The South China Sea(SCS), which is the largest marginal sea in the western tropical Pacific, plays an important role in regional climate change. However, the research on the phytoplankton community structure(PCS) resp...The South China Sea(SCS), which is the largest marginal sea in the western tropical Pacific, plays an important role in regional climate change. However, the research on the phytoplankton community structure(PCS) response to the upwelling remains inadequate. In January 2014, the upwelling simulation experiment was performed in the western SCS. Results indicate that the nutrient-rich bottom water not only increased the total Chlorophyll a(Chl a) concentrations, but would potentially altered the PCS. Due to new nutrients added, microphytoplankton had more sensitivity response to nutrient uptake than other phytoplankton groups. The variation of nutrients induced by formation, weakening and disappearance of upwelling resulted in phytoplankton species succession from cyanophyta to bacillariophyta. It may be the leading factor of the changes in PCS and size-fractionated Chl a. The initial concentration of DIP less than 0.1 μmol L-1 could not sustain the phytoplankton growth. This indicates that phosphorus may be the limiting factor in the western SCS.展开更多
在四川盆地2种不同母质的土壤上,通过3 a 6季作物的田间试验,研究作物秸秆还田对稻田土壤N、P、K,土壤活性碳,微生物碳,矿化碳和碳库管理指数的影响.结果表明:与对照相比,秸秆还田免耕和旋耕均可提高土壤全N,全P,全K,有效N、P、K,不同...在四川盆地2种不同母质的土壤上,通过3 a 6季作物的田间试验,研究作物秸秆还田对稻田土壤N、P、K,土壤活性碳,微生物碳,矿化碳和碳库管理指数的影响.结果表明:与对照相比,秸秆还田免耕和旋耕均可提高土壤全N,全P,全K,有效N、P、K,不同形态碳素含量和碳库管理指数.作物秸秆还田旋耕比秸秆还田免耕更能改善土壤有效碳库质量,土壤活性碳、微生物碳、矿化碳和碳库管理指数分别提高5.81%~31.76%、33.87~39.33%、15.42%~21.56%和4.03%~21.13%.相关性分析表明,运用土壤碳库管理指数表征土壤养份及碳素动态变化比土壤有机碳更具灵敏性.展开更多
基金upport of the National Programme on Global Change and Air-Sea Interaction (GASI-03-01-02-01)
文摘The South China Sea(SCS), which is the largest marginal sea in the western tropical Pacific, plays an important role in regional climate change. However, the research on the phytoplankton community structure(PCS) response to the upwelling remains inadequate. In January 2014, the upwelling simulation experiment was performed in the western SCS. Results indicate that the nutrient-rich bottom water not only increased the total Chlorophyll a(Chl a) concentrations, but would potentially altered the PCS. Due to new nutrients added, microphytoplankton had more sensitivity response to nutrient uptake than other phytoplankton groups. The variation of nutrients induced by formation, weakening and disappearance of upwelling resulted in phytoplankton species succession from cyanophyta to bacillariophyta. It may be the leading factor of the changes in PCS and size-fractionated Chl a. The initial concentration of DIP less than 0.1 μmol L-1 could not sustain the phytoplankton growth. This indicates that phosphorus may be the limiting factor in the western SCS.
文摘在四川盆地2种不同母质的土壤上,通过3 a 6季作物的田间试验,研究作物秸秆还田对稻田土壤N、P、K,土壤活性碳,微生物碳,矿化碳和碳库管理指数的影响.结果表明:与对照相比,秸秆还田免耕和旋耕均可提高土壤全N,全P,全K,有效N、P、K,不同形态碳素含量和碳库管理指数.作物秸秆还田旋耕比秸秆还田免耕更能改善土壤有效碳库质量,土壤活性碳、微生物碳、矿化碳和碳库管理指数分别提高5.81%~31.76%、33.87~39.33%、15.42%~21.56%和4.03%~21.13%.相关性分析表明,运用土壤碳库管理指数表征土壤养份及碳素动态变化比土壤有机碳更具灵敏性.