期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Sulfur poisoning mechanism of three way catalytic converter and its grey relational analysis
1
作者 蔡皓 刘亚飞 +3 位作者 龚金科 鄂加强 耿玉鹤 余立平 《Journal of Central South University》 SCIE EI CAS 2014年第11期4091-4096,共6页
Combining a detailed catalytic surface reaction mechanism with noble metal and promoter elementary reactions, a new three-way catalytic converter(TWC) reaction mechanism is established. Based on the new mechanism, ste... Combining a detailed catalytic surface reaction mechanism with noble metal and promoter elementary reactions, a new three-way catalytic converter(TWC) reaction mechanism is established. Based on the new mechanism, steady condition numerical simulation is carried out, and the change of light-off temperatures and conversion efficiency with various SO2 contents is obtained. By grey relational analysis(GRA), the relational grade between conversion efficiency and SO2 content is obtained. And, the result shows that SO2 content has the most important influence on C3H6 and NOX conversion efficiency. This provides an important reference to the improvement of activity design of TWC, and may provide guidance for the condition design and optimization of TWC. 展开更多
关键词 sulfur poisoning three-way catalytic converter reaction mechanism numerical simulation grey relational analysis
在线阅读 下载PDF
Estimation of the water–oil–gas relative permeability curve from immiscible WAG coreflood experiments using the cubic B-spline model
2
作者 Dai-Gang Wang Yong-Le Hu +1 位作者 Jing-Jing Sun Yong Li 《Petroleum Science》 SCIE CAS CSCD 2016年第3期507-516,共10页
Immiscible water-alternating-gas(WAG) flooding is an EOR technique that has proven successful for water drive reservoirs due to its ability to improve displacement and sweep efficiency.Nevertheless,considering the c... Immiscible water-alternating-gas(WAG) flooding is an EOR technique that has proven successful for water drive reservoirs due to its ability to improve displacement and sweep efficiency.Nevertheless,considering the complicated phase behavior and various multiphase flow characteristics,gas tends to break through early in production wells in heterogeneous formations because of overriding,fingering,and channeling,which may result in unfavorable recovery performance.On the basis of phase behavior studies,minimum miscibility pressure measurements,and immiscible WAG coreflood experiments,the cubic B-spline model(CBM) was employed to describe the three-phase relative permeability curve.Using the Levenberg-Marquardt algorithm to adjust the vector of unknown model parameters of the CBM sequentially,optimization of production performance including pressure drop,water cut,and the cumulative gas-oil ratio was performed.A novel numerical inversion method was established for estimation of the water-oil-gas relative permeability curve during the immiscible WAG process.Based on the quantitative characterization of major recovery mechanisms,the proposed method was validated by interpreting coreflood data of the immiscible WAG experiment.The proposed method is reliable and can meet engineering requirements.It provides a basic calculation theory for implicit estimation of oil-water-gas relative permeability curve. 展开更多
关键词 Cubic B-spline model Immiscible WAG flooding Relative permeability numerical inversion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部