This paper shows a didactic model (PGM), and not only, but representative of the Hadrons described in the Standard Model (SM). In this model, particles are represented by structures corresponding to geometric shapes o...This paper shows a didactic model (PGM), and not only, but representative of the Hadrons described in the Standard Model (SM). In this model, particles are represented by structures corresponding to geometric shapes of coupled quantum oscillators (IQuO). By the properties of IQuO one can define the electric charge and that of color of quarks. Showing the “aurea” (golden) triangular shape of all quarks, we manage to represent the geometric combinations of the nucleons, light mesons, and K-mesons. By the geometric shape of W-bosons, we represent the weak decay of pions and charged Kaons and neutral, highlighting in geometric terms the possibilities of decay in two and three pions of neutral Kaon and the transition to anti-Kaon. In conclusion, from this didactic representation, an in-depth and exhaustive phenomenology of hadrons emerges, which even manages to resolve some problematic aspects of the SM.展开更多
The energy and centrality dependencies of charged particle pseudorapidity density in relativistic nuclear collisions were studied using a hadron and string cascade model, JPCIAE. Both the relativistic experimental da...The energy and centrality dependencies of charged particle pseudorapidity density in relativistic nuclear collisions were studied using a hadron and string cascade model, JPCIAE. Both the relativistic experimental data and the PHOBOS and PHENIX Au+Au data at RHIC energy could be fairly reproduced within the framework of JPCIAE model and without retuning the model parameters. The predictions for collisions at the LHC energy were also given. We computed the participant nucleon distributions using different methods. It was found that the number of participant nucleons is not a well defined variable both experimentally and theoretically. Thus it may be inappropriate to use the charged particle pseudorapidity density per participant pair as a function of the number of participant nucleons for distinguishing various theoretical models.展开更多
In this paper we consider nucleons as tori, rotating with a constant angular velocity around the straight line passing through their mass centre (geometric centre) and perpendicular to their plane of rotation. We theo...In this paper we consider nucleons as tori, rotating with a constant angular velocity around the straight line passing through their mass centre (geometric centre) and perpendicular to their plane of rotation. We theoretically determine the corresponding potential energy and the force of interaction between pairs of nucleons, using our precise analytical formulas for the electrostatic interaction between two spheres with arbitrary radii and charges, which we derive using experimentally obtained results for the radii and the masses of the nucleons. From the values for binding energy found through our method, it follows that nuclear forces are electromagnetic in nature. In terms of magnitude of the force of interaction between proton and neutron, we obtain that Coulomb's forces are short-range. Our toroid model explains the experimental results not only for binding energy, but also for the radius, magnetic moment and the spin of the nuclei of atoms.展开更多
A nuclear structure model of “ring plus extra nucleon” is proposed. For nuclei larger than 4He, protons (P) and neutrons (N) are basically bound alternatively to form a ZP + ZN ring. The ring folds with a “bond an...A nuclear structure model of “ring plus extra nucleon” is proposed. For nuclei larger than 4He, protons (P) and neutrons (N) are basically bound alternatively to form a ZP + ZN ring. The ring folds with a “bond angle” of 90° for every 3 continuous nucleons to make the nucleons packed densely. Extra N(‘s) can bind to ring-P with the same “bond angle” and “bond distance”. When 2 or more P’s are geometrically available, the extra N tends to be stable. Extra P can bind with ring N in a similar way when the ratio of N/P < 1 although the binding is weaker than that of extra N. Even-Z rings, as well as normal even-even nuclei, always have superimposed gravity centers of P and N;while for odd-Z rings, as well as all odd-A (A: number of nucleon) nuclei, the centers of P and N must be eccentric. The eccentricity results in a depression of binding energy (EB) and therefore odd and even Z dependent zigzag features of EB/A. This can be well explained by the shift of eccentricity by extra nucleons. Symmetrical center may present in even-Z rings and normal even-even nuclei. While for odd-Z ring, only antisymmetric center (every P can find an N through the center and vice versa) is possible. Based on this model, a pair of mirror nuclei, PX+nNX and PXNX+n, should be equivalent in packing structure just like black-white photo and the negative film. Therefore, an identical spin and parity was confirmed for any pair. In addition, the EB/A difference of mirror nuclei pair is nearly a constant of 0.184n MeV. Many other facts can also be easily understood from this model, such as the neutron halo, the unusual stability sequence of 9Be, 7Be and 8Be and so on.展开更多
Study of nucleons charge radii and electromagnetic form factors are expected to provide valuable information about the distribution of electric charge within the fundamental particles in nucleon’s inner structure. In...Study of nucleons charge radii and electromagnetic form factors are expected to provide valuable information about the distribution of electric charge within the fundamental particles in nucleon’s inner structure. In the recent years, dramatic progress has been made in the understanding of the nucleon structure and the precision of its partonic content, due to the vast theoretical progress, and the availability of new high precision measurements. Here in this article, we present a simple model for the charge structure of the nucleons and the most available sets of the structure functions to calculate the mean square charge radius N2> for both protons and neutrons. Our results are consistent with the modern understanding of the nucleons as well as recent experimental data. We discuss the origin of the sign rN2> for both proton and neutron.展开更多
A coalescence model was employed to form deuterons(d),tritons(t),and helium-3(^(3)He)nuclei from a uniformly-distributed volume of protons(p)and neutrons(n).We studied the ratio N_(t)N_(p)/N_(d)^(2)of light nuclei yie...A coalescence model was employed to form deuterons(d),tritons(t),and helium-3(^(3)He)nuclei from a uniformly-distributed volume of protons(p)and neutrons(n).We studied the ratio N_(t)N_(p)/N_(d)^(2)of light nuclei yields as a function of the neutron density fluctuations.We investigated the effect of finite transverse momentum(p_(T))acceptance on the ratio,in particular,the“extrapolation factor”(f)for the ratio as a function of the p_(T)spectral shape and the magnitude of neutron density fluctuations.The nature of f was found to be monotonic in p_(T)spectra“temperature”parameter and neutron density fluctuation magnitude;variations in the latter are relatively small.We also examined f in realistic simulations using the kinematic distributions of protons measured from the heavy-ion collision data.The nature of f was found to be smooth and monotonic as a function of the beam energy.Therefore,we conclude that extrapolation from limited p_(T)ranges does not create,enhance,or reduce the local peak of the N_(t)N_(p)/N_(d)^(2)ratio in the beam energy.Our study provides a necessary benchmark for light nuclei ratios as a probe for nucleon density fluctuations,an important observation in the search for the critical point of nuclear matter.展开更多
The Standard Model of particle physics assumes that fundamental fermions are point particles with zero radius, no spatial dimensions, and infinite matter density. This alternative model treats the nine charged fundame...The Standard Model of particle physics assumes that fundamental fermions are point particles with zero radius, no spatial dimensions, and infinite matter density. This alternative model treats the nine charged fundamental fermions (three leptons and nine quarks) as spheres with non-zero holographic radius. Holographic analysis (based on quantum mechanics, general relativity, thermodynamics, and Shannon information theory) specifies electron mass by five fundamental constants: Planck’s constant ℏ, gravitational constant G, fine structure constant α, cosmological constant Λ, and vacuum energy fraction ΩΛ. Protons and neutrons are composite systems of up and down quarks. Describing forces between quark constituents confined within nucleons as inverse square attractive forces, this alternative model identifies composition factors Cpand Cnto relate proton and neutron masses to electron mass and thus to fundamental constants. An appendix summarizes holographic analyses characterizing astronomical masses at the opposite end of the mass scale for objects in the universe.展开更多
In this paper,we propose a map that connects nucleons bound in nuclei and Ising spins in the Ising model.This proposal is based on the fact that the description of states of nucleons and Ising spins could share the sa...In this paper,we propose a map that connects nucleons bound in nuclei and Ising spins in the Ising model.This proposal is based on the fact that the description of states of nucleons and Ising spins could share the same type of observables.We present a nuclear model corresponding to an explicit modified Ising model and qualitatively confirm the correctness of this map with a simulation on a two-dimensional square lattice.This map can help us understand the profound connections between different physical systems.展开更多
The statistical properties of interacting fermions have been studied for various angular momentum with the inclusion of pairing interaction. The dependence of the critical temperature on angular momentum for several n...The statistical properties of interacting fermions have been studied for various angular momentum with the inclusion of pairing interaction. The dependence of the critical temperature on angular momentum for several nuclei, have been studied. The yrast energy as a function of angular momentum for 28Si and 24 Mg nuclei have been calculated up to 60.0 MeV of excitation energy. The computed limiting angular momenta are compared with the experimental results for ^26Al produced by ^12C+ 14N reaction. The relevant nuclear level densities for non-zero angular momentum have been computed for ^44Ti and ^136 Ba nuclei. The results are compared with their corresponding values obtained from the approximate formulas.展开更多
Based on a model of fermions which implies a model of photons, a model of the neutron is constructed by merging two photons of equal energy propagating in opposite directions. The fermion model is outlined, and the me...Based on a model of fermions which implies a model of photons, a model of the neutron is constructed by merging two photons of equal energy propagating in opposite directions. The fermion model is outlined, and the merging of two photons is described in detail. The radius of the neutron obtained in this way is Rn = 0.84008… fm. This value is four times the reduced Compton wavelength of the neutron. Assuming the same model for the proton, one obtains a value of Rp = 0.84123… fm, which agrees with the most recent experimental value for the charge radius of the proton within the given limits of error. The neutral charge of the neutron is reproduced, and the positive charge of the proton follows within the model, if the proton is formed via the anti-neutron by losing one electron. S = ±ħ/2, and zero dipole moment, is also reproduced for proton and neutron. Further, a value of the magnetic moment of the neutron of μ= &minus2.00μN (μN: nuclear magnetic moment), and of the proton of μ = 2.666… μN is predicted. The deviation by ca. 5% from the recommended respective values of (&minus1.9130μn), and (2.793μn) is ascribed to the (g-2)-anomaly. Finally, the relation of the model with the established description of the nucleons in terms of three quarks bound by gluons is shortly discussed.展开更多
Nucleon-nucleon (NN) correlations and their isospin dependence in asymmetric nuclear matter are of great nterest since they are closely related to the structure of neutron-rich nuclei[1], particle production in heavy-...Nucleon-nucleon (NN) correlations and their isospin dependence in asymmetric nuclear matter are of great nterest since they are closely related to the structure of neutron-rich nuclei[1], particle production in heavy-ion ollisions[2], and neutron-star physics[3]. The many-body correlations among nucleons can be directly reflected in the neutron and proton spectral functions[4], and the latter may play an important role in understanding the nature f the NN correlations, especially the short-range and tensor correlations in asymmetric nuclear matter.展开更多
Directed flow(v_(1))of the hypernuclei ^(3)_(Λ)H and ^(4)_(Λ)H have been observed in mid-central Au+Au collisions at√^(s)NN=3 GeV at RHIC.This measurement opens up a new possibility for studying hyperon–nucleon(Y...Directed flow(v_(1))of the hypernuclei ^(3)_(Λ)H and ^(4)_(Λ)H have been observed in mid-central Au+Au collisions at√^(s)NN=3 GeV at RHIC.This measurement opens up a new possibility for studying hyperon–nucleon(Y–N)interaction under finite pressure.In addition,multi-strangeness hypernuclei provide a venue to probe hyperon–nucleon–nucleon(Y–N–N)and even hyperon–hyperon–nucleon(Y–Y–N)interactions.Hypernuclei are important for making connection between nuclear collisions and the equation of state which governs the inner structure of compact stars.展开更多
Understanding hadron structure within the framework of QCD is an extremely challenging problem. Our purpose here is to explain the model-independent consequences of the approximated chiral symmetry of QCD for two famo...Understanding hadron structure within the framework of QCD is an extremely challenging problem. Our purpose here is to explain the model-independent consequences of the approximated chiral symmetry of QCD for two famous results concerning the quark structure of the nucleon. We show that both the apparent success of the constituent quark model in reproducing the ratio of proton to neutron magnetic moments and the apparent success of the Foldy term in reproducing the observed charge radius of the neutron are coincidental. That is, a relatively small change of the current quark mass would spoil both results.展开更多
Lambda polarization can be measured through its self-analyzing weak decay, making it an ideal candidate for studying spin effects in high-energy scattering. In lepton-nucleon deep inelastic scattering(DIS), Lambda pol...Lambda polarization can be measured through its self-analyzing weak decay, making it an ideal candidate for studying spin effects in high-energy scattering. In lepton-nucleon deep inelastic scattering(DIS), Lambda polarization measurements can probe polarized parton distribution functions(PDFs) and polarized fragmentation functions(FFs). One of the most promising facilities for high-energy nuclear physics research is the proposed Electron-ion collider in China(EicC). As a next-generation facility, EicC is set to advance our understanding of nuclear physics to new heights. In this article, we study the Lambda production in electron-proton collisions at the EicC energy, in particular the reconstruction of Lambda based on the performance of the designed EicC detector. In addition, taking spontaneous transverse polarization as an example, we provide a theoretical prediction with a statistical projection based on one month of EicC data, offering valuable insights into future research prospects.展开更多
The quark and gluon distributions in nuclei are investigated by a parton model,where the common partons of several nucleons and the non-nucleonic components are considered.The comparisons of this model with the data f...The quark and gluon distributions in nuclei are investigated by a parton model,where the common partons of several nucleons and the non-nucleonic components are considered.The comparisons of this model with the data for F_(2)^(A1)(x)/F_(2)^(A2)(x)and the recent data for G_(Sn)(x)/G_(C)(x)are also present.展开更多
We study the interaction forces in atomic nuclei based on our expressions for the electrostatic interaction between spheres of arbitrary radii and charges. We prove that at small distances the proton-neutron electrost...We study the interaction forces in atomic nuclei based on our expressions for the electrostatic interaction between spheres of arbitrary radii and charges. We prove that at small distances the proton-neutron electrostatic attraction forces are short-range-acting and the proton-proton electrostatic repulsion forces are long-range-acting. We obtain that these forces are commensurate with the nuclear forces. The protonneutron electrostatic attraction forces and the proton-proton electrostatic repulsion forces at the same distance between nucleons differ in absolute value by about an order of magnitude. It follows that based on electromagnetic interactions the neutrons are the binding building blocks in nuclear structures.展开更多
The effect of confined one-gluon-exchange potential and instanton-induced interaction potential in the singlet(1S0)and triplet(3S1)channels for nucleon–nucleon interaction has been investigated in the framework of th...The effect of confined one-gluon-exchange potential and instanton-induced interaction potential in the singlet(1S0)and triplet(3S1)channels for nucleon–nucleon interaction has been investigated in the framework of the relativistic harmonic model using the resonating group method in the adiabatic limit with the Born–Oppenheimer approximation.The contributions of the different components of the interaction potentials have been analyzed.展开更多
The relativistic neutrino emissivity of the nucleonic direct URCA processes in neutron star matter is investigated within the relativistic Hartree-Fock approximation. We particularly study the influences of the tensor...The relativistic neutrino emissivity of the nucleonic direct URCA processes in neutron star matter is investigated within the relativistic Hartree-Fock approximation. We particularly study the influences of the tensor couplings of vector mesons ω and ρ on the nucleonic direct URCA processes. It is found that the inclusion of the tensor couplings of vector mesons w and p can slightly increase the maximum mass of neutron stars. In addition, the results indicate that the tensor couplings of vector mesons ω and ρ lead to obvious enhancement of the total neutrino emissivity for the nucleonic direct URCA processes, which must accelerate the cooling rate of the non- superfluid neutron star matter. However, when considering only the tensor coupling of vector meson ρ, the neutrino emissivity for the nucleonic direct URCA processes slightly declines at low densities and significantly increases at high densities. That is, the tensor coupling of vector meson ρ leads to the slow cooling rate of a low-mass neutron star and rapid cooling rate of a massive neutron star.展开更多
Within the framework of a semiclassical Boltzmann-Uehling-Uhlenbeck (BUU) transport model, the high mo- mentum tail (HMT) effects of nucleon momentum distribution in the nucleus on the nucleon collective flows are...Within the framework of a semiclassical Boltzmann-Uehling-Uhlenbeck (BUU) transport model, the high mo- mentum tail (HMT) effects of nucleon momentum distribution in the nucleus on the nucleon collective flows are studied in semieentral Au+Au collisions. The HMT due to the isospin-dependent short-range correlations causes a smaller value of the collective flows. We find that the HMT effects on the nucleon collective flows are remarkable at beam energy of 300 MeV/nucleon and become weak as the incident beam energy increases. The results indicate that for the collective flow studies at intermediate energies, the HMT of nucleon momentum distribution in nucleus should be taken into account in transport models.展开更多
With the Munczek-Nemirovsky model of the effective gluon propagator in the global colour model, we study the radially excited solitons in which one quark is excited and the other two are at the ground state. The obtai...With the Munczek-Nemirovsky model of the effective gluon propagator in the global colour model, we study the radially excited solitons in which one quark is excited and the other two are at the ground state. The obtained masses of the two radial excitations are comparable with the experimental data.展开更多
文摘This paper shows a didactic model (PGM), and not only, but representative of the Hadrons described in the Standard Model (SM). In this model, particles are represented by structures corresponding to geometric shapes of coupled quantum oscillators (IQuO). By the properties of IQuO one can define the electric charge and that of color of quarks. Showing the “aurea” (golden) triangular shape of all quarks, we manage to represent the geometric combinations of the nucleons, light mesons, and K-mesons. By the geometric shape of W-bosons, we represent the weak decay of pions and charged Kaons and neutral, highlighting in geometric terms the possibilities of decay in two and three pions of neutral Kaon and the transition to anti-Kaon. In conclusion, from this didactic representation, an in-depth and exhaustive phenomenology of hadrons emerges, which even manages to resolve some problematic aspects of the SM.
文摘The energy and centrality dependencies of charged particle pseudorapidity density in relativistic nuclear collisions were studied using a hadron and string cascade model, JPCIAE. Both the relativistic experimental data and the PHOBOS and PHENIX Au+Au data at RHIC energy could be fairly reproduced within the framework of JPCIAE model and without retuning the model parameters. The predictions for collisions at the LHC energy were also given. We computed the participant nucleon distributions using different methods. It was found that the number of participant nucleons is not a well defined variable both experimentally and theoretically. Thus it may be inappropriate to use the charged particle pseudorapidity density per participant pair as a function of the number of participant nucleons for distinguishing various theoretical models.
文摘In this paper we consider nucleons as tori, rotating with a constant angular velocity around the straight line passing through their mass centre (geometric centre) and perpendicular to their plane of rotation. We theoretically determine the corresponding potential energy and the force of interaction between pairs of nucleons, using our precise analytical formulas for the electrostatic interaction between two spheres with arbitrary radii and charges, which we derive using experimentally obtained results for the radii and the masses of the nucleons. From the values for binding energy found through our method, it follows that nuclear forces are electromagnetic in nature. In terms of magnitude of the force of interaction between proton and neutron, we obtain that Coulomb's forces are short-range. Our toroid model explains the experimental results not only for binding energy, but also for the radius, magnetic moment and the spin of the nuclei of atoms.
文摘A nuclear structure model of “ring plus extra nucleon” is proposed. For nuclei larger than 4He, protons (P) and neutrons (N) are basically bound alternatively to form a ZP + ZN ring. The ring folds with a “bond angle” of 90° for every 3 continuous nucleons to make the nucleons packed densely. Extra N(‘s) can bind to ring-P with the same “bond angle” and “bond distance”. When 2 or more P’s are geometrically available, the extra N tends to be stable. Extra P can bind with ring N in a similar way when the ratio of N/P < 1 although the binding is weaker than that of extra N. Even-Z rings, as well as normal even-even nuclei, always have superimposed gravity centers of P and N;while for odd-Z rings, as well as all odd-A (A: number of nucleon) nuclei, the centers of P and N must be eccentric. The eccentricity results in a depression of binding energy (EB) and therefore odd and even Z dependent zigzag features of EB/A. This can be well explained by the shift of eccentricity by extra nucleons. Symmetrical center may present in even-Z rings and normal even-even nuclei. While for odd-Z ring, only antisymmetric center (every P can find an N through the center and vice versa) is possible. Based on this model, a pair of mirror nuclei, PX+nNX and PXNX+n, should be equivalent in packing structure just like black-white photo and the negative film. Therefore, an identical spin and parity was confirmed for any pair. In addition, the EB/A difference of mirror nuclei pair is nearly a constant of 0.184n MeV. Many other facts can also be easily understood from this model, such as the neutron halo, the unusual stability sequence of 9Be, 7Be and 8Be and so on.
文摘Study of nucleons charge radii and electromagnetic form factors are expected to provide valuable information about the distribution of electric charge within the fundamental particles in nucleon’s inner structure. In the recent years, dramatic progress has been made in the understanding of the nucleon structure and the precision of its partonic content, due to the vast theoretical progress, and the availability of new high precision measurements. Here in this article, we present a simple model for the charge structure of the nucleons and the most available sets of the structure functions to calculate the mean square charge radius N2> for both protons and neutrons. Our results are consistent with the modern understanding of the nucleons as well as recent experimental data. We discuss the origin of the sign rN2> for both proton and neutron.
基金supported in part by the U.S.Department of Energy(No.DE-SC0012910)National Nature Science Foundation of China(Nos.12035006 and 12075085)the Ministry of Science and Technology of China(No.2020YFE020200)。
文摘A coalescence model was employed to form deuterons(d),tritons(t),and helium-3(^(3)He)nuclei from a uniformly-distributed volume of protons(p)and neutrons(n).We studied the ratio N_(t)N_(p)/N_(d)^(2)of light nuclei yields as a function of the neutron density fluctuations.We investigated the effect of finite transverse momentum(p_(T))acceptance on the ratio,in particular,the“extrapolation factor”(f)for the ratio as a function of the p_(T)spectral shape and the magnitude of neutron density fluctuations.The nature of f was found to be monotonic in p_(T)spectra“temperature”parameter and neutron density fluctuation magnitude;variations in the latter are relatively small.We also examined f in realistic simulations using the kinematic distributions of protons measured from the heavy-ion collision data.The nature of f was found to be smooth and monotonic as a function of the beam energy.Therefore,we conclude that extrapolation from limited p_(T)ranges does not create,enhance,or reduce the local peak of the N_(t)N_(p)/N_(d)^(2)ratio in the beam energy.Our study provides a necessary benchmark for light nuclei ratios as a probe for nucleon density fluctuations,an important observation in the search for the critical point of nuclear matter.
文摘The Standard Model of particle physics assumes that fundamental fermions are point particles with zero radius, no spatial dimensions, and infinite matter density. This alternative model treats the nine charged fundamental fermions (three leptons and nine quarks) as spheres with non-zero holographic radius. Holographic analysis (based on quantum mechanics, general relativity, thermodynamics, and Shannon information theory) specifies electron mass by five fundamental constants: Planck’s constant ℏ, gravitational constant G, fine structure constant α, cosmological constant Λ, and vacuum energy fraction ΩΛ. Protons and neutrons are composite systems of up and down quarks. Describing forces between quark constituents confined within nucleons as inverse square attractive forces, this alternative model identifies composition factors Cpand Cnto relate proton and neutron masses to electron mass and thus to fundamental constants. An appendix summarizes holographic analyses characterizing astronomical masses at the opposite end of the mass scale for objects in the universe.
基金supported in part by the National Natural Science Foundation of China(12105247)the China Postdoctoral Science Foundation(2021M702957)supported in part by the National Natural Science Foundation of China(12002209)。
文摘In this paper,we propose a map that connects nucleons bound in nuclei and Ising spins in the Ising model.This proposal is based on the fact that the description of states of nucleons and Ising spins could share the same type of observables.We present a nuclear model corresponding to an explicit modified Ising model and qualitatively confirm the correctness of this map with a simulation on a two-dimensional square lattice.This map can help us understand the profound connections between different physical systems.
文摘The statistical properties of interacting fermions have been studied for various angular momentum with the inclusion of pairing interaction. The dependence of the critical temperature on angular momentum for several nuclei, have been studied. The yrast energy as a function of angular momentum for 28Si and 24 Mg nuclei have been calculated up to 60.0 MeV of excitation energy. The computed limiting angular momenta are compared with the experimental results for ^26Al produced by ^12C+ 14N reaction. The relevant nuclear level densities for non-zero angular momentum have been computed for ^44Ti and ^136 Ba nuclei. The results are compared with their corresponding values obtained from the approximate formulas.
文摘Based on a model of fermions which implies a model of photons, a model of the neutron is constructed by merging two photons of equal energy propagating in opposite directions. The fermion model is outlined, and the merging of two photons is described in detail. The radius of the neutron obtained in this way is Rn = 0.84008… fm. This value is four times the reduced Compton wavelength of the neutron. Assuming the same model for the proton, one obtains a value of Rp = 0.84123… fm, which agrees with the most recent experimental value for the charge radius of the proton within the given limits of error. The neutral charge of the neutron is reproduced, and the positive charge of the proton follows within the model, if the proton is formed via the anti-neutron by losing one electron. S = ±ħ/2, and zero dipole moment, is also reproduced for proton and neutron. Further, a value of the magnetic moment of the neutron of μ= &minus2.00μN (μN: nuclear magnetic moment), and of the proton of μ = 2.666… μN is predicted. The deviation by ca. 5% from the recommended respective values of (&minus1.9130μn), and (2.793μn) is ascribed to the (g-2)-anomaly. Finally, the relation of the model with the established description of the nucleons in terms of three quarks bound by gluons is shortly discussed.
文摘Nucleon-nucleon (NN) correlations and their isospin dependence in asymmetric nuclear matter are of great nterest since they are closely related to the structure of neutron-rich nuclei[1], particle production in heavy-ion ollisions[2], and neutron-star physics[3]. The many-body correlations among nucleons can be directly reflected in the neutron and proton spectral functions[4], and the latter may play an important role in understanding the nature f the NN correlations, especially the short-range and tensor correlations in asymmetric nuclear matter.
基金supported by supported in part by the National Natural Science Foundation of China(Nos.11890714,12147101)the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008).
文摘Directed flow(v_(1))of the hypernuclei ^(3)_(Λ)H and ^(4)_(Λ)H have been observed in mid-central Au+Au collisions at√^(s)NN=3 GeV at RHIC.This measurement opens up a new possibility for studying hyperon–nucleon(Y–N)interaction under finite pressure.In addition,multi-strangeness hypernuclei provide a venue to probe hyperon–nucleon–nucleon(Y–N–N)and even hyperon–hyperon–nucleon(Y–Y–N)interactions.Hypernuclei are important for making connection between nuclear collisions and the equation of state which governs the inner structure of compact stars.
基金国家自然科学基金,Department of Science and Technology of Guangxi Province of China
文摘Understanding hadron structure within the framework of QCD is an extremely challenging problem. Our purpose here is to explain the model-independent consequences of the approximated chiral symmetry of QCD for two famous results concerning the quark structure of the nucleon. We show that both the apparent success of the constituent quark model in reproducing the ratio of proton to neutron magnetic moments and the apparent success of the Foldy term in reproducing the observed charge radius of the neutron are coincidental. That is, a relatively small change of the current quark mass would spoil both results.
基金supported by the National Natural Science Foundation of China (Nos.12275159, 12075140, and 12175117)100 Talents Program of CASShandong Provincial Natural Science Foundation (No. ZFJH202303)。
文摘Lambda polarization can be measured through its self-analyzing weak decay, making it an ideal candidate for studying spin effects in high-energy scattering. In lepton-nucleon deep inelastic scattering(DIS), Lambda polarization measurements can probe polarized parton distribution functions(PDFs) and polarized fragmentation functions(FFs). One of the most promising facilities for high-energy nuclear physics research is the proposed Electron-ion collider in China(EicC). As a next-generation facility, EicC is set to advance our understanding of nuclear physics to new heights. In this article, we study the Lambda production in electron-proton collisions at the EicC energy, in particular the reconstruction of Lambda based on the performance of the designed EicC detector. In addition, taking spontaneous transverse polarization as an example, we provide a theoretical prediction with a statistical projection based on one month of EicC data, offering valuable insights into future research prospects.
文摘The quark and gluon distributions in nuclei are investigated by a parton model,where the common partons of several nucleons and the non-nucleonic components are considered.The comparisons of this model with the data for F_(2)^(A1)(x)/F_(2)^(A2)(x)and the recent data for G_(Sn)(x)/G_(C)(x)are also present.
文摘We study the interaction forces in atomic nuclei based on our expressions for the electrostatic interaction between spheres of arbitrary radii and charges. We prove that at small distances the proton-neutron electrostatic attraction forces are short-range-acting and the proton-proton electrostatic repulsion forces are long-range-acting. We obtain that these forces are commensurate with the nuclear forces. The protonneutron electrostatic attraction forces and the proton-proton electrostatic repulsion forces at the same distance between nucleons differ in absolute value by about an order of magnitude. It follows that based on electromagnetic interactions the neutrons are the binding building blocks in nuclear structures.
文摘The effect of confined one-gluon-exchange potential and instanton-induced interaction potential in the singlet(1S0)and triplet(3S1)channels for nucleon–nucleon interaction has been investigated in the framework of the relativistic harmonic model using the resonating group method in the adiabatic limit with the Born–Oppenheimer approximation.The contributions of the different components of the interaction potentials have been analyzed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11447165,11373047 and 11265009the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No 2016056
文摘The relativistic neutrino emissivity of the nucleonic direct URCA processes in neutron star matter is investigated within the relativistic Hartree-Fock approximation. We particularly study the influences of the tensor couplings of vector mesons ω and ρ on the nucleonic direct URCA processes. It is found that the inclusion of the tensor couplings of vector mesons w and p can slightly increase the maximum mass of neutron stars. In addition, the results indicate that the tensor couplings of vector mesons ω and ρ lead to obvious enhancement of the total neutrino emissivity for the nucleonic direct URCA processes, which must accelerate the cooling rate of the non- superfluid neutron star matter. However, when considering only the tensor coupling of vector meson ρ, the neutrino emissivity for the nucleonic direct URCA processes slightly declines at low densities and significantly increases at high densities. That is, the tensor coupling of vector meson ρ leads to the slow cooling rate of a low-mass neutron star and rapid cooling rate of a massive neutron star.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No lzujbky-2014-170the Research Fund for the Doctoral Program of Higher Education of China under Grant No 20120211120002the National Natural Science Foundation of China under Grant Nos 11205075 and 11375076
文摘Within the framework of a semiclassical Boltzmann-Uehling-Uhlenbeck (BUU) transport model, the high mo- mentum tail (HMT) effects of nucleon momentum distribution in the nucleus on the nucleon collective flows are studied in semieentral Au+Au collisions. The HMT due to the isospin-dependent short-range correlations causes a smaller value of the collective flows. We find that the HMT effects on the nucleon collective flows are remarkable at beam energy of 300 MeV/nucleon and become weak as the incident beam energy increases. The results indicate that for the collective flow studies at intermediate energies, the HMT of nucleon momentum distribution in nucleus should be taken into account in transport models.
基金Supported by the National Natural Science Foundation of China under contract Nos 10425521, 10575004 and 106750077 the Key Project of the Ministry of Education of China under Grant No 305001, the Research Fund for the Doctoral Programme of Higher Education of China under Grant No 20040001010, and the Foundation for University Key Teachers by the Ministry of Education of China.
文摘With the Munczek-Nemirovsky model of the effective gluon propagator in the global colour model, we study the radially excited solitons in which one quark is excited and the other two are at the ground state. The obtained masses of the two radial excitations are comparable with the experimental data.