)for 2050,2070,and 2090.Our findings reveal that the current suitable habitat for Q.arkansana is approximately 127,881 km^(2) across seven states(Texas,Arkansas,Alabama,Louisiana,Mississippi,Georgia,and Florida);approximately 9.5%is encompassed within state and federally managed protected areas.Our models predict that all current suitable habitats will disap-pear by 2050 due to climate change,resulting in a northward shift into new regions such as Tennessee and Kentucky.The large extent of suitable habitat outside protected areas sug-gests that a species-specific action plan incorporating pro-tected areas and other areas may be crucial for its conserva-tion.Moreover,protection of Q.arkansana habitat against climate change may require locally and regionally focused conservation policies,adaptive management strategies,and educational outreach among local people.
基金Supported by Natural Science Foundation of Jiangsu Province(BK2009627)~~
文摘[Objective] The aim was to study the regression relationship between water index (WI) and fuel moisture content (FMC) of different growth periods of sawtooth oaks leaf.[Method] Taking sawtooth oaks in Huaguo Mountain,Lianyungang City as research object,the sensitivity of WI to leaf FMC was studied at leaf level,and statistical characteristics were analyzed.[Result] The WI of sawtooth oaks leaves was sensitive to the changes of FMC,and the line regression level between them was significant.A fitting curve between leaf FMC and WI was obtained.[Conclusion] The research provides reference for acquisition methods of vegetation water remote sensing within the range of study area.
文摘采用激光粒度分析法测定超细 OAK 木炭及竹炭粉粒度,探讨了分散剂种类、分散时间、搅拌速度、超声时间等因素对超细 OAK 木炭及竹炭粉粒度的影响。结果表明:以六偏磷酸钠为分散剂时分散效果最佳,其用量为0.06g/(100mlOAK 木炭及竹炭粉乳液);在测定时选择循环搅拌泵速为2200~2400r/min 较好;超声时间为200s 左右时,可达到最佳分散效果。
文摘Fire affects the physical and chemical properties and soil biological activity of natural ecosystems. This study was conducted in the Miyan Tang region, Ilam Province in western Iran. The study site was 110 hectares, where we sampled soils in areas that were classified by fire severity: low (LS), high (HS) and medium severity (MS), and unburned (UB), which served as the control. In each severity class, 25 transect points were randomly selected for measurement. Around each transect plot center, 3 soil samples were selected randomly and soils collected from the 0 to 20 cm depth were combined into a composite sample that was used in laboratory analysis to represent conditions at that point. Plots in the UB and LS fire classes had similar soil conditions and had higher values of factors such as saturated moisture, organic carbon, carbon dioxide, and silt and clay content. In contrast, plots in the HS and MS fire severity classes were clustered in the positive direction along the first axis that represented gradients in soil acidity, electrical conductivity, cation exchange capacity, accessible phosphorus, accessible potassium, bulk density, and sand. Soil attributes were similar in areas of HS and MS fire severity classes, whereas soil conditions in the LS class and UB controls were most similar. Fire in the LS areas either did not significantly alter the physicalchemical soil properties and microbial basal respiration, or soils were able to recover quickly after being burned.
文摘This paper deals with a study on the effects of Chinese fir, loblolly pine and deciduous oak forests on thenutrient status of soils in northern subtropics of China, adopting the principle of forest ecology in the caseof similar climate and soil type. The experimental area was situated in the Xiashu Experimental Centre ofForest, where the soil is yellow-brown soil derived from siliceous slope wash. Sample plots of these 3 standswere established to study the nutrient status in litter, the amount of nutrient uptake by roots, the quantityof nutrient output by percolating water outside the deep layer of soil, and the seasonal dynamics of availablenutrient in surface soil. It was shown that the intensity of nutrient cycling in soil under deciduous oak wasthe highest, and the effect of oak in improving soil fertility was the best. The result of improving soil fertilityby Chinese fir was the most inferior, though the intensity of nutrient cycling under that stand was higherthan that under loblolly pine stand. The influence of loblolly pine on the improvement of soil fertility wasbetter than that of Chinese fir, in spite of its lowest intensity of nutrient cycling.
基金Ilam University is kindly acknowledged for its financial support for this research work
文摘This study aimed to investigate the interaction between regions with different climatic conditions(arid vs. semi-arid) and management(protected vs. unprotected) on the turnover and nestedness of vegetation in relation to physical, chemical and biological properties of soils in the Ilam Province of Iran. In each of the two regions, we sampled 8 sites(4 managed and 4 unmanaged sites) within each of which we established 4 circular plots(1000 m^2) that were used to investigate woody species, while two micro-plots(1 m×1 m) were established in each 1000-m^2 plot to analyze herbaceous species. In each sample unit, we also extracted three soil samples(0–20 cm depth) for measuring soil properties. The results indicated that the interaction between region and conservational management significantly affected the percent of canopy cover of Persian oak(Quercus brantii Linddl), soil respiration, substrate-induced respiration, as well as beta and gamma diversities and turnover of plant species. The percent of oak canopy cover was positively correlated with soil silt, electrical conductivity, available potassium, and alpha diversity, whereas it was negatively correlated with plant turnover. In addition, plant turnover was positively related to available phosphorus, while nestedness of species was positively related to organic carbon and total nitrogen. According to these results, we concluded that physical, chemical, and biological characteristics of limited ecological niche generally influenced plant diversity. Also, this study demonstrated the major contribution of the beta diversity on gamma diversity, especially in semi-arid region, because of the higher heterogeneity of vegetation in this area.
文摘The consequence of land-use change from forest to agriculture and other uses has become one of the world’s greatest concerns.The soil,one of the most important components of forests and containing all the required plant nutrients as soluble ions,is highly impacted by these changes.Because vast areas of the Zagros forests in western Iran have changed in use during the last few decades,the present study investigated the effects of landuse changes of forest area to agriculture,orchard,and agroforestry on soil chemical and physical properties.Soil was sampled at four land-use areas:less-disturbed forest areas(control)and agricultural,orchard,and agroforestry areas.Among each of the two forest-use areas(agroforestry and orchard),we selected five trees with similar-sized crowns and sampled under each tree crown at 0-15 and>15-30 cm depths.Five soil samples also were taken in agriculture area at each depth.The findings indicated that during land-use changes,soil sand particles decreased,and clay and silt particles of soil increased,resulting in a fine soil texture.Moreover,the amount of nitrogen(N),phosphorus(P),organic carbon(OC),and electrical conductivity(EC)of soil decreased at both depths due to the decrease in organic matter.Soil pH and magnesium(Mg)level rose during land-use change at both depths except at agricultural sites.Soil potassium(K)content decreased during agricultural use due to the elimination of tree cover.The level of K decreased only at the depth of 0-15 cm because of K dependency on parent materials.Generally,most soil nutrients were affected by plant removal in the conversion.Forest and agricultural soil are distinguishable by their properties,while land-uses such as agroforestry-orchard separated from the others.Soil nutrients were severely affected by the decrease and elimination of tree cover,plowing,and continuous harvesting,resulting in a decline in soil quality and fertility.
基金Project supported by the National Natural Science Foundation of China (No. XSFC70373044) the Knowledge Innovation Program of the Chinese Academy of Sciences (No. C12SD)
文摘With both field investigation and pure culture experiments, the occurrence and optimal essential growth of mycorrhizal fungi with oaks in Dandong Region of Liaoning Province, China were investigated from 1997-2002 A total of 36 species of mycorrhizal fungi associated with oaks were observed. The results showed that the occurrence of mycorrhizal fungi was related to tree species, tree ages, and months of the year, with at least 20 fungi species being associated with more than two oak species. The highest Sim…
文摘This review summarizes the current state of knowledge on pine and oak forest dynamics in the midmontane central Himalayan forest and the ecosystem services associated with these vegetation types. Forest ecosystems play a crucial role in the livelihood of the central Himalayas as well as the adjacent plains, providing a number of tangible and intangible ecosystem services, at each stage of succession. The successional sequence starts from warm temperate grasslands, followed by early successional pine forests, mid-successional pine-oak mixed forests and eventually culminating in a late successional oak community. This successional sequence is considerably influenced by disturbances like fire, grazing, and lopping, which maintain the vegetation types in their current form and can act as potential drivers of change. Fire and grazing in grasslands and pine forests inhibit the successional process by hindering the establishment of pioneer and late successional species, respectively. Potential land-cover changes with forest succession can lead to changes in ecosystem services supply. We found that the number of ecosystem services associated with these vegetation types increase from early to late successional community. Current management approaches fail to include the dynamic nature of vegetation, which is essential for maintenance of ecosystem service supply. In conclusion, the trade-offs between ES of global (biodiversity and carbon) and local importance (fuel wood and fodder) have to be examined carefully in order to have effective conservation and management plans for the region.
基金funded by the National Natural Science Foundation of China (41301601)the Special Fund for Forest Scientific Research in the Public Interest (201304312)
文摘Reforestation or natural forest regeneration is an alternative measure for controlling soil erosion in degraded land on the Chinese Loess Plateau(CLP). However, our understanding of the temporal dynamics and the spatial patterns of forest regeneration remains inadequate. Two oak forests at different development stages were investigated to determine the spatial patterns of competitions(intraspecies and interspecies) during different successional stages. The intraspecies and interspecies spatial relationships among different tree diameters at breast height were analyzed at multiple scales by Kriging interpolation method and univariate and bivariate O-ring statistics. Our analytical results indicated that self-correlation and competition intensity were relatively high between oak and pine trees in the early development stage of oak forests due to their clumped distributions of heavy seeds. Birch trees had a lower competition in comparison to oak trees although birch was the dominant species. Therefore, asymmetric competition of oak trees was most likely to have led to their edge dispersal and their success in replacing the pioneer species. Asymmetric competition means that larger individuals obtained a disproportionately large share of the resources and suppressed the growth of smaller individuals. Kriging interpolation analysis showed a tendency towards homogenization caused by interspecies competition during the succession of oak forests. Our results demonstrated that the competition was the driving factor in the spatial distribution of oak forests on the CLP.
基金Ministerio de Economía y Competitividad,Spain(CGL2013-48843-C2-2-R)European Union FEDER 0087(TRANSHABITAT)Tarbiat Modares University(Doctorate support to AH)
文摘Intraspecific variability in morphological and ecophysiological leaf traits might be theorized to be present in declining populations,since they seem to be exposed to stress and plasticity could be advantageous.Here we focused on declining Persian oaks(Quercus brantii Lindl.var.persica(Jaub and Spach)Zohary)in the Zagros Mountains of western Iran,representing the most important tree species of this region.We selected trees with contrasting crown dieback,from healthy to severely defoliated,to investigate the relationships between canopy dieback and leaf morphology,water content and pigments.We also measured esterase and peroxidase,as enzymatic antioxidants and indicators of contrasting genotypes.Trees showing moderate to severe defoliation showed higher leaf mass area(LMA),reduced relative water content(RWC),and lower stomatal density(SD).Increasing LMA indicates a more sclerophyllic structure,according to drier conditions.We did not find significant differences in leaf pigments(chlorophyll a and b,and carotenoids)among crown dieback classes,suggesting that Persian oak trees are able to maintain accurate photochemical efficiency,while reduced RWC and SD suggest hydraulic limitations.Our results do not provide a consistent pattern as regards enzymatic antioxidant defense in Persian oak.Morphological leaf traits would be important drivers of future adaptive evolution in Persian oak,leading to smaller and thicker leaves,which have fitness benefits in dry environments.Nonetheless,drought responses may be critically affecting carbon uptake,as photosynthetic compounds are less effectively used in leaves with higher sclerophylly.
基金supported by the laboratory of silvopastoral resources(Silvopastoral Institute-Tabarka)
文摘We assessed the effect of mulching and tree shelters on the establishment and early growth of zeen oak(Quercus canariensis Willd.) during the first 4 years after planting in Northwestern Tunisia. Five mulch types(Italian Stone Pine(Pinus pinea L.), Lentisk(Pistacia lentiscus L.),and a combination of Italian Stone Pine and Lentisk(organic mulches), gravel(inorganic mulch) and control), and three tree shelter types(non-vented and vented tree shelters, and control) were tested. An increase in the number of internodes occurred under the gravel mulch, while a reduction in survival was found for the lentisk mulch. Tree shelters had no effect on survival, but increased mean height growth and reduced mean diameter growth during the 4 years(excepting a non-significant effect for vented tree shelter at year four). Comparison of the annual shoots and growth units(GU) between sheltered and unsheltered plants according to year of formation revealed two growth phases. In first phase, shoots were totally or partially inside the shelters; mean length of annual shoots and GU were greater for sheltered plants. The second phase was characterized by shoots emerging from shelters; mean length of annual shoots and GU were similar for all plants, with or without tree shelters. Results suggest that the use of tree shelters, particularly vented shelters, could contribute to the improvement of the artificial regeneration of zeen oak.The use of mulching alone or in combination with tree shelters did not improve zeen oak performance in the field.
基金support from Department of Science & Technology,New Delhi(No:SP/SO/A60/99)isgratefully acknowledged
文摘In order to realize the significance of oak forests for ecology and economy of the Himalayan region,the present study attempts to objectively characterize disturbance intensities and their impacts on compositional features of identified Oak forests, i.e.Banj-oak(Quercus leucotrichophora A.Camus), Tilonj-oak(Q.floribunda Lindley)and Kharsu-oak(Q. semecarpifolia J.E.Smith)in west Himalaya. Amongst studied forests,Q.leucotrichophora and Q. semecarpifolia forests exhibited high sensitivity towards disturbance intensities.In both forests, increasing level of disturbance significantly lowered tree density,dominance and natural recruitment (seedling and sapling density).Q.floribunda forests, however,appeared relatively more resilient to anthropogenic disturbances.Amongst studied oak forests,Q.semecarpifolia forests with overall poor natural regeneration are in a most critically endangered demographic state.However,a slightly improved regeneration(i.e.,seedling density)in moderately disturbed plots is indicative that such plots may be utilized most suitably for in situ revival of these forests.Effect of disturbance intensities on tree population is an important subject for forest ecology and management and the present study highlights a need for adopting different management strategies across disturbance intensities in diverse oak forests of west Himalaya.