By sending one or more telescopes into space,Space-VLBI(SVLBI)is able to achieve even higher angular resolution and is therefore the trend of the VLBI technique.For the SVLBI program,the design of satellite orbits pla...By sending one or more telescopes into space,Space-VLBI(SVLBI)is able to achieve even higher angular resolution and is therefore the trend of the VLBI technique.For the SVLBI program,the design of satellite orbits plays an important role for the success of planned observation.In this paper,we present our orbit optimization scheme,so as to facilitate the design of satellite orbits for SVLBI observation.To achieve that,we characterize the uv coverage with a measure index and minimize it by finding out the corresponding orbit configuration.In this way,the design of satellite orbit is converted to an optimization problem.We can prove that,with an appropriate global minimization method,the best orbit configuration can be found within the reasonable time.Besides that,we demonstrate that this scheme can be used for the scheduling of SVLBI observations.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11903067,11973011,11573057,U1831137 and 11703070)Shanghai Outstanding Academic Leaders Plan,the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB23010200)the Shanghai Key Laboratory of Space Navigation and Positioning Techniques(ZZXT-201902)。
文摘By sending one or more telescopes into space,Space-VLBI(SVLBI)is able to achieve even higher angular resolution and is therefore the trend of the VLBI technique.For the SVLBI program,the design of satellite orbits plays an important role for the success of planned observation.In this paper,we present our orbit optimization scheme,so as to facilitate the design of satellite orbits for SVLBI observation.To achieve that,we characterize the uv coverage with a measure index and minimize it by finding out the corresponding orbit configuration.In this way,the design of satellite orbit is converted to an optimization problem.We can prove that,with an appropriate global minimization method,the best orbit configuration can be found within the reasonable time.Besides that,we demonstrate that this scheme can be used for the scheduling of SVLBI observations.