A three-dimensional numerical model of laser-arc hybrid plasma for aluminum alloy fillet joints is developed in this study.This mod-el accounts for the geometric complexity of fillet joints,the physical properties of ...A three-dimensional numerical model of laser-arc hybrid plasma for aluminum alloy fillet joints is developed in this study.This mod-el accounts for the geometric complexity of fillet joints,the physical properties of shielding gases with varying He-Ar ratios,and the coupling between arc plasma and laser-induced metal plume.The accuracy of the model is validated using a high-speed camera.The effects of varying He contents in the shielding gas on both the temperature and flow velocity of hybrid plasma,as well as the distribu-tion of laser-induced metal vapor mass,were investigated separately.The maximum temperature and size of arc plasma decrease as the He volume ratio increases,the arc distribution becomes more concentrated,and its flow velocity initially decreases and then sharply increases.At high helium content,both the flow velocity of hybrid plasma and metal vapor are high,the metal vapor is con-centrated on the right side of keyhole,and its flow appears chaotic.The flow state of arc plasma is most stable when the shielding gas consists of 50%He+50%Ar.展开更多
To effectively minimize the electromagnetic field response in the total field solution, we propose a numerical modeling method for the two-dimensional (2D) time- domain transient electromagnetic secondary field of t...To effectively minimize the electromagnetic field response in the total field solution, we propose a numerical modeling method for the two-dimensional (2D) time- domain transient electromagnetic secondary field of the line source based on the DuFort- Frankel finite-difference method. In the proposed method, we included the treatment of the earth-air boundary conductivity, calculated the normalized partial derivative of the induced electromotive force (Emf), and determined the forward time step. By extending upward the earth-air interface to the air grid nodes and the zero-value boundary conditions, not only we have a method that is more efficient but also simpler than the total field solution. We computed and analyzed the homogeneous half-space model and the fiat layered model with high precision--the maximum relative error is less than 0.01% between our method and the analytical method--and the solution speed is roughly three times faster than the total-field solution. Lastly, we used the model of a thin body embedded in a homogeneous half-space at different delay times to depict the downward and upward spreading characteristics of the induced eddy current, and the physical interaction processes between the electromagnetic field and the underground low-resistivity body.展开更多
This study focuses on the factors that may affect the feasibility of performing elliptical anisotropy analysis on azimuthal PP and PS-wave data in HTI media, with the aim of using the modeling results as guidance in r...This study focuses on the factors that may affect the feasibility of performing elliptical anisotropy analysis on azimuthal PP and PS-wave data in HTI media, with the aim of using the modeling results as guidance in real seismic data application. Our results reveal that there is an offset limitation for both PP- and PS-waves in elliptical anisotropy fitting, and that PS-waves show a wider applicable offset range and larger observable azimuthal anisotropy than PP-waves. The major axis of the elliptical fit to the amplitudes of the R-component is perpendicular to the fracture strike, which is opposite to that in PP-wave analysis. The azimuthal interval travel time of PS-waves shows a nearly elliptical distribution and the major axis of the fit ellipse is perpendicular to the fracture strike, which is same as that in PP-wave analysis. For data within the applicable offset range, the anisotropic magnitude obtained from amplitude and travel time attributes of PP- and PS-waves exhibits a dependence on fracture density, and the major to minor axis ratio of the fit ellipse may be used to infer the relative distribution of fracture densities.展开更多
To improve the accuracy of the conventional finite-difference method, finitedifference numerical modeling methods of any even-order accuracy are recommended. We introduce any even-order accuracy difference schemes of ...To improve the accuracy of the conventional finite-difference method, finitedifference numerical modeling methods of any even-order accuracy are recommended. We introduce any even-order accuracy difference schemes of any-order derivatives derived from Taylor series expansion. Then, a finite-difference numerical modeling method with any evenorder accuracy is utilized to simulate seismic wave propagation in two-phase anisotropic media. Results indicate that modeling accuracy improves with the increase of difference accuracy order number. It is essential to find the optimal order number, grid size, and time step to balance modeling precision and computational complexity. Four kinds of waves, static mode in the source point, SV wave cusps, reflection and transmission waves are observed in two-phase anisotropic media through modeling.展开更多
In order to reasonably simulate tidal currents around small structures such as piles in a large-scale model domain, a 2-D hydrodynamic integrated model for Bohai Sea is established with the finite element method. The ...In order to reasonably simulate tidal currents around small structures such as piles in a large-scale model domain, a 2-D hydrodynamic integrated model for Bohai Sea is established with the finite element method. The grid can be discretionarily refined as a non-structure triangle or quadrilateral so that piers can be treated as one or several impermeable elements with an area of 20 to 30 km^2 in a model domain over 85 700 km^2. The computational results of tidal levels and horizontal velocities are in good agreement with the field data. Based on the computed results by the model, the layout of an open 105 DWT liquefied natural gas (LNG)terminal in Caofeidian, Bohal Sea is effectively and reasonably optimized. It can be concluded that the model is suitable and reasonable for direct simulation of tidal currents around small structures in projects.展开更多
Haihua Islands is a large artificial island in Danzhou, Hainan. The construction of Haihua Islands changes the hYdrodynamic environment of Yangpu waters, and further affects its morphological change. Delft3D is used t...Haihua Islands is a large artificial island in Danzhou, Hainan. The construction of Haihua Islands changes the hYdrodynamic environment of Yangpu waters, and further affects its morphological change. Delft3D is used to set up a two dimensional nested hydrodynamic and sediment model for Yangpu waters in this paper, and this paper focuses on simulating the velocity and morphological change due to the construction of Haihua Islands after the verification of the model. The seabed deposition is small because of low suspended sediment concentration and less sand source near Yangpu waters. The bed level erodes in the south area of Xiaochan Reef and the Yangpu channel due to the velocity increase in the area.展开更多
This paper presents comparison of numerical models used in an analysis of a road bridge deck. The models were adapted for computing the live load distribution coefficients in composite concrete bridge deck. The load d...This paper presents comparison of numerical models used in an analysis of a road bridge deck. The models were adapted for computing the live load distribution coefficients in composite concrete bridge deck. The load distribution method was chosen for assessment of the usability of different numerical model in slab bridge deck analysis. The goal of the study is to determine a simplest but still accurate numerical model to estimate live load effects on composite slab bridge. In the analysis, the well-established grillage approach was adapted for representation of the bridge deck as a basic model as well as more sophisticated three-dimensional models which was supposed to better represent the real behavior of the deck under concentrated wheel loads. The bridge deck was effectively modeled using beam and shell elements. The grillage method compares well with the finite-element method. This finding is allowed to establish simplification in numerical modeling of slab bridge decks for live load effect computations.展开更多
In this paper, a heavy sea fog episode that occurred over the Yellow Sea on 9 March 2005 is investigated. The sea fog patch, with a spatial scale of several hundred kilometers at its mature stage, reduced visibility a...In this paper, a heavy sea fog episode that occurred over the Yellow Sea on 9 March 2005 is investigated. The sea fog patch, with a spatial scale of several hundred kilometers at its mature stage, reduced visibility along the Shandong Peninsula coast to 100 m or much less at some sites. Satellite images, surface observations and soundings at islands and coasts, and analyses from the Japan Meteorology Agency (JMA) axe used to describe and analyze this event. The analysis indicates that this sea fog can be categorized as advection cooling fog. The main features of this sea fog including fog area and its movement axe reasonably reproduced by the Fifth-generation Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5). Model results suggest that the formation and evolution of this event can be outlined as: (1) southerly warm/moist advection of low-level air resulted in a strong sea-surface-based inversion with a thickness of about 600 m; (2) when the inversion moved from the warmer East Sea to the colder Yellow Sea, a thermal internal boundary layer (TIBL) gradually formed at the base of the inversion while the sea fog grew in response to cooling and moistening by turbulence mixing; (3) the sea fog developed as the TIBL moved northward and (4) strong northerly cold and dry wind destroyed the TIBL and dissipated the sea fog. The principal findings of this study axe that sea fog forms in response to relatively persistent southerly waxm/moist wind and a cold sea surface, and that turbulence mixing by wind shear is the primary mechanism for the cooling and moistening the marine layer. In addition, the study of sensitivity experiments indicates that deterministic numerical modeling offers a promising approach to the prediction of sea fog over the Yellow Sea but it may be more efficient to consider ensemble numerical modeling because of the extreme sensitivity to model input.展开更多
This paper presents the results of a set of numerical models focussing on structural controls on hydrothermal mineralization. We first give an overview of natural phenomena of structurally-controlled ore formation and...This paper presents the results of a set of numerical models focussing on structural controls on hydrothermal mineralization. We first give an overview of natural phenomena of structurally-controlled ore formation and the background theory and mechanisms for such controls. We then provide the results of a group of simple 2D numerical models validated through comparison with Cu-vein structure observed near the Shilu Copper deposit (Yangchun, Guangdong Province, China) and finally a case study of 3D numerical modelling applied to the Hodgkinson Province in North Queensland (Australia). Two modelling approaches, discrete deformation modelling and continuum coupled deformation and fluid flow modelling, are involved. The 2D model-derived patterns are remarkably consistent with the Cu-vein structure from the Shilu Copper deposit, and show that both modelling approaches can realistically simulate the mechanical behaviours of shear and dilatant fractures. The continuum coupled deformation and fluid flow model indicates that pattern of the Cu- veins near the Shilu deposit is the result of shear strain localization, development of dilation and fluid focussing into the dilatant fracture segments. The 3D case-study models (with deformation and fluid flow coupling) on the Hodgkinson Province generated a number of potential gold mineralization展开更多
Fetr6 is an underground mine using the stope-and-pillar mining method. As there was some evidence regarding pillar failure in this mine, improving works such as roof support and replacing existing pillars with concret...Fetr6 is an underground mine using the stope-and-pillar mining method. As there was some evidence regarding pillar failure in this mine, improving works such as roof support and replacing existing pillars with concrete pillars (CP) were carried out. During the construction of the second CP, in the space between the remaining pillars, one of the pillars failed leading to the progressive failure of other pillars until 4 000 m 2 of mine had collapsed within a few minutes. In this work, this phenomenon is described by applying both numerical and empirical methods and the respective results are compared. The results of numerical modelling are found to be closer to the actual condition than those of the empirical method. Also, a width-to-height (W/H) ratio less than 1, an inadequate support system and the absence of a detailed program for pillar recovery are shown to be the most important causes of the Domino failure in this mine.展开更多
Severe shield jamming events have been reported during excavation of Uluabat tunnel through adverse geological conditions, which resulted in several stoppages at advancing a single shielded tunnel boring machine(TBM)....Severe shield jamming events have been reported during excavation of Uluabat tunnel through adverse geological conditions, which resulted in several stoppages at advancing a single shielded tunnel boring machine(TBM). To study the jamming mechanism, three-dimensional(3D) simulation of the machine and surrounding ground was implemented using the finite difference code FLAC3D. Numerical analyses were performed for three sections along the tunnel with a higher risk for entrapment due to the combination of overburden and geological conditions. The computational results including longitudinal displacement contours and ground pressure profiles around the shield allow a better understanding of ground behavior within the excavation. Furthermore, they allow realistically assessing the impact of adverse geological conditions on shield jamming. The calculated thrust forces, which are required to move the machine forward, are in good agreement with field observations and measurements. It also proves that the numerical analysis can effectively be used for evaluating the effect of adverse geological environment on TBM entrapments and can be applied to prediction of loads on the shield and preestimating of the required thrust force during excavation through adverse ground conditions.展开更多
A coupled discrete-continuum simulation incorporating a 3D aspect and non-circular particles was performed to analyze soil-pile interactions during pile penetration in sand.A self-developed non-circular particle numer...A coupled discrete-continuum simulation incorporating a 3D aspect and non-circular particles was performed to analyze soil-pile interactions during pile penetration in sand.A self-developed non-circular particle numerical simulation program was used which considered sand near the pile as interacted particles using a discrete element method;the sand away from the pile was simulated as a continuous medium exhibiting linear elastic behaviors.The domain analyzed was divided into two zones.Contact forces at the interface between the two zones were obtained from a discrete zone and applied to the continuum boundaries as nodal forces,while the interface velocities were obtained from the continuum zone and applied to the discrete boundaries.We show that the coupled discrete-continuum simulation can give a microscopic description of the pile penetration process without losing the discrete nature of the zone concerned,and may significantly improve computational efficiency.展开更多
As the depth of excavation increases,rockburst becomes one of the most serious geological hazards damaging equipment and facilities and even causing fatalities in mining and civil engineering.This has forced researche...As the depth of excavation increases,rockburst becomes one of the most serious geological hazards damaging equipment and facilities and even causing fatalities in mining and civil engineering.This has forced researchers worldwide to identify different methods to investigate rockburst-related problems.However,some problems,such as the mechanisms and the prediction of rockbursts,continue to be studied because rockburst is a very complicated phenomenon influenced by the uncertainty and complexity in geological conditions,in situ stresses,induced stresses,etc.Numerical modeling is a widely used method for investigating rockbursts.To date,great achievements have been made owing to the rapid development of information technology(IT)and computer equipment.Hence,it is necessary and meaningful to conduct a review of the current state of the studies for rockburst numerical modeling.In this paper,the categories and the origin of different numerical approaches employed in modeling rockbursts are reviewed and the current usage of various numerical modeling approaches is investigated by a literature research.Later,a state-of-the-art review is implemented to investigate the application of numerical modeling in the mechanism study,and prediction and prevention of rockbursts.The main achievements and problems are highlighted.Finally,this paper discusses the limitations and the future research of numerical modeling for rockbursts.An approach is proposed to provide researchers with a systematic and reasonable numerical modeling framework.展开更多
The history of forecasting wind waves by wave energy conservation equation Is briefly described. Several currently used wave numerical models for shallow water based on different wave theories are discussed. Wave ener...The history of forecasting wind waves by wave energy conservation equation Is briefly described. Several currently used wave numerical models for shallow water based on different wave theories are discussed. Wave energy conservation models for the simulation of shallow water waves are introduced, with emphasis placed on the SWAN model, which takes use of the most advanced wave research achievements and has been applied to several theoretical and field conditions. The characteristics and applicability of the model, the finite difference numerical scheme of the action balance equation and its source terms computing methods are described in detail. The model has been verified with the propagation refraction numerical experiments for waves propagating in following and opposing currents; finally, the model is applied to the Haian Gulf area to simulate the wave height and wave period field there, and the results are compared with observed data.展开更多
In this paper the characteristics of tidal flow and seasonal variation of seidment content in the Hangzhou Bay and their affecting factors are studied. Field investigations and data analysis indicate that the sediment...In this paper the characteristics of tidal flow and seasonal variation of seidment content in the Hangzhou Bay and their affecting factors are studied. Field investigations and data analysis indicate that the sediment movement is mainly influenced by the Yangtze estuary and the sediment of the Yangtze estuary is induced by wind wave and tidal flow. Owing to the variation of dynamic conditions, the instantaneous sediment content is controlled by tidal flow, wind wave, depth of water and tidal range synthetically. A sediment content relationship formula is established with related factors. A non-equilibrium 2-dimensional numerical model of suspended sediment transportation is set up, and the finite element method is applied. The computation results of the model is in accordance with field data.展开更多
Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlight...Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlights an integrated approach of designing overhanging rock slopes where the relative dimensions of the slope exceed the scale of fracturing and the rock mass failure needs to be considered rather than kinematic release of individual blocks. The key to the method is a simplified limit equilibrium(LE) tool that was used for the support design and analysis of a multi-faceted overhanging rock slope. The overhanging slopes required complex geometries with constantly changing orientations. The overhanging rock varied in height from 30 m to 66 m. Geomechanical modelling combined with discrete fracture network(DFN)representation of the rock mass was used to validate the rock mass strength assumptions and the failure mechanism assumed in the LE model. The advantage of the simplified LE method is that buttress and support design iterations(along with sensitivity analysis of design parameters) can be completed for various cross-sections along the proposed overhanging rock sections in an efficient manner, compared to the more time-intensive, sophisticated methods that were used for the initial validation. The method described presents the development of this design tool and assumptions made for a specific overhanging rock slope design. Other locations will have different geological conditions that can control the potential behaviour of rock slopes, however, the approach presented can be applied as a general guiding design principle for overhanging rock cut slope.展开更多
For simulating fresh and salt water mixing in estuaries, a three dimensional nonlinear baroclinic numerical model is developed, in which the gradients of horizontal pressure contain die gradient of barotropic pressure...For simulating fresh and salt water mixing in estuaries, a three dimensional nonlinear baroclinic numerical model is developed, in which the gradients of horizontal pressure contain die gradient of barotropic pressure arising from the gradient of tidal level and the gradient of baroclinic pressure due to the gradient of salinity. The Eulerian-Lagrangian method is employed to descretize both the momentum equations of tidal motion and the equation of salt water diffusion so as to improve the computational stability and accuracy. The methods to provide the boundary conditions and the initial conditions are proposed, and the criterion for computational stability of the salinity fields is presented. The present model is used for modeling fresh and salt water mixing in the Yangtze Estuary. Computations show that the salinity distribution has the characteristics of partial mixing pattern, and that the present model is suitable for simulation of fresh and salt water mixing in the Yangtze Estuary.展开更多
Nonlinear water wave propagation passing a submerged shelf is studied experimentally and numerically. The applicability of two different wave propagation models has been investigated. One is higher-order Boussinesq eq...Nonlinear water wave propagation passing a submerged shelf is studied experimentally and numerically. The applicability of two different wave propagation models has been investigated. One is higher-order Boussinesq equations derived by Zou (1999) and the other is the classic Boussinesq equations, Physical experiments are conducted, three different front slopes (1:10, 1:5 and 1:2) of the shelf are set up in the experiment and their effects on wave propagation are investigated. Comparisons of numerical results with test data are made, the model of higher-order Boussinesq equations agrees much better with the measurements than the model of the classical Boussinesq equations, The results show that the higher-order Boussinesq equations can also be applied to the steeper slope case although the mild slope assumption is employed in the derivation of the higher order terms of higher order Boussinesq equations.展开更多
This article provides the application of the high-order, staggered-grid, finite-difference scheme to model elastic wave propagation in 3-D isotropic media. Here, we use second-order, tempo- ral- and high-order spatial...This article provides the application of the high-order, staggered-grid, finite-difference scheme to model elastic wave propagation in 3-D isotropic media. Here, we use second-order, tempo- ral- and high-order spatial finite-difference formulations with a staggered grid for discretization of the 3-D elastic wave equations of motion. The set of absorbing boundary conditions based on paraxial approximations of 3-D elastic wave equations are applied to the numerical boundaries. The trial re- sults for the salt model show that the numerical dispersion is decreased to a minimum extent, the accuracy high and diffracted waves abundant. It also shows that this method can be used for modeling wave propagation in complex media with the lateral variation of velocity.展开更多
To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are govern...To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are governed by a damage variable. By using the proposed material model, damage and fragmentation of a typical masonry wall under blast loading at different scaled distances is calculated. The hazard level of the masonry wall to blast loading is evaluated by analyzing the numerical results.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52375340,51975263,52405366).
文摘A three-dimensional numerical model of laser-arc hybrid plasma for aluminum alloy fillet joints is developed in this study.This mod-el accounts for the geometric complexity of fillet joints,the physical properties of shielding gases with varying He-Ar ratios,and the coupling between arc plasma and laser-induced metal plume.The accuracy of the model is validated using a high-speed camera.The effects of varying He contents in the shielding gas on both the temperature and flow velocity of hybrid plasma,as well as the distribu-tion of laser-induced metal vapor mass,were investigated separately.The maximum temperature and size of arc plasma decrease as the He volume ratio increases,the arc distribution becomes more concentrated,and its flow velocity initially decreases and then sharply increases.At high helium content,both the flow velocity of hybrid plasma and metal vapor are high,the metal vapor is con-centrated on the right side of keyhole,and its flow appears chaotic.The flow state of arc plasma is most stable when the shielding gas consists of 50%He+50%Ar.
基金supported by the National High Technology Research and Development Program (863 Program)(2009AA06Z108)
文摘To effectively minimize the electromagnetic field response in the total field solution, we propose a numerical modeling method for the two-dimensional (2D) time- domain transient electromagnetic secondary field of the line source based on the DuFort- Frankel finite-difference method. In the proposed method, we included the treatment of the earth-air boundary conductivity, calculated the normalized partial derivative of the induced electromotive force (Emf), and determined the forward time step. By extending upward the earth-air interface to the air grid nodes and the zero-value boundary conditions, not only we have a method that is more efficient but also simpler than the total field solution. We computed and analyzed the homogeneous half-space model and the fiat layered model with high precision--the maximum relative error is less than 0.01% between our method and the analytical method--and the solution speed is roughly three times faster than the total-field solution. Lastly, we used the model of a thin body embedded in a homogeneous half-space at different delay times to depict the downward and upward spreading characteristics of the induced eddy current, and the physical interaction processes between the electromagnetic field and the underground low-resistivity body.
文摘This study focuses on the factors that may affect the feasibility of performing elliptical anisotropy analysis on azimuthal PP and PS-wave data in HTI media, with the aim of using the modeling results as guidance in real seismic data application. Our results reveal that there is an offset limitation for both PP- and PS-waves in elliptical anisotropy fitting, and that PS-waves show a wider applicable offset range and larger observable azimuthal anisotropy than PP-waves. The major axis of the elliptical fit to the amplitudes of the R-component is perpendicular to the fracture strike, which is opposite to that in PP-wave analysis. The azimuthal interval travel time of PS-waves shows a nearly elliptical distribution and the major axis of the fit ellipse is perpendicular to the fracture strike, which is same as that in PP-wave analysis. For data within the applicable offset range, the anisotropic magnitude obtained from amplitude and travel time attributes of PP- and PS-waves exhibits a dependence on fracture density, and the major to minor axis ratio of the fit ellipse may be used to infer the relative distribution of fracture densities.
文摘To improve the accuracy of the conventional finite-difference method, finitedifference numerical modeling methods of any even-order accuracy are recommended. We introduce any even-order accuracy difference schemes of any-order derivatives derived from Taylor series expansion. Then, a finite-difference numerical modeling method with any evenorder accuracy is utilized to simulate seismic wave propagation in two-phase anisotropic media. Results indicate that modeling accuracy improves with the increase of difference accuracy order number. It is essential to find the optimal order number, grid size, and time step to balance modeling precision and computational complexity. Four kinds of waves, static mode in the source point, SV wave cusps, reflection and transmission waves are observed in two-phase anisotropic media through modeling.
文摘In order to reasonably simulate tidal currents around small structures such as piles in a large-scale model domain, a 2-D hydrodynamic integrated model for Bohai Sea is established with the finite element method. The grid can be discretionarily refined as a non-structure triangle or quadrilateral so that piers can be treated as one or several impermeable elements with an area of 20 to 30 km^2 in a model domain over 85 700 km^2. The computational results of tidal levels and horizontal velocities are in good agreement with the field data. Based on the computed results by the model, the layout of an open 105 DWT liquefied natural gas (LNG)terminal in Caofeidian, Bohal Sea is effectively and reasonably optimized. It can be concluded that the model is suitable and reasonable for direct simulation of tidal currents around small structures in projects.
文摘Haihua Islands is a large artificial island in Danzhou, Hainan. The construction of Haihua Islands changes the hYdrodynamic environment of Yangpu waters, and further affects its morphological change. Delft3D is used to set up a two dimensional nested hydrodynamic and sediment model for Yangpu waters in this paper, and this paper focuses on simulating the velocity and morphological change due to the construction of Haihua Islands after the verification of the model. The seabed deposition is small because of low suspended sediment concentration and less sand source near Yangpu waters. The bed level erodes in the south area of Xiaochan Reef and the Yangpu channel due to the velocity increase in the area.
文摘This paper presents comparison of numerical models used in an analysis of a road bridge deck. The models were adapted for computing the live load distribution coefficients in composite concrete bridge deck. The load distribution method was chosen for assessment of the usability of different numerical model in slab bridge deck analysis. The goal of the study is to determine a simplest but still accurate numerical model to estimate live load effects on composite slab bridge. In the analysis, the well-established grillage approach was adapted for representation of the bridge deck as a basic model as well as more sophisticated three-dimensional models which was supposed to better represent the real behavior of the deck under concentrated wheel loads. The bridge deck was effectively modeled using beam and shell elements. The grillage method compares well with the finite-element method. This finding is allowed to establish simplification in numerical modeling of slab bridge decks for live load effect computations.
文摘In this paper, a heavy sea fog episode that occurred over the Yellow Sea on 9 March 2005 is investigated. The sea fog patch, with a spatial scale of several hundred kilometers at its mature stage, reduced visibility along the Shandong Peninsula coast to 100 m or much less at some sites. Satellite images, surface observations and soundings at islands and coasts, and analyses from the Japan Meteorology Agency (JMA) axe used to describe and analyze this event. The analysis indicates that this sea fog can be categorized as advection cooling fog. The main features of this sea fog including fog area and its movement axe reasonably reproduced by the Fifth-generation Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5). Model results suggest that the formation and evolution of this event can be outlined as: (1) southerly warm/moist advection of low-level air resulted in a strong sea-surface-based inversion with a thickness of about 600 m; (2) when the inversion moved from the warmer East Sea to the colder Yellow Sea, a thermal internal boundary layer (TIBL) gradually formed at the base of the inversion while the sea fog grew in response to cooling and moistening by turbulence mixing; (3) the sea fog developed as the TIBL moved northward and (4) strong northerly cold and dry wind destroyed the TIBL and dissipated the sea fog. The principal findings of this study axe that sea fog forms in response to relatively persistent southerly waxm/moist wind and a cold sea surface, and that turbulence mixing by wind shear is the primary mechanism for the cooling and moistening the marine layer. In addition, the study of sensitivity experiments indicates that deterministic numerical modeling offers a promising approach to the prediction of sea fog over the Yellow Sea but it may be more efficient to consider ensemble numerical modeling because of the extreme sensitivity to model input.
文摘This paper presents the results of a set of numerical models focussing on structural controls on hydrothermal mineralization. We first give an overview of natural phenomena of structurally-controlled ore formation and the background theory and mechanisms for such controls. We then provide the results of a group of simple 2D numerical models validated through comparison with Cu-vein structure observed near the Shilu Copper deposit (Yangchun, Guangdong Province, China) and finally a case study of 3D numerical modelling applied to the Hodgkinson Province in North Queensland (Australia). Two modelling approaches, discrete deformation modelling and continuum coupled deformation and fluid flow modelling, are involved. The 2D model-derived patterns are remarkably consistent with the Cu-vein structure from the Shilu Copper deposit, and show that both modelling approaches can realistically simulate the mechanical behaviours of shear and dilatant fractures. The continuum coupled deformation and fluid flow model indicates that pattern of the Cu- veins near the Shilu deposit is the result of shear strain localization, development of dilation and fluid focussing into the dilatant fracture segments. The 3D case-study models (with deformation and fluid flow coupling) on the Hodgkinson Province generated a number of potential gold mineralization
文摘Fetr6 is an underground mine using the stope-and-pillar mining method. As there was some evidence regarding pillar failure in this mine, improving works such as roof support and replacing existing pillars with concrete pillars (CP) were carried out. During the construction of the second CP, in the space between the remaining pillars, one of the pillars failed leading to the progressive failure of other pillars until 4 000 m 2 of mine had collapsed within a few minutes. In this work, this phenomenon is described by applying both numerical and empirical methods and the respective results are compared. The results of numerical modelling are found to be closer to the actual condition than those of the empirical method. Also, a width-to-height (W/H) ratio less than 1, an inadequate support system and the absence of a detailed program for pillar recovery are shown to be the most important causes of the Domino failure in this mine.
基金Alexander von Humboldt-Foundation (AvH) for the financial support as a research fellowthe financial support of the Scientific and Technological Research Council of Turkey (TüB_ITAK) under Project No. MAG-114M568
文摘Severe shield jamming events have been reported during excavation of Uluabat tunnel through adverse geological conditions, which resulted in several stoppages at advancing a single shielded tunnel boring machine(TBM). To study the jamming mechanism, three-dimensional(3D) simulation of the machine and surrounding ground was implemented using the finite difference code FLAC3D. Numerical analyses were performed for three sections along the tunnel with a higher risk for entrapment due to the combination of overburden and geological conditions. The computational results including longitudinal displacement contours and ground pressure profiles around the shield allow a better understanding of ground behavior within the excavation. Furthermore, they allow realistically assessing the impact of adverse geological conditions on shield jamming. The calculated thrust forces, which are required to move the machine forward, are in good agreement with field observations and measurements. It also proves that the numerical analysis can effectively be used for evaluating the effect of adverse geological environment on TBM entrapments and can be applied to prediction of loads on the shield and preestimating of the required thrust force during excavation through adverse ground conditions.
基金Project (No.90815008) supported by the National Natural Science Foundation of China
文摘A coupled discrete-continuum simulation incorporating a 3D aspect and non-circular particles was performed to analyze soil-pile interactions during pile penetration in sand.A self-developed non-circular particle numerical simulation program was used which considered sand near the pile as interacted particles using a discrete element method;the sand away from the pile was simulated as a continuous medium exhibiting linear elastic behaviors.The domain analyzed was divided into two zones.Contact forces at the interface between the two zones were obtained from a discrete zone and applied to the continuum boundaries as nodal forces,while the interface velocities were obtained from the continuum zone and applied to the discrete boundaries.We show that the coupled discrete-continuum simulation can give a microscopic description of the pile penetration process without losing the discrete nature of the zone concerned,and may significantly improve computational efficiency.
基金The authors gratefully acknowledge financial support from the China Scholarship Council(Grant No.201808370185).
文摘As the depth of excavation increases,rockburst becomes one of the most serious geological hazards damaging equipment and facilities and even causing fatalities in mining and civil engineering.This has forced researchers worldwide to identify different methods to investigate rockburst-related problems.However,some problems,such as the mechanisms and the prediction of rockbursts,continue to be studied because rockburst is a very complicated phenomenon influenced by the uncertainty and complexity in geological conditions,in situ stresses,induced stresses,etc.Numerical modeling is a widely used method for investigating rockbursts.To date,great achievements have been made owing to the rapid development of information technology(IT)and computer equipment.Hence,it is necessary and meaningful to conduct a review of the current state of the studies for rockburst numerical modeling.In this paper,the categories and the origin of different numerical approaches employed in modeling rockbursts are reviewed and the current usage of various numerical modeling approaches is investigated by a literature research.Later,a state-of-the-art review is implemented to investigate the application of numerical modeling in the mechanism study,and prediction and prevention of rockbursts.The main achievements and problems are highlighted.Finally,this paper discusses the limitations and the future research of numerical modeling for rockbursts.An approach is proposed to provide researchers with a systematic and reasonable numerical modeling framework.
基金"333"Project Scientific Research Foundation of Jiangsu ProvinceScience Fundation of Hohai University(3853)
文摘The history of forecasting wind waves by wave energy conservation equation Is briefly described. Several currently used wave numerical models for shallow water based on different wave theories are discussed. Wave energy conservation models for the simulation of shallow water waves are introduced, with emphasis placed on the SWAN model, which takes use of the most advanced wave research achievements and has been applied to several theoretical and field conditions. The characteristics and applicability of the model, the finite difference numerical scheme of the action balance equation and its source terms computing methods are described in detail. The model has been verified with the propagation refraction numerical experiments for waves propagating in following and opposing currents; finally, the model is applied to the Haian Gulf area to simulate the wave height and wave period field there, and the results are compared with observed data.
基金This work was financially supported by the funds for Youth Scholar of the Ministry of Communications,P.R.China
文摘In this paper the characteristics of tidal flow and seasonal variation of seidment content in the Hangzhou Bay and their affecting factors are studied. Field investigations and data analysis indicate that the sediment movement is mainly influenced by the Yangtze estuary and the sediment of the Yangtze estuary is induced by wind wave and tidal flow. Owing to the variation of dynamic conditions, the instantaneous sediment content is controlled by tidal flow, wind wave, depth of water and tidal range synthetically. A sediment content relationship formula is established with related factors. A non-equilibrium 2-dimensional numerical model of suspended sediment transportation is set up, and the finite element method is applied. The computation results of the model is in accordance with field data.
文摘Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlights an integrated approach of designing overhanging rock slopes where the relative dimensions of the slope exceed the scale of fracturing and the rock mass failure needs to be considered rather than kinematic release of individual blocks. The key to the method is a simplified limit equilibrium(LE) tool that was used for the support design and analysis of a multi-faceted overhanging rock slope. The overhanging slopes required complex geometries with constantly changing orientations. The overhanging rock varied in height from 30 m to 66 m. Geomechanical modelling combined with discrete fracture network(DFN)representation of the rock mass was used to validate the rock mass strength assumptions and the failure mechanism assumed in the LE model. The advantage of the simplified LE method is that buttress and support design iterations(along with sensitivity analysis of design parameters) can be completed for various cross-sections along the proposed overhanging rock sections in an efficient manner, compared to the more time-intensive, sophisticated methods that were used for the initial validation. The method described presents the development of this design tool and assumptions made for a specific overhanging rock slope design. Other locations will have different geological conditions that can control the potential behaviour of rock slopes, however, the approach presented can be applied as a general guiding design principle for overhanging rock cut slope.
基金The project is financially supported by the Research Fund of the College of Harbor,Waterway and Coastal Engineering,Hohai University.
文摘For simulating fresh and salt water mixing in estuaries, a three dimensional nonlinear baroclinic numerical model is developed, in which the gradients of horizontal pressure contain die gradient of barotropic pressure arising from the gradient of tidal level and the gradient of baroclinic pressure due to the gradient of salinity. The Eulerian-Lagrangian method is employed to descretize both the momentum equations of tidal motion and the equation of salt water diffusion so as to improve the computational stability and accuracy. The methods to provide the boundary conditions and the initial conditions are proposed, and the criterion for computational stability of the salinity fields is presented. The present model is used for modeling fresh and salt water mixing in the Yangtze Estuary. Computations show that the salinity distribution has the characteristics of partial mixing pattern, and that the present model is suitable for simulation of fresh and salt water mixing in the Yangtze Estuary.
基金The project was financially supported by the National Natural Science Foundation of China(Grant No.59979002 and No 59839330)
文摘Nonlinear water wave propagation passing a submerged shelf is studied experimentally and numerically. The applicability of two different wave propagation models has been investigated. One is higher-order Boussinesq equations derived by Zou (1999) and the other is the classic Boussinesq equations, Physical experiments are conducted, three different front slopes (1:10, 1:5 and 1:2) of the shelf are set up in the experiment and their effects on wave propagation are investigated. Comparisons of numerical results with test data are made, the model of higher-order Boussinesq equations agrees much better with the measurements than the model of the classical Boussinesq equations, The results show that the higher-order Boussinesq equations can also be applied to the steeper slope case although the mild slope assumption is employed in the derivation of the higher order terms of higher order Boussinesq equations.
文摘This article provides the application of the high-order, staggered-grid, finite-difference scheme to model elastic wave propagation in 3-D isotropic media. Here, we use second-order, tempo- ral- and high-order spatial finite-difference formulations with a staggered grid for discretization of the 3-D elastic wave equations of motion. The set of absorbing boundary conditions based on paraxial approximations of 3-D elastic wave equations are applied to the numerical boundaries. The trial re- sults for the salt model show that the numerical dispersion is decreased to a minimum extent, the accuracy high and diffracted waves abundant. It also shows that this method can be used for modeling wave propagation in complex media with the lateral variation of velocity.
文摘To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are governed by a damage variable. By using the proposed material model, damage and fragmentation of a typical masonry wall under blast loading at different scaled distances is calculated. The hazard level of the masonry wall to blast loading is evaluated by analyzing the numerical results.