Software systems are vulnerable to security breaches as they expand in complexity and functionality.The confidentiality,integrity,and availability of data are gravely threatened by flaws in a system’s design,implemen...Software systems are vulnerable to security breaches as they expand in complexity and functionality.The confidentiality,integrity,and availability of data are gravely threatened by flaws in a system’s design,implementation,or configuration.To guarantee the durability&robustness of the software,vulnerability identification and fixation have become crucial areas of focus for developers,cybersecurity experts and industries.This paper presents a thorough multi-phase mathematical model for efficient patch management and vulnerability detection.To uniquely model these processes,the model incorporated the notion of the learning phenomenon in describing vulnerability fixation using a logistic learning function.Furthermore,the authors have used numerical methods to approximate the solution of the proposed framework where an analytical solution is difficult to attain.The suggested systematic architecture has been demonstrated through statistical analysis using patch datasets,which offers a solid basis for the research conclusions.According to computational research,learning dynamics improves security response and results in more effective vulnerability management.The suggested model offers a systematic approach to proactive vulnerability mitigation and has important uses in risk assessment,software maintenance,and cybersecurity.This study helps create more robust software systems by increasing patch management effectiveness,which benefits developers,cybersecurity experts,and sectors looking to reduce security threats in a growing digital world.展开更多
To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based sim...To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.展开更多
This review paper provides a comprehensive introduction to various numerical methods for the phase-field model used to simulate the phase separation dynamics of diblock copolymer melts.Diblock copolymer systems form c...This review paper provides a comprehensive introduction to various numerical methods for the phase-field model used to simulate the phase separation dynamics of diblock copolymer melts.Diblock copolymer systems form complex structures at the nanometer scale and play a significant role in various applications.The phase-field model,in particular,is essential for describing the formation and evolution of these structures and is widely used as a tool to effectively predict the movement of phase boundaries and the distribution of phases over time.In this paper,we discuss the principles and implementations of various numerical methodologies for this model and analyze the strengths,limitations,stability,accuracy,and computational efficiency of each method.Traditional approaches such as Fourier spectral methods,finite difference methods and alternating direction explicit methods are reviewed,as well as recent advancements such as the invariant energy quadratization method and the scalar auxiliary variable scheme are also presented.In addition,we introduce examples of the phase-field model,which are fingerprint image restoration and 3D printing.These examples demonstrate the extensive applicability of the reviewed methods and models.展开更多
The modeling of crack growth in three-dimensional(3D)space poses significant challenges in rock mechanics due to the complex numerical computation involved in simulating crack propagation and interaction in rock mater...The modeling of crack growth in three-dimensional(3D)space poses significant challenges in rock mechanics due to the complex numerical computation involved in simulating crack propagation and interaction in rock materials.In this study,we present a novel approach that introduces a 3D numerical manifold method(3D-NMM)with a geometric kernel to enhance computational efficiency.Specifically,the maximum tensile stress criterion is adopted as a crack growth criterion to achieve strong discontinuous crack growth,and a local crack tracking algorithm and an angle correction technique are incorporated to address minor limitations of the algorithm in a 3D model.The implementation of the program is carried out in Python,using object-oriented programming in two independent modules:a calculation module and a crack module.Furthermore,we propose feasible improvements to enhance the performance of the algorithm.Finally,we demonstrate the feasibility and effectiveness of the enhanced algorithm in the 3D-NMM using four numerical examples.This study establishes the potential of the 3DNMM,combined with the local tracking algorithm,for accurately modeling 3D crack propagation in brittle rock materials.展开更多
As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accura...As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.展开更多
Rock is geometrically and mechanically multiscale in nature,and the traditional phenomenological laws at the macroscale cannot render a quantitative relationship between microscopic damage of rocks and overall rock st...Rock is geometrically and mechanically multiscale in nature,and the traditional phenomenological laws at the macroscale cannot render a quantitative relationship between microscopic damage of rocks and overall rock structural degradation.This may lead to problems in the evaluation of rock structure stability and safe life.Multiscale numerical modeling is regarded as an effective way to gain insight into factors affecting rock properties from a cross-scale view.This study compiles the history of theoretical developments and numerical techniques related to rock multiscale issues according to different modeling architectures,that is,the homogenization theory,the hierarchical approach,and the concurrent approach.For these approaches,their benefits,drawbacks,and application scope are underlined.Despite the considerable attempts that have been made,some key issues still result in multiple challenges.Therefore,this study points out the perspectives of rock multiscale issues so as to provide a research direction for the future.The review results show that,in addition to numerical techniques,for example,high-performance computing,more attention should be paid to the development of an advanced constitutive model with consideration of fine geometrical descriptions of rock to facilitate solutions to multiscale problems in rock mechanics and rock engineering.展开更多
In the field of discretization-based meshfree/meshless methods,the improvements in the higher-order consistency,stability,and computational efficiency are of great concerns in computational science and numerical solut...In the field of discretization-based meshfree/meshless methods,the improvements in the higher-order consistency,stability,and computational efficiency are of great concerns in computational science and numerical solutions to partial differential equations.Various alternative numerical methods of the finite particle method(FPM)frame have been extended from mathematical theories to numerical applications separately.As a comprehensive numerical scheme,this study suggests a unified resolved program for numerically investigating their accuracy,stability,consistency,computational efficiency,and practical applicability in industrial engineering contexts.The high-order finite particle method(HFPM)and corrected methods based on the multivariate Taylor series expansion are constructed and analyzed to investigate the whole applicability in different benchmarks of computational fluid dynamics.Specifically,four benchmarks are designed purposefully from statical exact solutions to multifaceted hydrodynamic tests,which possess different numerical performances on the particle consistency,numerical discretized forms,particle distributions,and transient time evolutional stabilities.This study offers a numerical reference for the current unified resolved program.展开更多
The best way to check the validity of our theories(models)is by direct comparison with the experiment(observations).However,this process suffers from numerical inaccuracies,which are not frequently studied and often r...The best way to check the validity of our theories(models)is by direct comparison with the experiment(observations).However,this process suffers from numerical inaccuracies,which are not frequently studied and often remain mostly unknown.In this study,we focus on addressing the numerical inaccuracies intrinsic to the process of comparing theory and observations.To achieve this goal,we built four-dimensional(4D)spectral grids for Wolf–Rayet stars(WC and WN spectral classes)and blue supergiants characterized by low metallicity similar to that of the Small Magellanic Cloud.In contrast to lighter(three-dimensional)grids,which rely on a priori assumptions about certain stellar parameters(e.g.,wind velocity)and thus have limited applicability,our 4D grids vary four independent parameters,enabling more flexible and broadly applicable spectral fitting.Utilizing these 4D grids,we developed and validated a fitting approach facilitating direct fits to observed spectra.Through rigorous testing on designated“test”models,we demonstrated that the numerical precision of derived essential stellar parameters,including effective temperature,mass-loss rate,luminosity,and wind velocity,is better than 0.05 dex.Furthermore,we explored the influence of unaccounted factors,including variations in the metal abundances,wind acceleration laws,and clumping,on the precision of the derived parameters.The results indicate that the first two factors have the strongest influence on the numerical accuracy of the derived stellar parameters.Variations in abundances predominantly influenced the mass-loss rate for weak-wind scenarios,while effective temperature and luminosity remained robust.We found that the wind acceleration law influences the numerical uncertainty of the derived wind parameters mostly for models with weak winds.Interestingly,different degrees of clumping demonstrated good precision for spectra with strong winds,contrasting with a decrease in the precision for weak-wind cases.We found also that the accuracy of our approach depends on spectral range and the inclusion of ultraviolet spectral range improves the precision of derived parameters,especially for an object with weak winds.展开更多
The 21 cm radiation of neutral hydrogen provides crucial information for studying the early universe and its evolution.To advance this research,countries have made significant investments in constructing large lowfreq...The 21 cm radiation of neutral hydrogen provides crucial information for studying the early universe and its evolution.To advance this research,countries have made significant investments in constructing large lowfrequency radio telescope arrays,such as the Low Frequency Array and the Square Kilometre Array Phase 1 Low Frequency.These instruments are pivotal for radio astronomy research.However,challenges such as ionospheric plasma interference,ambient radio noise,and instrument-related effects have become increasingly prominent,posing major obstacles in cosmology research.To address these issues,this paper proposes an efficient signal processing method that combines wavelet transform and mathematical morphology.The method involves the following steps:Background Subtraction:Background interference in radio observation signals is eliminated.Wavelet Transform:The signal,after removing background noise,undergoes a two-dimensional discrete wavelet transform.Threshold processing is then applied to the wavelet coefficients to effectively remove interference components.Wavelet Inversion:The processed signal is reconstructed using wavelet inversion.Mathematical Morphology:The reconstructed signal is further optimized using mathematical morphology to refine the results.Experimental verification was conducted using solar observation data from the Xinjiang Observatory and the Yunnan Observatory.The results demonstrate that this method successfully removes interference signals while preserving useful signals,thus improving the accuracy of radio astronomy observations and reducing the impact of radio frequency interference.展开更多
A new numerical manifold (NMM) method is derived on the basis of quartic uniform B-spline interpolation. The analysis shows that the new interpolation function possesses higher-order continuity and polynomial consis...A new numerical manifold (NMM) method is derived on the basis of quartic uniform B-spline interpolation. The analysis shows that the new interpolation function possesses higher-order continuity and polynomial consistency compared with the conven- tional NMM. The stiffness matrix of the new element is well-conditioned. The proposed method is applied for the numerical example of thin plate bending. Based on the prin- ciple of minimum potential energy, the manifold matrices and equilibrium equation are deduced. Numerical results reveal that the NMM has high interpolation accuracy and rapid convergence for the global cover function and its higher-order partial derivatives.展开更多
In order to obtain the surge margin of an aero-engine during its operation,an engine surge experiment is required.A multi-dimensional simulation method for an aero-engine is established in this paper.The simulation of...In order to obtain the surge margin of an aero-engine during its operation,an engine surge experiment is required.A multi-dimensional simulation method for an aero-engine is established in this paper.The simulation of a surge experiment using high-pressure air-injection is then carried out on a turbo-shaft engine to obtain the surge boundary using this method.More specifically,firstly,a body-force model is employed to calculate the compressor performance owing to its capability of capturing the main three-dimensional features of compressor surge and avoiding excessive simulation time required by the traditional fully-three-dimensional Reynolds Averaged Navier-Stokes(RANS)method.Then,a one-dimensional model combining a lumped-parameter plenum model is used for the combustor to account for the propagation of pressure waves and the heat-release process,and a zero-dimensional throttle model is used to mimic the choking effect at the turbine nozzle.Finally,the air-injection system is modeled by imposing an injection boundary condition,which can be used conveniently in changing injection parameters.Based on the established method,the influences of different test parameters,such as the air-injection location,the pressure,the orifice size,the number of injection orifices,and the injection time duration on the surge characteristics and boundary are further studied,which offer effective guidance to optimize an actual experimental design.展开更多
A numerical method was used in order to establish the constitutive relationship of sands under different stress paths, Firstly, based on the numerical method modeling the constitutive law of sands, the elastoplastic c...A numerical method was used in order to establish the constitutive relationship of sands under different stress paths, Firstly, based on the numerical method modeling the constitutive law of sands, the elastoplastic constitutive relationship of sand was established for three paths: the constant proportion of principle stress path, the conventional triaxial compression (CTC) path, and the p=constant (TC) path. The yield lines of plastic volumetric strain and plastic generalized shear strain were given. Through visualization, the three dimensional surface of the stress-strain relationship in the whole stress field (p, q) obtained under the three paths was plotted. Also, by comparing the stress-strain surfaces and yield locus of the three stress paths, the differences were found to be obvious, which demonstrates that the influence of the stress paths on constitutive law was not neglected. The numerical modeling method overcame the difficulty of finding an analytical expression for plastic potential. The results simulated the experimental data with an accuracy of 90% on average, so the constitutive model established in this paper provides an effective constitutive equation for this kind of engineering, reflecting the effect of practical stress paths that occur in sands.展开更多
The greatest challenges of rigorously modeling coupled hydro-mechanical(HM)processes in fractured geological media at different scales are associated with computational geometry.These challenges include dynamic sheari...The greatest challenges of rigorously modeling coupled hydro-mechanical(HM)processes in fractured geological media at different scales are associated with computational geometry.These challenges include dynamic shearing and opening of intersecting fractures at discrete fracture scales as a result of coupled processes,and contact alteration along rough fracture surfaces that triggers structural and physical changes of fractures at micro-asperity scale.In this paper,these challenges are tackled by developing a comprehensive modeling approach for coupled processes in fractured geological media based on numerical manifold method(NMM)at multiple scales.Based on their distinct geometric features,fractures are categorized into three different scales:dominant fracture,discrete fracture,and discontinuum asperity scales.Here the scale is relative,that of the fracture relative to that of the research interest or domain.Different geometric representations of fractures at different scales are used,and different governing equations and constitutive relationships are applied.For dominant fractures,a finite thickness zone model is developed to treat a fracture as a porous nonlinear domain.Nonlinear fracture mechanical behavior is accurately modeled with an implicit approach based on strain energy.For discrete fractures,a zero-dimensional model was developed for analyzing fluid flow and mechanics in fractures that are geometrically treated as boundaries of the rock matrix.With the zero-dimensional model,these fractures can be modeled with arbitrary orientations and intersections.They can be fluid conduits or seals,and can be open,bonded or sliding.For the discontinuum asperity scale,the geometry of rough fracture surfaces is explicitly represented and contacts involving dynamic alteration of contacts among asperities are rigorously calculated.Using this approach,fracture alteration caused by deformation,re-arrangement and sliding of rough surfaces can be captured.Our comprehensive model is able to handle the computational challenges with accurate representation of intersections and shearing of fractures at the discrete fracture scale and rigorously treats contacts along rough fracture surfaces at the discontinuum asperity scale.With future development of three-dimensional(3D)geometric representation of discrete fracture networks in porous rock and contacts among multi-body systems,this model is promising as a basis of 3D fully coupled analysis of fractures at multiple scales,for advancing understanding and optimizing energy recovery and storage in fractured geological media.展开更多
One of the critical aspects in mine design is slope stability analysis and the determination of stable slopes. In the Chador- Malu iron ore mine, one of the most important iron ore mines in central Iran, it was consid...One of the critical aspects in mine design is slope stability analysis and the determination of stable slopes. In the Chador- Malu iron ore mine, one of the most important iron ore mines in central Iran, it was considered vital to perform a comprehensive slope stability analysis. At first, we divided the existing rock hosting pit into six zones and a geotechnical map was prepared. Then, the value of MRMR (Mining Rock Mass Rating) was determined for each zone. Owing to the fact that the Chador-Malu iron ore mine is located in a highly tectonic area and the rock mass completely crushed, the Hoek-Brown failure criterion was found suitable to estimate geo-mechanical parameters. After that, the value of cohesion (c) and friction angle (tp) were calculated for different geotechnical zones and relative graphs and equations were derived as a function of slope height. The stability analyses using numerical and limit equilibrium methods showed that some instability problems might occur by increasing the slope height. Therefore, stable slopes for each geotechnical zone and prepared sections were calculated and presented as a function of slope height.展开更多
Built on the integral formulas in Part I,numerical methods are developed for computing velocity potential and streamfunction in a limited domain.When there is no inner boundary(around a data hole) inside the domain,...Built on the integral formulas in Part I,numerical methods are developed for computing velocity potential and streamfunction in a limited domain.When there is no inner boundary(around a data hole) inside the domain,the total solution is the sum of the internally and externally induced parts.For the internally induced part,three numerical schemes(grid-staggering,local-nesting and piecewise continuous integration) are designed to deal with the singularity of the Green's function encountered in numerical calculations.For the externally induced part,by setting the velocity potential(or streamfunction) component to zero,the other component of the solution can be computed in two ways:(1) Solve for the density function from its boundary integral equation and then construct the solution from the boundary integral of the density function.(2) Use the Cauchy integral to construct the solution directly.The boundary integral can be discretized on a uniform grid along the boundary.By using local-nesting(or piecewise continuous integration),the scheme is refined to enhance the discretization accuracy of the boundary integral around each corner point(or along the entire boundary).When the domain is not free of data holes,the total solution contains a data-hole-induced part,and the Cauchy integral method is extended to construct the externally induced solution with irregular external and internal boundaries.An automated algorithm is designed to facilitate the integrations along the irregular external and internal boundaries.Numerical experiments are performed to evaluate the accuracy and efficiency of each scheme relative to others.展开更多
In theoretical research pertaining to sealing, a contact model must be used to obtain the leakage channel. However, for elastoplastic contact, current numerical methods require a long calculation time. Hyperelastic co...In theoretical research pertaining to sealing, a contact model must be used to obtain the leakage channel. However, for elastoplastic contact, current numerical methods require a long calculation time. Hyperelastic contact is typically simplifed to a linear elastic contact problem, which must be improved in terms of calculation accuracy. Based on the fast Fourier transform, a numerical method suitable for elastoplastic and hyperelastic frictionless contact that can be used for solving two-dimensional and three-dimensional (3D) contact problems is proposed herein. The nonlinear elastic contact problem is converted into a linear elastic contact problem considering residual deformation (or the equivalent residual deformation). Results from numerical simulations for elastic, elastoplastic, and hyperelastic contact between a hemisphere and a rigid plane are compared with those obtained using the fnite element method to verify the accuracy of the numerical method. Compared with the existing elastoplastic contact numerical methods, the proposed method achieves a higher calculation efciency while ensuring a certain calculation accuracy (i.e., the pressure error does not exceed 15%, whereas the calculation time does not exceed 10 min in a 64 × 64 grid). For hyperelastic contact, the proposed method reduces the dependence of the approximation result on the load, as in a linear elastic approximation. Finally, using the sealing application as an example, the contact and leakage rates between complicated 3D rough surfaces are calculated. Despite a certain error, the simplifed numerical method yields a better approximation result than the linear elastic contact approximation. Additionally, the result can be used as fast solutions in engineering applications.展开更多
This paper presents a new method to estimate the height of the atmospheric boundary layer(ABL) by using COSMIC radio occultation bending angle(BA) data. Using the numerical differentiation method combined with the reg...This paper presents a new method to estimate the height of the atmospheric boundary layer(ABL) by using COSMIC radio occultation bending angle(BA) data. Using the numerical differentiation method combined with the regularization technique, the first derivative of BA profiles is retrieved, and the height at which the first derivative of BA has the global minimum is defined to be the ABL height. To reflect the reliability of estimated ABL heights, the sharpness parameter is introduced, according to the relative minimum of the BA derivative. Then, it is applied to four months of COSMIC BA data(January, April, July, and October in 2008), and the ABL heights estimated are compared with two kinds of ABL heights from COSMIC products and with the heights determined by the finite difference method upon the refractivity data. For sharp ABL tops(large sharpness parameters), there is little difference between the ABL heights determined by different methods, i.e.,the uncertainties are small; whereas, for non-sharp ABL tops(small sharpness parameters), big differences exist in the ABL heights obtained by different methods, which means large uncertainties for different methods. In addition, the new method can detect thin ABLs and provide a reference ABL height in the cases eliminated by other methods. Thus, the application of the numerical differentiation method combined with the regularization technique to COSMIC BA data is an appropriate choice and has further application value.展开更多
As one of the bases of gradient-based optimization algorithms, sensitivity analysis is usually required to calculate the derivatives of the system response with respect to the machining parameters. The most widely use...As one of the bases of gradient-based optimization algorithms, sensitivity analysis is usually required to calculate the derivatives of the system response with respect to the machining parameters. The most widely used approaches for sensitivity analysis are based on time-consuming numerical methods, such as finite difference methods. This paper presents a semi-analytical method for calculation of the sensitivity of the stability boundary in milling. After transforming the delay-differential equation with time-periodic coefficients governing the dynamic milling process into the integral form, the Floquet transition matrix is constructed by using the numerical integration method. Then, the analytical expressions of derivatives of the Floquet transition matrix with respect to the machining parameters are obtained. Thereafter, the classical analytical expression of the sensitivity of matrix eigenvalues is employed to calculate the sensitivity of the stability lobe diagram. The two-degree-of-freedom milling example illustrates the accuracy and efficiency of the proposed method. Compared with the existing methods, the unique merit of the proposed method is that it can be used for analytically computing the sensitivity of the stability boundary in milling, without employing any finite difference methods. Therefore, the high accuracy and high efficiency are both achieved. The proposed method can serve as an effective tool for machining parameter optimization and uncertainty analysis in high-speed milling.展开更多
The typical quadrangular and triangular elements for thin plate bending based on Kirchhoff assumptions are the non- conforming elements with low computational accuracy and limitative application range in fmite element...The typical quadrangular and triangular elements for thin plate bending based on Kirchhoff assumptions are the non- conforming elements with low computational accuracy and limitative application range in fmite element method(FEM). Some compatible elements can be developed by the means of supplementing correction functions, increasing nodes in element or on the boundaries, expanding nodal degrees of freedom(DOF), etc, but these elements are inconvenient to apply in practice for the high calculation complexity. In this paper, in order to overcome the defects of thin plate bending finite element, numerical manifold method(NMM) was introduced to solve thin plate bending deformation problem. Rectangular mesh was adopted as mathematical mesh to form f'mite element cover system, and then 16-cover manifold element was proposed. Numerical manifold formulas were constructed on the basis of minimum potential energy principle, displacement boundary conditions are implemented by penalty function method, and all the element matrixes were derived in details. The 16-cover element has a simple calculation process for employing only the transverse displacement cover DOFs as the basic unknown variables, and has been proved to meet the requirements of completeness and full compatibility. As an application, the presented 16-cover element has been used to analyze bending deformation of square thin plate under different loads and boundary conditions, and the results show that numerical manifold method with compatible element, compared with finite element method, can improve computational accuracy and convergence greatly.展开更多
Nonlinear stochastic modeling plays a significant role in disciplines such as psychology,finance,physical sciences,engineering,econometrics,and biological sciences.Dynamical consistency,positivity,and boundedness are ...Nonlinear stochastic modeling plays a significant role in disciplines such as psychology,finance,physical sciences,engineering,econometrics,and biological sciences.Dynamical consistency,positivity,and boundedness are fundamental properties of stochastic modeling.A stochastic coronavirus model is studied with techniques of transition probabilities and parametric perturbation.Well-known explicit methods such as Euler Maruyama,stochastic Euler,and stochastic Runge–Kutta are investigated for the stochastic model.Regrettably,the above essential properties are not restored by existing methods.Hence,there is a need to construct essential properties preserving the computational method.The non-standard approach of finite difference is examined to maintain the above basic features of the stochastic model.The comparison of the results of deterministic and stochastic models is also presented.Our proposed efficient computational method well preserves the essential properties of the model.Comparison and convergence analyses of the method are presented.展开更多
基金supported by grants received by the first author and third author from the Institute of Eminence,Delhi University,Delhi,India,as part of the Faculty Research Program via Ref.No./IoE/2024-25/12/FRP.
文摘Software systems are vulnerable to security breaches as they expand in complexity and functionality.The confidentiality,integrity,and availability of data are gravely threatened by flaws in a system’s design,implementation,or configuration.To guarantee the durability&robustness of the software,vulnerability identification and fixation have become crucial areas of focus for developers,cybersecurity experts and industries.This paper presents a thorough multi-phase mathematical model for efficient patch management and vulnerability detection.To uniquely model these processes,the model incorporated the notion of the learning phenomenon in describing vulnerability fixation using a logistic learning function.Furthermore,the authors have used numerical methods to approximate the solution of the proposed framework where an analytical solution is difficult to attain.The suggested systematic architecture has been demonstrated through statistical analysis using patch datasets,which offers a solid basis for the research conclusions.According to computational research,learning dynamics improves security response and results in more effective vulnerability management.The suggested model offers a systematic approach to proactive vulnerability mitigation and has important uses in risk assessment,software maintenance,and cybersecurity.This study helps create more robust software systems by increasing patch management effectiveness,which benefits developers,cybersecurity experts,and sectors looking to reduce security threats in a growing digital world.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52271317 and 52071149)the Fundamental Research Funds for the Central Universities(HUST:2019kfy XJJS007)。
文摘To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.
文摘This review paper provides a comprehensive introduction to various numerical methods for the phase-field model used to simulate the phase separation dynamics of diblock copolymer melts.Diblock copolymer systems form complex structures at the nanometer scale and play a significant role in various applications.The phase-field model,in particular,is essential for describing the formation and evolution of these structures and is widely used as a tool to effectively predict the movement of phase boundaries and the distribution of phases over time.In this paper,we discuss the principles and implementations of various numerical methodologies for this model and analyze the strengths,limitations,stability,accuracy,and computational efficiency of each method.Traditional approaches such as Fourier spectral methods,finite difference methods and alternating direction explicit methods are reviewed,as well as recent advancements such as the invariant energy quadratization method and the scalar auxiliary variable scheme are also presented.In addition,we introduce examples of the phase-field model,which are fingerprint image restoration and 3D printing.These examples demonstrate the extensive applicability of the reviewed methods and models.
基金supported by the National Natural Science Foundation of China(Grant Nos.42172312 and 52211540395)support from the Institut Universitaire de France(IUF).
文摘The modeling of crack growth in three-dimensional(3D)space poses significant challenges in rock mechanics due to the complex numerical computation involved in simulating crack propagation and interaction in rock materials.In this study,we present a novel approach that introduces a 3D numerical manifold method(3D-NMM)with a geometric kernel to enhance computational efficiency.Specifically,the maximum tensile stress criterion is adopted as a crack growth criterion to achieve strong discontinuous crack growth,and a local crack tracking algorithm and an angle correction technique are incorporated to address minor limitations of the algorithm in a 3D model.The implementation of the program is carried out in Python,using object-oriented programming in two independent modules:a calculation module and a crack module.Furthermore,we propose feasible improvements to enhance the performance of the algorithm.Finally,we demonstrate the feasibility and effectiveness of the enhanced algorithm in the 3D-NMM using four numerical examples.This study establishes the potential of the 3DNMM,combined with the local tracking algorithm,for accurately modeling 3D crack propagation in brittle rock materials.
基金supported by the National Natural Science Foundation of China(Grant No.42277165)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.CUGCJ1821)the National Overseas Study Fund(Grant No.202106410040).
文摘As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.
基金National Natural Science Foundation of China,Grant/Award Numbers:52192691,52192690。
文摘Rock is geometrically and mechanically multiscale in nature,and the traditional phenomenological laws at the macroscale cannot render a quantitative relationship between microscopic damage of rocks and overall rock structural degradation.This may lead to problems in the evaluation of rock structure stability and safe life.Multiscale numerical modeling is regarded as an effective way to gain insight into factors affecting rock properties from a cross-scale view.This study compiles the history of theoretical developments and numerical techniques related to rock multiscale issues according to different modeling architectures,that is,the homogenization theory,the hierarchical approach,and the concurrent approach.For these approaches,their benefits,drawbacks,and application scope are underlined.Despite the considerable attempts that have been made,some key issues still result in multiple challenges.Therefore,this study points out the perspectives of rock multiscale issues so as to provide a research direction for the future.The review results show that,in addition to numerical techniques,for example,high-performance computing,more attention should be paid to the development of an advanced constitutive model with consideration of fine geometrical descriptions of rock to facilitate solutions to multiscale problems in rock mechanics and rock engineering.
基金supported by the National Natural Science Foundation of China(No.12002290)。
文摘In the field of discretization-based meshfree/meshless methods,the improvements in the higher-order consistency,stability,and computational efficiency are of great concerns in computational science and numerical solutions to partial differential equations.Various alternative numerical methods of the finite particle method(FPM)frame have been extended from mathematical theories to numerical applications separately.As a comprehensive numerical scheme,this study suggests a unified resolved program for numerically investigating their accuracy,stability,consistency,computational efficiency,and practical applicability in industrial engineering contexts.The high-order finite particle method(HFPM)and corrected methods based on the multivariate Taylor series expansion are constructed and analyzed to investigate the whole applicability in different benchmarks of computational fluid dynamics.Specifically,four benchmarks are designed purposefully from statical exact solutions to multifaceted hydrodynamic tests,which possess different numerical performances on the particle consistency,numerical discretized forms,particle distributions,and transient time evolutional stabilities.This study offers a numerical reference for the current unified resolved program.
文摘The best way to check the validity of our theories(models)is by direct comparison with the experiment(observations).However,this process suffers from numerical inaccuracies,which are not frequently studied and often remain mostly unknown.In this study,we focus on addressing the numerical inaccuracies intrinsic to the process of comparing theory and observations.To achieve this goal,we built four-dimensional(4D)spectral grids for Wolf–Rayet stars(WC and WN spectral classes)and blue supergiants characterized by low metallicity similar to that of the Small Magellanic Cloud.In contrast to lighter(three-dimensional)grids,which rely on a priori assumptions about certain stellar parameters(e.g.,wind velocity)and thus have limited applicability,our 4D grids vary four independent parameters,enabling more flexible and broadly applicable spectral fitting.Utilizing these 4D grids,we developed and validated a fitting approach facilitating direct fits to observed spectra.Through rigorous testing on designated“test”models,we demonstrated that the numerical precision of derived essential stellar parameters,including effective temperature,mass-loss rate,luminosity,and wind velocity,is better than 0.05 dex.Furthermore,we explored the influence of unaccounted factors,including variations in the metal abundances,wind acceleration laws,and clumping,on the precision of the derived parameters.The results indicate that the first two factors have the strongest influence on the numerical accuracy of the derived stellar parameters.Variations in abundances predominantly influenced the mass-loss rate for weak-wind scenarios,while effective temperature and luminosity remained robust.We found that the wind acceleration law influences the numerical uncertainty of the derived wind parameters mostly for models with weak winds.Interestingly,different degrees of clumping demonstrated good precision for spectra with strong winds,contrasting with a decrease in the precision for weak-wind cases.We found also that the accuracy of our approach depends on spectral range and the inclusion of ultraviolet spectral range improves the precision of derived parameters,especially for an object with weak winds.
基金funded by the National Key Research and Development Program’s intergovernmental International Science and Technology Innovation Cooperation project,titled Remote Sensing and Radio Astronomy Observation of Space Weather in Low and Middle Latitudes(project number:2022YFE0140000)Supported by International Partnership Program of Chinese Academy of Sciences,grant No.114A11KYSB20200001。
文摘The 21 cm radiation of neutral hydrogen provides crucial information for studying the early universe and its evolution.To advance this research,countries have made significant investments in constructing large lowfrequency radio telescope arrays,such as the Low Frequency Array and the Square Kilometre Array Phase 1 Low Frequency.These instruments are pivotal for radio astronomy research.However,challenges such as ionospheric plasma interference,ambient radio noise,and instrument-related effects have become increasingly prominent,posing major obstacles in cosmology research.To address these issues,this paper proposes an efficient signal processing method that combines wavelet transform and mathematical morphology.The method involves the following steps:Background Subtraction:Background interference in radio observation signals is eliminated.Wavelet Transform:The signal,after removing background noise,undergoes a two-dimensional discrete wavelet transform.Threshold processing is then applied to the wavelet coefficients to effectively remove interference components.Wavelet Inversion:The processed signal is reconstructed using wavelet inversion.Mathematical Morphology:The reconstructed signal is further optimized using mathematical morphology to refine the results.Experimental verification was conducted using solar observation data from the Xinjiang Observatory and the Yunnan Observatory.The results demonstrate that this method successfully removes interference signals while preserving useful signals,thus improving the accuracy of radio astronomy observations and reducing the impact of radio frequency interference.
基金supported by the Fund of National Engineering and Research Center for Highways in Mountain Area(No.gsgzj-2012-05)the Fundamental Research Funds for the Central Universities of China(No.CDJXS12240003)the Scientific Research Foundation of State Key Laboratory of Coal Mine Disaster Dynamics and Control(No.2011DA105287-MS201213)
文摘A new numerical manifold (NMM) method is derived on the basis of quartic uniform B-spline interpolation. The analysis shows that the new interpolation function possesses higher-order continuity and polynomial consistency compared with the conven- tional NMM. The stiffness matrix of the new element is well-conditioned. The proposed method is applied for the numerical example of thin plate bending. Based on the prin- ciple of minimum potential energy, the manifold matrices and equilibrium equation are deduced. Numerical results reveal that the NMM has high interpolation accuracy and rapid convergence for the global cover function and its higher-order partial derivatives.
基金supported by the National Science and Technology Major Project(Nos.J2019-I-0011 and 2017-II0004-0016)。
文摘In order to obtain the surge margin of an aero-engine during its operation,an engine surge experiment is required.A multi-dimensional simulation method for an aero-engine is established in this paper.The simulation of a surge experiment using high-pressure air-injection is then carried out on a turbo-shaft engine to obtain the surge boundary using this method.More specifically,firstly,a body-force model is employed to calculate the compressor performance owing to its capability of capturing the main three-dimensional features of compressor surge and avoiding excessive simulation time required by the traditional fully-three-dimensional Reynolds Averaged Navier-Stokes(RANS)method.Then,a one-dimensional model combining a lumped-parameter plenum model is used for the combustor to account for the propagation of pressure waves and the heat-release process,and a zero-dimensional throttle model is used to mimic the choking effect at the turbine nozzle.Finally,the air-injection system is modeled by imposing an injection boundary condition,which can be used conveniently in changing injection parameters.Based on the established method,the influences of different test parameters,such as the air-injection location,the pressure,the orifice size,the number of injection orifices,and the injection time duration on the surge characteristics and boundary are further studied,which offer effective guidance to optimize an actual experimental design.
文摘A numerical method was used in order to establish the constitutive relationship of sands under different stress paths, Firstly, based on the numerical method modeling the constitutive law of sands, the elastoplastic constitutive relationship of sand was established for three paths: the constant proportion of principle stress path, the conventional triaxial compression (CTC) path, and the p=constant (TC) path. The yield lines of plastic volumetric strain and plastic generalized shear strain were given. Through visualization, the three dimensional surface of the stress-strain relationship in the whole stress field (p, q) obtained under the three paths was plotted. Also, by comparing the stress-strain surfaces and yield locus of the three stress paths, the differences were found to be obvious, which demonstrates that the influence of the stress paths on constitutive law was not neglected. The numerical modeling method overcame the difficulty of finding an analytical expression for plastic potential. The results simulated the experimental data with an accuracy of 90% on average, so the constitutive model established in this paper provides an effective constitutive equation for this kind of engineering, reflecting the effect of practical stress paths that occur in sands.
基金supported by Laboratory Directed Research and Development(LDRD)funding from Berkeley Labsupported by Open Fund of the State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z017004)。
文摘The greatest challenges of rigorously modeling coupled hydro-mechanical(HM)processes in fractured geological media at different scales are associated with computational geometry.These challenges include dynamic shearing and opening of intersecting fractures at discrete fracture scales as a result of coupled processes,and contact alteration along rough fracture surfaces that triggers structural and physical changes of fractures at micro-asperity scale.In this paper,these challenges are tackled by developing a comprehensive modeling approach for coupled processes in fractured geological media based on numerical manifold method(NMM)at multiple scales.Based on their distinct geometric features,fractures are categorized into three different scales:dominant fracture,discrete fracture,and discontinuum asperity scales.Here the scale is relative,that of the fracture relative to that of the research interest or domain.Different geometric representations of fractures at different scales are used,and different governing equations and constitutive relationships are applied.For dominant fractures,a finite thickness zone model is developed to treat a fracture as a porous nonlinear domain.Nonlinear fracture mechanical behavior is accurately modeled with an implicit approach based on strain energy.For discrete fractures,a zero-dimensional model was developed for analyzing fluid flow and mechanics in fractures that are geometrically treated as boundaries of the rock matrix.With the zero-dimensional model,these fractures can be modeled with arbitrary orientations and intersections.They can be fluid conduits or seals,and can be open,bonded or sliding.For the discontinuum asperity scale,the geometry of rough fracture surfaces is explicitly represented and contacts involving dynamic alteration of contacts among asperities are rigorously calculated.Using this approach,fracture alteration caused by deformation,re-arrangement and sliding of rough surfaces can be captured.Our comprehensive model is able to handle the computational challenges with accurate representation of intersections and shearing of fractures at the discrete fracture scale and rigorously treats contacts along rough fracture surfaces at the discontinuum asperity scale.With future development of three-dimensional(3D)geometric representation of discrete fracture networks in porous rock and contacts among multi-body systems,this model is promising as a basis of 3D fully coupled analysis of fractures at multiple scales,for advancing understanding and optimizing energy recovery and storage in fractured geological media.
文摘One of the critical aspects in mine design is slope stability analysis and the determination of stable slopes. In the Chador- Malu iron ore mine, one of the most important iron ore mines in central Iran, it was considered vital to perform a comprehensive slope stability analysis. At first, we divided the existing rock hosting pit into six zones and a geotechnical map was prepared. Then, the value of MRMR (Mining Rock Mass Rating) was determined for each zone. Owing to the fact that the Chador-Malu iron ore mine is located in a highly tectonic area and the rock mass completely crushed, the Hoek-Brown failure criterion was found suitable to estimate geo-mechanical parameters. After that, the value of cohesion (c) and friction angle (tp) were calculated for different geotechnical zones and relative graphs and equations were derived as a function of slope height. The stability analyses using numerical and limit equilibrium methods showed that some instability problems might occur by increasing the slope height. Therefore, stable slopes for each geotechnical zone and prepared sections were calculated and presented as a function of slope height.
基金supported by the Office of Naval Research (Grant No.N000141010778) to the University of Oklahomathe National Natural Sciences Foundation of China (Grant Nos. 40930950,41075043,and 4092116037) to the Institute of Atmospheric Physicsprovided by NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of Oklahoma Cooperative Agreement No. (NA17RJ1227),U.S. Department of Commerce
文摘Built on the integral formulas in Part I,numerical methods are developed for computing velocity potential and streamfunction in a limited domain.When there is no inner boundary(around a data hole) inside the domain,the total solution is the sum of the internally and externally induced parts.For the internally induced part,three numerical schemes(grid-staggering,local-nesting and piecewise continuous integration) are designed to deal with the singularity of the Green's function encountered in numerical calculations.For the externally induced part,by setting the velocity potential(or streamfunction) component to zero,the other component of the solution can be computed in two ways:(1) Solve for the density function from its boundary integral equation and then construct the solution from the boundary integral of the density function.(2) Use the Cauchy integral to construct the solution directly.The boundary integral can be discretized on a uniform grid along the boundary.By using local-nesting(or piecewise continuous integration),the scheme is refined to enhance the discretization accuracy of the boundary integral around each corner point(or along the entire boundary).When the domain is not free of data holes,the total solution contains a data-hole-induced part,and the Cauchy integral method is extended to construct the externally induced solution with irregular external and internal boundaries.An automated algorithm is designed to facilitate the integrations along the irregular external and internal boundaries.Numerical experiments are performed to evaluate the accuracy and efficiency of each scheme relative to others.
基金Supported by National Key R&D Program of China(Grant No.2019YFB1505301)National Natural Science Foundation of China(Grant No.U1937602)+1 种基金Aeronautical Science Foundation of China(Grant No.201907058001)Open Research Fund of State Key Laboratory of Smart Manufacturing for Special Vehicles and Transmission System(Grant No.GZ2019KF013).
文摘In theoretical research pertaining to sealing, a contact model must be used to obtain the leakage channel. However, for elastoplastic contact, current numerical methods require a long calculation time. Hyperelastic contact is typically simplifed to a linear elastic contact problem, which must be improved in terms of calculation accuracy. Based on the fast Fourier transform, a numerical method suitable for elastoplastic and hyperelastic frictionless contact that can be used for solving two-dimensional and three-dimensional (3D) contact problems is proposed herein. The nonlinear elastic contact problem is converted into a linear elastic contact problem considering residual deformation (or the equivalent residual deformation). Results from numerical simulations for elastic, elastoplastic, and hyperelastic contact between a hemisphere and a rigid plane are compared with those obtained using the fnite element method to verify the accuracy of the numerical method. Compared with the existing elastoplastic contact numerical methods, the proposed method achieves a higher calculation efciency while ensuring a certain calculation accuracy (i.e., the pressure error does not exceed 15%, whereas the calculation time does not exceed 10 min in a 64 × 64 grid). For hyperelastic contact, the proposed method reduces the dependence of the approximation result on the load, as in a linear elastic approximation. Finally, using the sealing application as an example, the contact and leakage rates between complicated 3D rough surfaces are calculated. Despite a certain error, the simplifed numerical method yields a better approximation result than the linear elastic contact approximation. Additionally, the result can be used as fast solutions in engineering applications.
基金supported by the National Natural Science Foundation of China (Grant No. 41475021)
文摘This paper presents a new method to estimate the height of the atmospheric boundary layer(ABL) by using COSMIC radio occultation bending angle(BA) data. Using the numerical differentiation method combined with the regularization technique, the first derivative of BA profiles is retrieved, and the height at which the first derivative of BA has the global minimum is defined to be the ABL height. To reflect the reliability of estimated ABL heights, the sharpness parameter is introduced, according to the relative minimum of the BA derivative. Then, it is applied to four months of COSMIC BA data(January, April, July, and October in 2008), and the ABL heights estimated are compared with two kinds of ABL heights from COSMIC products and with the heights determined by the finite difference method upon the refractivity data. For sharp ABL tops(large sharpness parameters), there is little difference between the ABL heights determined by different methods, i.e.,the uncertainties are small; whereas, for non-sharp ABL tops(small sharpness parameters), big differences exist in the ABL heights obtained by different methods, which means large uncertainties for different methods. In addition, the new method can detect thin ABLs and provide a reference ABL height in the cases eliminated by other methods. Thus, the application of the numerical differentiation method combined with the regularization technique to COSMIC BA data is an appropriate choice and has further application value.
基金supported by National Key Basic Research Program (973 Program, Grant No. 2011CB706804)National Natural Science Foundation of China (Grant No. 50805093)Science & Technology Commission of Shanghai Municipality, China (Grant No. 09QH1401500)
文摘As one of the bases of gradient-based optimization algorithms, sensitivity analysis is usually required to calculate the derivatives of the system response with respect to the machining parameters. The most widely used approaches for sensitivity analysis are based on time-consuming numerical methods, such as finite difference methods. This paper presents a semi-analytical method for calculation of the sensitivity of the stability boundary in milling. After transforming the delay-differential equation with time-periodic coefficients governing the dynamic milling process into the integral form, the Floquet transition matrix is constructed by using the numerical integration method. Then, the analytical expressions of derivatives of the Floquet transition matrix with respect to the machining parameters are obtained. Thereafter, the classical analytical expression of the sensitivity of matrix eigenvalues is employed to calculate the sensitivity of the stability lobe diagram. The two-degree-of-freedom milling example illustrates the accuracy and efficiency of the proposed method. Compared with the existing methods, the unique merit of the proposed method is that it can be used for analytically computing the sensitivity of the stability boundary in milling, without employing any finite difference methods. Therefore, the high accuracy and high efficiency are both achieved. The proposed method can serve as an effective tool for machining parameter optimization and uncertainty analysis in high-speed milling.
基金supported by National Natural Science Foundation of China (Grant No. 50775044, Grant No. 50975050)Guangdong Provincial and Ministry of Education Industry-University-Research Integration Project of China (Grant No. 2009B090300044)
文摘The typical quadrangular and triangular elements for thin plate bending based on Kirchhoff assumptions are the non- conforming elements with low computational accuracy and limitative application range in fmite element method(FEM). Some compatible elements can be developed by the means of supplementing correction functions, increasing nodes in element or on the boundaries, expanding nodal degrees of freedom(DOF), etc, but these elements are inconvenient to apply in practice for the high calculation complexity. In this paper, in order to overcome the defects of thin plate bending finite element, numerical manifold method(NMM) was introduced to solve thin plate bending deformation problem. Rectangular mesh was adopted as mathematical mesh to form f'mite element cover system, and then 16-cover manifold element was proposed. Numerical manifold formulas were constructed on the basis of minimum potential energy principle, displacement boundary conditions are implemented by penalty function method, and all the element matrixes were derived in details. The 16-cover element has a simple calculation process for employing only the transverse displacement cover DOFs as the basic unknown variables, and has been proved to meet the requirements of completeness and full compatibility. As an application, the presented 16-cover element has been used to analyze bending deformation of square thin plate under different loads and boundary conditions, and the results show that numerical manifold method with compatible element, compared with finite element method, can improve computational accuracy and convergence greatly.
基金the Research and initiative center COVID-19-DES-2020-65,Prince Sultan University.
文摘Nonlinear stochastic modeling plays a significant role in disciplines such as psychology,finance,physical sciences,engineering,econometrics,and biological sciences.Dynamical consistency,positivity,and boundedness are fundamental properties of stochastic modeling.A stochastic coronavirus model is studied with techniques of transition probabilities and parametric perturbation.Well-known explicit methods such as Euler Maruyama,stochastic Euler,and stochastic Runge–Kutta are investigated for the stochastic model.Regrettably,the above essential properties are not restored by existing methods.Hence,there is a need to construct essential properties preserving the computational method.The non-standard approach of finite difference is examined to maintain the above basic features of the stochastic model.The comparison of the results of deterministic and stochastic models is also presented.Our proposed efficient computational method well preserves the essential properties of the model.Comparison and convergence analyses of the method are presented.