Metabolism is a general term for a series of ordered chemical reactions in an organism used to maintain life,mainly divided into anabolic and catabolic metabolism.Nucleic acid therapy can not only precisely up-regulat...Metabolism is a general term for a series of ordered chemical reactions in an organism used to maintain life,mainly divided into anabolic and catabolic metabolism.Nucleic acid therapy can not only precisely up-regulate and down-regulate the expression of target genes but also correct mutated disease-causing genes,which demonstrates irreplaceable and outstanding advantages in the treatment of metabolismrelated diseases and has been applied to the clinical treatment of metabolism-related diseases.In this review,we introduce the structures of several major nucleic acid drugs and the mechanism of nucleic acid therapy.Subsequently,we describe the mechanisms of various biomolecular and tissue metabolisms and the etiology of metabolic disorders,classified according to metabolic substrates.We analyze the signal pathways and potential targets affecting the metabolism of each substrate and describe the nucleic acid drugs applied to these targets and their delivery technologies.This review aims to provide new ideas and targets for treating these diseases by investigating the role played by metabolism in developing diseases and providing guidance for the selection and design of nucleic acid drugs.展开更多
Ultrasensitive detection of nucleic acids is of great significance for precision medicine.Digital polymerase chain reaction(dPCR)is the most sensitive method but requires sophisticated and expensive instruments and a ...Ultrasensitive detection of nucleic acids is of great significance for precision medicine.Digital polymerase chain reaction(dPCR)is the most sensitive method but requires sophisticated and expensive instruments and a long reaction time.Digital PCR-free technologies,which mean the digital assay not relying on thermal cycling to amplify the signal for quantitative detection of nucleic acids at the singlemolecule level,include the digital isothermal amplification techniques(d IATs)and the digital clustered regularly interspaced short palindromic repeats(CRISPR)technologies.They combine the advantages of d PCR and IATs,which could be fast and simple,enabling absolute quantification of nucleic acids at a single-molecule level with minimum instrument,representing the next-generation molecular diagnostic technology.Herein,we systematically summarized the strategies and applications of various dIATs,including the digital loop-mediated isothermal amplification(dLAMP),the digital recombinase polymerase amplification(dRPA),the digital rolling circle amplification(dRCA),the digital nucleic acid sequencebased amplification(d NASBA)and the digital multiple displacement amplification(d MDA),and evaluated the pros and cons of each method.The emerging digital CRISPR technologies,including the detection mechanism of CRISPR and the various strategies for signal amplification,are also introduced comprehensively in this review.The current challenges as well as the future perspectives of the digital PCR-free technology were discussed.展开更多
Neuropathic pain(NP)is one of the most common pathological pain types and is associated with limited treatment options;moreover,it affects patients’quality of life and causes a heavy social burden.Despite the emphasi...Neuropathic pain(NP)is one of the most common pathological pain types and is associated with limited treatment options;moreover,it affects patients’quality of life and causes a heavy social burden.Despite the emphasis on inhibiting neuronal apoptosis to relieve NP,the crucial role of a neuroinflammation is often overlooked.Therefore,refocusing on the regulation of microglia polarization to create a more conducive environment for neuron holds great potential in NP treatment.In recent years,small interfering RNAs(siRNAs)had become an attractive therapeutic option.However,an efficient loading and delivery system for siRNA is still in lack.In our study,a nanostructured tetrahedral framework nucleic acid loaded with the small interfering RNA C–C chemokine receptor 2(T-siCCR2)was successfully designed and synthesized for use in NP rat model in vivo and in a lipopolysaccharide(LPS)-induced inflammatory environment in vitro.This nanoscale complex is endowed with structural stability and satisfactory delivery efficiency while assuring the silencing effect of siRNA-CCR2.In vivo,T-siCCR2 treatment exhibited favorable effects on pain relief and functional improvement in the NP animal model by directly targeting microglia.In vitro,T-siCCR2 counteracts LPS-induced inflammation by inhibiting the differentiation of microglia toward the M1 phenotype,thus playing a neuroprotective role.RNA sequencing was subsequently performed to elucidate the underlying mechanism involved.These results indicate that T-siCCR2 may serve as a potential treatment option for NP in the future.展开更多
Diabetic kidney disease(DKD)is recognized as a severe complication in the development of diabetes mellitus(DM),posing a significant burden for global health.Major characteristics of DKD kidneys include tubulointerstit...Diabetic kidney disease(DKD)is recognized as a severe complication in the development of diabetes mellitus(DM),posing a significant burden for global health.Major characteristics of DKD kidneys include tubulointerstitial oxidative stress,inflammation,excessive extracellular matrix deposition,and progressing renal fibrosis.However,current treatment options are limited and cannot offer enough efficacy,thus urgently requiring novel therapeutic approaches.Tetrahedral framework nucleic acids(tFNAs)are a novel type of self-assembled DNA nanomaterial with excellent structural stability,biocompatibility,tailorable functionality,and regulatory effects on cellular behaviors.In this study,we established an in vitro high glucose(HG)-induced human renal tubular epithelial cells(HK-2 cells)pro-fibrogenic model and explored the antioxidative,anti-inflammatory,and antifibrotic capacity of tFNAs and the potential molecular mechanisms.tFNAs not only effectively alleviated oxidative stress through reactive oxygen species(ROS)-scavenging and activating the serine and threonine kinase(Akt)/nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)signaling pathway but also inhibited the production of proinflammatory factors such as tumor necrosis factor(TNF-α),interleukin-1β(IL-1β),and interleukin-6(IL-6)in diabetic HK-2 cells.Additionally,tFNAs significantly downregulated the expression of Collagen I andα-smooth muscle actin(α-SMA),two representative biomarkers of pro-fibrogenic myofibroblasts in the renal tubular epithelial-mesenchymal transition(EMT).Furthermore,we found that tFNAs exerted this function by inhibiting the Wnt/β-catenin signaling pathway,preventing the occurrence of EMT and fibrosis.The findings of this study demonstrated that tFNAs are naturally endowed with great potential to prevent fibrosis progress in DKD kidneys and can be further combined with emerging pharmacotherapies,providing a secure and efficient drug delivery strategy for future DKD therapy.展开更多
Precision medicine has become a cornerstone in modern therapeutic strategies, with nucleic acid aptamers emerging aspivotal tools due to their unique properties. These oligonucleotide fragments, selected through the S...Precision medicine has become a cornerstone in modern therapeutic strategies, with nucleic acid aptamers emerging aspivotal tools due to their unique properties. These oligonucleotide fragments, selected through the Systematic Evolution ofLigands by Exponential Enrichment process, exhibit high affinity and specificity toward their targets, such as DNA, RNA,proteins, and other biomolecules. Nucleic acid aptamers offer significant advantages over traditional therapeutic agents,including superior biological stability, minimal immunogenicity, and the capacity for universal chemical modifications thatenhance their in vivo performance and targeting precision. In the realm of osseous tissue repair and regeneration, a complexphysiological process essential for maintaining skeletal integrity, aptamers have shown remarkable potential in influencingmolecular pathways crucial for bone regeneration, promoting osteogenic differentiation and supporting osteoblast survival. Byengineering aptamers to regulate inflammatory responses and facilitate the proliferation and differentiation of fibroblasts,these oligonucleotides can be integrated into advanced drug delivery systems, significantly improving bone repair efficacywhile minimizing adverse effects. Aptamer-mediated strategies, including the use of siRNA and miRNA mimics or inhibitors,have shown efficacy in enhancing bone mass and microstructure. These approaches hold transformative potential for treatinga range of orthopedic conditions like osteoporosis, osteosarcoma, and osteoarthritis. This review synthesizes the molecularmechanisms and biological roles of aptamers in orthopedic diseases, emphasizing their potential to drive innovative andeffective therapeutic interventions.展开更多
Hyperglycemia resulting from diabetes mellitus(DM)exacerbates osteoporosis and fractures,damaging bone regeneration due to impaired healing capacity.Stem cell therapy offers the potential for bone repair,accelerating ...Hyperglycemia resulting from diabetes mellitus(DM)exacerbates osteoporosis and fractures,damaging bone regeneration due to impaired healing capacity.Stem cell therapy offers the potential for bone repair,accelerating the healing of bone defects by introducing stem cells with osteogenic differentiation ability.Dental follicle stem cells(DFSCs)are a newly emerging type of dental stem cells that not only have the potential for multipotent differentiation but also hold easy accessibility and can stand longterm storage.However,DM-associated oxidative stress and inflammation elevate the risk of DFSCs dysfunction and apoptosis,diminishing stem cell therapy efficacy.Recent nanomaterial advances,particularly in DNA nanostructures like tetrahedral framework nucleic acids(tFNAs),have been promising candidates for modulating cellular behaviors.Accumulating experiments have shown that tFNAs’cell proliferation and migration-promoting ability and induce osteogenic differentiation of stem cells.Meanwhile,tFNAs can scavenge reactive oxygen species(ROS)and downregulate the secretion of inflammatory factors by inhibiting various inflammation-related signaling pathways.Here,we applied tFNAs to modify DFSCs and observed enhanced osteogenic differentiation alongside ROS scavenging and anti-inflammatory effects mediated by suppressing the ROS/mitogen-activated protein kinases(MAPKs)/nuclear factor kappa-B(NF-κB)signaling pathway.This intervention reduced stem cell apoptosis,bolstering stem cell therapy efficacy in DM.Our study establishes a simple yet potent tFNAs-DFSCs system,offering potential as a bone repair agent for future DM treatment.展开更多
We report the development of a triplex nucleic acid lateral flow immunoassay(NALFIA)for the detection of the genomes of Nipah virus(NiV),Middle East respiratory syndrome coronavirus(MERS-CoV)and Reston ebolavirus(REBO...We report the development of a triplex nucleic acid lateral flow immunoassay(NALFIA)for the detection of the genomes of Nipah virus(NiV),Middle East respiratory syndrome coronavirus(MERS-CoV)and Reston ebolavirus(REBOV),which are intended for screening bats as well as other hosts and reservoirs of these three viruses.Our triplex NALFIA is a two-step assay format:the target nucleic acid in the sample is first amplified using tagged primers,and the tagged dsDNA amplicons are captured by antibodies immobilized on the NALFIA device,resulting in signal development from the binding of a streptavidin-colloidal gold conjugate to a biotin tag on the captured amplicons.Triplex amplification of the N gene of NiV,the UpE gene of MERS-CoV,and the Vp40 gene of REBOV was optimized,and three compatible combinations of hapten labels and antibodies were identified for end point detection.The lowest RNA copy numbers detected by the triplex NALFIA were 8.21e4 for the NiV N target,7.09e1 for the MERS-CoV UpE target,and 1.83e4 for the REBOV Vp40 target.Using simulated samples,the sensitivity and specificity for MERS-CoV and REBOV targets were estimated to be 100%,while the sensitivity and specificity for the NiV target were 91%and 93.3%,respectively.The compliance rate between triplex NALFIA and real-time RT‒PCR was 92%for the NiV N target and 100%for the MERS-CoV UpE and REBOV Vp40 targets.展开更多
[Objective] The aim of this study was to provide basis for deeply understanding the diapause mechanism of Papilio memnon L. [Method] RNA and DNA content of non-diapause pupae, diapause pupae and eclosion-adult from di...[Objective] The aim of this study was to provide basis for deeply understanding the diapause mechanism of Papilio memnon L. [Method] RNA and DNA content of non-diapause pupae, diapause pupae and eclosion-adult from diapause pupae at different development stages were detected by the colorimetry. [Result] RNA content of non-diapause pupae was 4.614 0-7.946 3 μg/mg, while diapause pupae was 4.326 0-5.885 3 μg/mg and eclosion-adult from diapause pupae was 20.779 3 μg/mg at initial stage. DNA content of non-diapause pupae was 0.448 7-0.535 0 μg/mg, while diapause pupae was 0.452 0-0.828 3 μg/mg and eclosion-adult from diapause pupae was 1.727 0 μg/mg at initial stage. [Conclusion] The nucleic acid content and change is related to the development stage.展开更多
The recent pneumonia outbreak caused by a novel coronavirus(SARS-CoV-2)is posing a great threat to global public health.Therefore,rapid and accurate identification of pathogenic viruses plays a vital role in selecting...The recent pneumonia outbreak caused by a novel coronavirus(SARS-CoV-2)is posing a great threat to global public health.Therefore,rapid and accurate identification of pathogenic viruses plays a vital role in selecting appropriate treatments,saving people's lives and preventing epidemics.It is important to establish a quick standard diagnostic test for the detection of the infectious disease(COVID-19)to prevent subsequent secondary spread.Polymerase chain reaction(PCR)is regarded as a gold standard test for the molecular diagnosis of viral and bacterial infections with high sensitivity and specificity.Isothermal nucleic acid amplification is considered to be a highly promising candidate method due to its fundamental advantage in quick procedure time at constant temperature without thermocycler opera-tion.A variety of improved or new approaches also have been developed.This review summarizes the currently available detection methods for coronavirus nucleic acid.It is anticipated that this will assist researchers and clinicians in developing better techniques for timely and effective detection of coro-navirus infection.展开更多
Real-time PCR is a closed DNA amplification system that skillfully integrates biochemical, photoelectric and computer techniques. Fluorescence data acquired once per cycle provides rapid absolute quantification of ini...Real-time PCR is a closed DNA amplification system that skillfully integrates biochemical, photoelectric and computer techniques. Fluorescence data acquired once per cycle provides rapid absolute quantification of initial template copy numbers as PCR products are generated. This technique significantly simplifies and accelerates the process of producing reproducible quantification of nucleic acid molecules. It not only is a sensitive, accurate and rapid quantitative method, but it also provides an easier way to calculate the absolute starting copy number of nucleic acid molecules to be tested. Together with molecular bio-techniques, like microarray, real-time PCR will play a very important role in many aspects of molecular life science such as functional gene analysis and disease molecular diagnostics. This review introduces the detailed principles and application of the real-time PCR technique, describes a recently developed system for exact quantification of AUX/IAA genes In Arabidopsis, and discusses the problems with the real-time PCR process.展开更多
During infections,nucleic acids of pathogens are also engaged in recognition via several exogenous and cytosolic pattern recognition receptors,such as the toll-like receptors,retinoic acid inducible gene-I-like recept...During infections,nucleic acids of pathogens are also engaged in recognition via several exogenous and cytosolic pattern recognition receptors,such as the toll-like receptors,retinoic acid inducible gene-I-like receptors,and nucleotide-binding and oligomerization domain-like receptors.The binding of the pathogen-derived nucleic acids to their corresponding sensors initiates certain downstream signaling cascades culminating in the release of type-I interferons(IFNs),especially IFN-αand other cytokines to induce proinflammatory responses towards invading pathogens leading to their clearance from the host.Although these sensors are hardwired to recognize pathogen associated molecular patterns,like viral and bacterial nucleic acids,under unusual physiological conditions,such as excessive cellular stress and increased apoptosis,endogenous self-nucleic acids like DNA,RNA,and mitochondrial DNA are also released.The presence of these self-nucleic acids in extranuclear compartments or extracellular spaces or their association with certain proteins sometimes leads to the failure of discriminating mechanisms of nucleic acid sensors leading to proinflammatory responses as seen in autoimmune disorders,like systemic lupus erythematosus,psoriasis and to some extent in type 1 diabetes(T1D).This review discusses the involvement of various nucleic acid sensors in autoimmunity and discusses how aberrant recognition of self-nucleic acids by their sensors activates the innate immune responses during the pathogenesis of T1D.展开更多
Hepatocellular carcinoma(HCC), with its high incidence and mortality rate, is one of the most common malignant tumors. Despite recent development of a diagnostic and treatment method, the prognosis of HCC remains poor...Hepatocellular carcinoma(HCC), with its high incidence and mortality rate, is one of the most common malignant tumors. Despite recent development of a diagnostic and treatment method, the prognosis of HCC remains poor. Therefore, to provide optimal treatment for each patient with HCC, more precise and effective biomarkers are urgently needed which could facilitate a more detailed individualized decision-making during HCC treatment, including the following; risk assessment, early cancer detection, prediction of treatment or prognostic outcome. In the blood of cancer patients, accumulating evidence about circulating tumor cells and cell-free nucleic acids has suggested their potent clinical utilities as novel biomarker. This concept, so-called "liquid biopsy" is widely known as an alternative approach to cancer tissue biopsy. This method might facilitate a more sensitive diagnosis and better decision-making by obtaining genetic and epigenetic aberrations that are closely associated with cancer initiation and progression. In this article, we review recent developments based on the available literature on both circulating tumor cells and cell-free nucleic acids in cancer patients, especially focusing on Hepatocellular carcinoma.展开更多
Despite recent advances in surgical techniques and perioperative management, the prognosis of pancreatic cancer(PCa) remains extremely poor. To provide optimal treatment for each patient with Pca, superior biomarkers ...Despite recent advances in surgical techniques and perioperative management, the prognosis of pancreatic cancer(PCa) remains extremely poor. To provide optimal treatment for each patient with Pca, superior biomarkers are urgently needed in all phases of management from early detection to staging, treatment monitoring, and prognosis. In the blood of patients with cancer, circulating tumor cells(CTCs) and cell-free nucleic acids(cf NAs), such as DNA, m RNA, and noncoding RNA have been recognized. In the recent years, their presence in the blood has encouraged researchers to investigate their potential use as novel blood biomarkers, and numerous studies have demonstrated their potential clinical utility as a biomarker for certain types of cancer. This concept, called "liquid biopsy" has been focused on as a less invasive, alternative approach to cancer tissue biopsy for obtaining genetic and epigenetic aberrations that contribute to oncogenesis and cancer progression. In this article, we review the available literature on CTCs and cfN As in patients with cancer, particularly focusing on PCa, and discuss future perspectives in this field.展开更多
Despite major achievements in the treatment ofchronic hepatitis C with the combination ofinterferons and the nucleoside analog ribavirin themajority of patients with chronic hepatitis C virus(HCV) infection cannot be ...Despite major achievements in the treatment ofchronic hepatitis C with the combination ofinterferons and the nucleoside analog ribavirin themajority of patients with chronic hepatitis C virus(HCV) infection cannot be treated effectively.Toimprove this response rate we used antisensetechnologies to inhibit HCV translation as possibleadditional option for experimental treatment.Antisense oligodeoxynucleotides(ODN) are展开更多
AIM To clone expressed genes associated withrepair of irradiation-damaged mice intestinalgland cells treated by small intestinal RNA,andto explore the molecular mechanism ofexogenous nucleic acids improving repair ofi...AIM To clone expressed genes associated withrepair of irradiation-damaged mice intestinalgland cells treated by small intestinal RNA,andto explore the molecular mechanism ofexogenous nucleic acids improving repair ofintestinal crypt.METHODS The animal mode of test group andcontrol group was established,forty-five micebeing irradiated by γ ray were treated with smallintestinal RNA as test group,forty mice beingirradiated by γ ray were treated withphysiological saline as control group,five micewithout irradiation were used as normal control,their jejunal specimens were collectedrespectively at 6h,12h,24h,4d and 8d afterirradiation.Then by using LD-PCR based onsubtractive hybridization,these gene fragmentsdifferentially expressed between test group andcontrol group were obtained,and then werecloned into T vectors as well as beingsequenced.Obtained sequences were screenedagainst.GeneBank,if being new sequences,they were submitted to GeneBank.RESULTS Ninety clones were associated withrepair of irradiation-damaged intestinal glandcells treated by intestinal RNA.These clonesfrom test group of 6h,12h,24h,4d and 8dwere respectively 18,22,25,13,12.By screening against GeneBank,18 of which werenew sequences,the others were dramaticallysimilar to the known sequences,mainly similarto hsp,Nmi,Dutt1,alkaline phosphatase,homeobox,anti-CEA ScFv antibody,arginine/serine kinase and BMP-4,repA.Eighteen genefragments were new sequences,their acceptnumbers in GeneBank were respectivelyAF240164-AF240181.CONCLUSION Ninety clones were obtained tobe associated with repair of irradiation-damagedmice intestinal gland cells treated by smallintestinal RNA,which may be related toabnormal expression of genes and matchedproteins of hsp,Nmi,Duttl,Na,K-ATPase,alkalineph-osphatase,glkA,single strandedreplicative centromeric gene as well as 18 newsequences.展开更多
To improve the clinical outcomes of cancer patients, early detection and accurate monitoring of diseases are necessary. Numerous genetic and epigenetic alterations contribute to oncogenesis and cancer progression, and...To improve the clinical outcomes of cancer patients, early detection and accurate monitoring of diseases are necessary. Numerous genetic and epigenetic alterations contribute to oncogenesis and cancer progression, and analyses of these changes have been increasingly utilized for diagnostic, prognostic and therapeutic purposes in malignant diseases including gastric cancer (GC). Surgical and/or biopsy specimens are generally used to understand the tumor-associated alterations; however, those approaches cannot always be performed because of their invasive characteristics and may fail to reflect current tumor dynamics and drug sensitivities, which may change during the therapeutic process. Therefore, the importance of developing a non-invasive biomarker with the ability to monitor real-time tumor dynamics should be emphasized. This concept, so called “liquid biopsy”, would provide an ideal therapeutic strategy for an individual cancer patient and would facilitate the development of “tailor-made” cancer management programs. In the blood of cancer patients, the presence and potent utilities of circulating tumor cells (CTCs) and cell-free nucleic acids (cfNAs) such as DNA, mRNA and microRNA have been recognized, and their clinical relevance is attracting considerable attention. In this review, we discuss recent developments in this research field as well as the relevance and future perspectives of CTCs and cfNAs in cancer patients, especially focusing on GC.展开更多
Circulating free nucleic acids; cell free DNA and circulating micro-RNA, are found in the plasma of patients with hematologic and solid malignancies at levels higher than that of healthy individuals. In patients with ...Circulating free nucleic acids; cell free DNA and circulating micro-RNA, are found in the plasma of patients with hematologic and solid malignancies at levels higher than that of healthy individuals. In patients with hematologic malignancy cell free DNA reflects the underlying tumor mutational profile, whilst micro-RNAs reflect genetic interference mechanisms within a tumor and potentially the surrounding microenvironment and immune effector cells. These circulating nucleic acids offer a potentially simple, non-invasive, repeatable analysis that can aid in diagnosis, prognosis and therapeutic decisions in cancer treatment.展开更多
RNAs are involved in the crucial processes of disease progression and have emerged as powerful therapeutic targets and diagnostic biomarkers.However,efficient delivery of therapeutic RNA to the targeted location and p...RNAs are involved in the crucial processes of disease progression and have emerged as powerful therapeutic targets and diagnostic biomarkers.However,efficient delivery of therapeutic RNA to the targeted location and precise detection of RNA markers remains challenging.Recently,more and more attention has been paid to applying nucleic acid nanoassemblies in diagnosing and treating.Due to the flexibility and deformability of nucleic acids,the nanoassemblies could be fabricated with different shapes and structures.With hybridization,nucleic acid nanoassemblies,including DNA and RNA nanostructures,can be applied to enhance RNA therapeutics and diagnosis.This review briefly introduces the construction and properties of different nucleic acid nanoassemblies and their applications for RNA therapy and diagnosis and makes further prospects for their development.展开更多
The subunit herpes zoster vaccine Shingrix is superior to attenuated vaccine Zostavax in both safety and efficacy,yet its unlyophilizable liposome delivery system and the limited supply of naturally sourced immunologi...The subunit herpes zoster vaccine Shingrix is superior to attenuated vaccine Zostavax in both safety and efficacy,yet its unlyophilizable liposome delivery system and the limited supply of naturally sourced immunological adjuvant QS-21 still need to be improved.Based on poly(lactic-co-glycolic acid)(PLGA)delivery systems that are stable during the lyophilization and rehydration process and using a double-emulsion(w/o/w)solvent evaporation method,we designed a series of nanoparticles with varicella-zoster virus antigen glycoprotein E(VZV-g E)as an antigen and nucleic acids including polyinosinic-polycytidylic acid(Poly I:C)and phosphodiester Cp G oligodeoxynucleotide(Cp G ODN),encapsulated as immune stimulators.While cationic lipids(DOTAP)have more potential than neutral lipids(DOPC)for activating g E-specific cell-mediated immunity(CMI)in immunized mice,especially when g E is encapsulated in and presented on the surface of nanoparticles,PLGA particles without lipids have the greatest potential to induce not only the highest g Especific Ig G titers but also the strongest g E-specific CMI responses,including the highest proportions of interferon-c(IFNc)-and interleukin-2(IL-2)-producing CD4?/CD8?T cells according to a flow cytometry assay and the greatest numbers of IFN-c-and IL-2-producing splenocytes according to an enzyme-linked immunospot(ELISPOT)assay.These results showed that immune-stimulating nucleic acids together with the PLGA delivery system showed promise as a safe and economical varicella and zoster vaccine candidate.展开更多
AIM To assess the antiviral effects of hepatitis B virus(HBV) S gene-specific anti-gene locked nucleic acid(LNA) in transgenic mice.METHODS Thirty HBV transgenic mice were acclimatized to laboratory conditions and pos...AIM To assess the antiviral effects of hepatitis B virus(HBV) S gene-specific anti-gene locked nucleic acid(LNA) in transgenic mice.METHODS Thirty HBV transgenic mice were acclimatized to laboratory conditions and positive for serum HBV surface antigen(HBs Ag) and HBV DNA, were randomly divided into 5 groups(n = 7), including negative control(blank control, unrelated sequence control), positive control(lamivudine, anti-sense-LNA), and anti-gene-LNA experimental group. LNA was injected into transgenic mice by tail vein while lamivudine was administeredby gavage. Serum HBV DNA and HBs Ag levels were determined by fluorescence-based PCR and enzymelinked immune sorbent assay, respectively. HBV S gene expression amounts were assessed by reverse transcription polymerase chain reaction. Positive rates of HBsA g in liver cells were evaluated immunohistochemistry.RESULTS Average rate reductions of HBs Ag after treatment on the 3 rd, 5 th, and 7 th days were 32.34%, 45.96%, and 59.15%, respectively. The inhibitory effect of antigene-LNA on serum HBs Ag peaked on day 7, with statistically significant differences compared with pretreatment(0.96 ± 0.18 vs 2.35 ± 0.33, P < 0.05) and control values(P < 0.05 for all). Average reduction rates of HBV DNA on the 3 rd, 5 th, and 7 th days were 38.55%, 50.95%, and 62.26%, respectively. This inhibitory effect peaked on the 7 th day after treatment with anti-gene-LNA, with statistically significant differences compared with pre-treatment(4.17 ± 1.29 vs 11.05 ± 1.25, P < 0.05) and control values(P < 0.05 for all). The mR NA levels of the HBV S gene(P < 0.05 for all) and rates of HBsA g positive liver cells(P < 0.05 for all) were significantly reduced compared with the control groups. Liver and kidney function, and histology showed no abnormalities. CONCLUSION Anti-gene-LNA targeting the S gene of HBV displays strong inhibitory effects on HBV in transgenic mice, providing theoretical and experimental bases for gene therapy in HBV.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.32225029,22205240,52073287,22075289,82071552 and 22376006)National Key R&D Program of China(No.2023YFC2605003)。
文摘Metabolism is a general term for a series of ordered chemical reactions in an organism used to maintain life,mainly divided into anabolic and catabolic metabolism.Nucleic acid therapy can not only precisely up-regulate and down-regulate the expression of target genes but also correct mutated disease-causing genes,which demonstrates irreplaceable and outstanding advantages in the treatment of metabolismrelated diseases and has been applied to the clinical treatment of metabolism-related diseases.In this review,we introduce the structures of several major nucleic acid drugs and the mechanism of nucleic acid therapy.Subsequently,we describe the mechanisms of various biomolecular and tissue metabolisms and the etiology of metabolic disorders,classified according to metabolic substrates.We analyze the signal pathways and potential targets affecting the metabolism of each substrate and describe the nucleic acid drugs applied to these targets and their delivery technologies.This review aims to provide new ideas and targets for treating these diseases by investigating the role played by metabolism in developing diseases and providing guidance for the selection and design of nucleic acid drugs.
基金supported by the National Key Research and Development Program of China(Nos.2023YFC2307305,2021YFF0703300)the Shenzhen Medical Research Fund(No.B2303003)+3 种基金Shenzhen Research Funding Program(Nos.JCYJ20220818102014028,RCBS20210609104339043)National Natural Science Foundation of China(No.22174167)Guangdong Basic and Applied Basic Research(No.2024A1515011281)Fundamental Research Funds for the Central Universities(No.24qnpy087)from Sun Yat-sen University。
文摘Ultrasensitive detection of nucleic acids is of great significance for precision medicine.Digital polymerase chain reaction(dPCR)is the most sensitive method but requires sophisticated and expensive instruments and a long reaction time.Digital PCR-free technologies,which mean the digital assay not relying on thermal cycling to amplify the signal for quantitative detection of nucleic acids at the singlemolecule level,include the digital isothermal amplification techniques(d IATs)and the digital clustered regularly interspaced short palindromic repeats(CRISPR)technologies.They combine the advantages of d PCR and IATs,which could be fast and simple,enabling absolute quantification of nucleic acids at a single-molecule level with minimum instrument,representing the next-generation molecular diagnostic technology.Herein,we systematically summarized the strategies and applications of various dIATs,including the digital loop-mediated isothermal amplification(dLAMP),the digital recombinase polymerase amplification(dRPA),the digital rolling circle amplification(dRCA),the digital nucleic acid sequencebased amplification(d NASBA)and the digital multiple displacement amplification(d MDA),and evaluated the pros and cons of each method.The emerging digital CRISPR technologies,including the detection mechanism of CRISPR and the various strategies for signal amplification,are also introduced comprehensively in this review.The current challenges as well as the future perspectives of the digital PCR-free technology were discussed.
基金supported by National Natural Science Foundation of China(Nos.81874027,82370929,81970916)Sichuan Science and Technology Program(Nos.2019YFQ0003,2022YFS0051,2022NSFSC0002)+3 种基金Sichuan Province Youth Science and Technology Innovation Team(No.2022JDTD0021)Research and Develop Program,West China Hospital of Stomatology Sichuan University(Nos.RD03202302,RCDWJS2024–1)135-project for disciplines of excellenceClinical Research Incubation project of West China Hospital of Sichuan University(No.2021HXFH036)。
文摘Neuropathic pain(NP)is one of the most common pathological pain types and is associated with limited treatment options;moreover,it affects patients’quality of life and causes a heavy social burden.Despite the emphasis on inhibiting neuronal apoptosis to relieve NP,the crucial role of a neuroinflammation is often overlooked.Therefore,refocusing on the regulation of microglia polarization to create a more conducive environment for neuron holds great potential in NP treatment.In recent years,small interfering RNAs(siRNAs)had become an attractive therapeutic option.However,an efficient loading and delivery system for siRNA is still in lack.In our study,a nanostructured tetrahedral framework nucleic acid loaded with the small interfering RNA C–C chemokine receptor 2(T-siCCR2)was successfully designed and synthesized for use in NP rat model in vivo and in a lipopolysaccharide(LPS)-induced inflammatory environment in vitro.This nanoscale complex is endowed with structural stability and satisfactory delivery efficiency while assuring the silencing effect of siRNA-CCR2.In vivo,T-siCCR2 treatment exhibited favorable effects on pain relief and functional improvement in the NP animal model by directly targeting microglia.In vitro,T-siCCR2 counteracts LPS-induced inflammation by inhibiting the differentiation of microglia toward the M1 phenotype,thus playing a neuroprotective role.RNA sequencing was subsequently performed to elucidate the underlying mechanism involved.These results indicate that T-siCCR2 may serve as a potential treatment option for NP in the future.
基金supported by the National Natural Science Foundation of China(No.82101077)Sichuan Science and Technology Program(No.2023NSFSC1516)+2 种基金Postdoctoral Science Foundation of China(Nos.2021M692271,2023T160455)West China School/Hospital of Stomatology Sichuan University,No.RCDWJS2023-5,Fundamental Research Funds for the Central UniversitiesResearch and Develop Program,West China Hospital of Stomatology Sichuan University.
文摘Diabetic kidney disease(DKD)is recognized as a severe complication in the development of diabetes mellitus(DM),posing a significant burden for global health.Major characteristics of DKD kidneys include tubulointerstitial oxidative stress,inflammation,excessive extracellular matrix deposition,and progressing renal fibrosis.However,current treatment options are limited and cannot offer enough efficacy,thus urgently requiring novel therapeutic approaches.Tetrahedral framework nucleic acids(tFNAs)are a novel type of self-assembled DNA nanomaterial with excellent structural stability,biocompatibility,tailorable functionality,and regulatory effects on cellular behaviors.In this study,we established an in vitro high glucose(HG)-induced human renal tubular epithelial cells(HK-2 cells)pro-fibrogenic model and explored the antioxidative,anti-inflammatory,and antifibrotic capacity of tFNAs and the potential molecular mechanisms.tFNAs not only effectively alleviated oxidative stress through reactive oxygen species(ROS)-scavenging and activating the serine and threonine kinase(Akt)/nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)signaling pathway but also inhibited the production of proinflammatory factors such as tumor necrosis factor(TNF-α),interleukin-1β(IL-1β),and interleukin-6(IL-6)in diabetic HK-2 cells.Additionally,tFNAs significantly downregulated the expression of Collagen I andα-smooth muscle actin(α-SMA),two representative biomarkers of pro-fibrogenic myofibroblasts in the renal tubular epithelial-mesenchymal transition(EMT).Furthermore,we found that tFNAs exerted this function by inhibiting the Wnt/β-catenin signaling pathway,preventing the occurrence of EMT and fibrosis.The findings of this study demonstrated that tFNAs are naturally endowed with great potential to prevent fibrosis progress in DKD kidneys and can be further combined with emerging pharmacotherapies,providing a secure and efficient drug delivery strategy for future DKD therapy.
基金Key research and development projects of Sichuan Science and Technology Plan Project(2024YFFK0135)Fujian Provincial Natural Science Foundation of China(2024J011450).
文摘Precision medicine has become a cornerstone in modern therapeutic strategies, with nucleic acid aptamers emerging aspivotal tools due to their unique properties. These oligonucleotide fragments, selected through the Systematic Evolution ofLigands by Exponential Enrichment process, exhibit high affinity and specificity toward their targets, such as DNA, RNA,proteins, and other biomolecules. Nucleic acid aptamers offer significant advantages over traditional therapeutic agents,including superior biological stability, minimal immunogenicity, and the capacity for universal chemical modifications thatenhance their in vivo performance and targeting precision. In the realm of osseous tissue repair and regeneration, a complexphysiological process essential for maintaining skeletal integrity, aptamers have shown remarkable potential in influencingmolecular pathways crucial for bone regeneration, promoting osteogenic differentiation and supporting osteoblast survival. Byengineering aptamers to regulate inflammatory responses and facilitate the proliferation and differentiation of fibroblasts,these oligonucleotides can be integrated into advanced drug delivery systems, significantly improving bone repair efficacywhile minimizing adverse effects. Aptamer-mediated strategies, including the use of siRNA and miRNA mimics or inhibitors,have shown efficacy in enhancing bone mass and microstructure. These approaches hold transformative potential for treatinga range of orthopedic conditions like osteoporosis, osteosarcoma, and osteoarthritis. This review synthesizes the molecularmechanisms and biological roles of aptamers in orthopedic diseases, emphasizing their potential to drive innovative andeffective therapeutic interventions.
基金supported by the National Natural Science Foundation of China (Nos. 82101077, 82370929)Sichuan Science and Technology Program (Nos. 2023NSFSC1516, 2023NSFSC1706)+3 种基金Postdoctoral Science Foundation of China (Nos. 2021M692271, 2023T160455, BX20220220, 2022M722251)West China School/Hospital of Stomatology Sichuan University (No. RCDWJS2023–5)Fundamental Research Funds for the Central UniversitiesResearch and Develop Program, West China Hospital of Stomatology Sichuan University
文摘Hyperglycemia resulting from diabetes mellitus(DM)exacerbates osteoporosis and fractures,damaging bone regeneration due to impaired healing capacity.Stem cell therapy offers the potential for bone repair,accelerating the healing of bone defects by introducing stem cells with osteogenic differentiation ability.Dental follicle stem cells(DFSCs)are a newly emerging type of dental stem cells that not only have the potential for multipotent differentiation but also hold easy accessibility and can stand longterm storage.However,DM-associated oxidative stress and inflammation elevate the risk of DFSCs dysfunction and apoptosis,diminishing stem cell therapy efficacy.Recent nanomaterial advances,particularly in DNA nanostructures like tetrahedral framework nucleic acids(tFNAs),have been promising candidates for modulating cellular behaviors.Accumulating experiments have shown that tFNAs’cell proliferation and migration-promoting ability and induce osteogenic differentiation of stem cells.Meanwhile,tFNAs can scavenge reactive oxygen species(ROS)and downregulate the secretion of inflammatory factors by inhibiting various inflammation-related signaling pathways.Here,we applied tFNAs to modify DFSCs and observed enhanced osteogenic differentiation alongside ROS scavenging and anti-inflammatory effects mediated by suppressing the ROS/mitogen-activated protein kinases(MAPKs)/nuclear factor kappa-B(NF-κB)signaling pathway.This intervention reduced stem cell apoptosis,bolstering stem cell therapy efficacy in DM.Our study establishes a simple yet potent tFNAs-DFSCs system,offering potential as a bone repair agent for future DM treatment.
基金funded by the Department of Biotechnology,Ministry of Science and Technology,Government of India(DBT)under grant number ADMaC DBT-NER/LIVS/11/2012.
文摘We report the development of a triplex nucleic acid lateral flow immunoassay(NALFIA)for the detection of the genomes of Nipah virus(NiV),Middle East respiratory syndrome coronavirus(MERS-CoV)and Reston ebolavirus(REBOV),which are intended for screening bats as well as other hosts and reservoirs of these three viruses.Our triplex NALFIA is a two-step assay format:the target nucleic acid in the sample is first amplified using tagged primers,and the tagged dsDNA amplicons are captured by antibodies immobilized on the NALFIA device,resulting in signal development from the binding of a streptavidin-colloidal gold conjugate to a biotin tag on the captured amplicons.Triplex amplification of the N gene of NiV,the UpE gene of MERS-CoV,and the Vp40 gene of REBOV was optimized,and three compatible combinations of hapten labels and antibodies were identified for end point detection.The lowest RNA copy numbers detected by the triplex NALFIA were 8.21e4 for the NiV N target,7.09e1 for the MERS-CoV UpE target,and 1.83e4 for the REBOV Vp40 target.Using simulated samples,the sensitivity and specificity for MERS-CoV and REBOV targets were estimated to be 100%,while the sensitivity and specificity for the NiV target were 91%and 93.3%,respectively.The compliance rate between triplex NALFIA and real-time RT‒PCR was 92%for the NiV N target and 100%for the MERS-CoV UpE and REBOV Vp40 targets.
基金Supported by the International Advanced Forestry Science and Technology Project Imported by State Forestry Administration (2005-4-59 and 2008-4-68)~~
文摘[Objective] The aim of this study was to provide basis for deeply understanding the diapause mechanism of Papilio memnon L. [Method] RNA and DNA content of non-diapause pupae, diapause pupae and eclosion-adult from diapause pupae at different development stages were detected by the colorimetry. [Result] RNA content of non-diapause pupae was 4.614 0-7.946 3 μg/mg, while diapause pupae was 4.326 0-5.885 3 μg/mg and eclosion-adult from diapause pupae was 20.779 3 μg/mg at initial stage. DNA content of non-diapause pupae was 0.448 7-0.535 0 μg/mg, while diapause pupae was 0.452 0-0.828 3 μg/mg and eclosion-adult from diapause pupae was 1.727 0 μg/mg at initial stage. [Conclusion] The nucleic acid content and change is related to the development stage.
基金financial support from the National Natural Science Foundation of China(Grant 81973281)the Fundamental Research Funds for the Central Universities(2019FZA7017)Leading Talent of“Ten Thousand Plan”-National High-Level Talents SpecialSupport Plan。
文摘The recent pneumonia outbreak caused by a novel coronavirus(SARS-CoV-2)is posing a great threat to global public health.Therefore,rapid and accurate identification of pathogenic viruses plays a vital role in selecting appropriate treatments,saving people's lives and preventing epidemics.It is important to establish a quick standard diagnostic test for the detection of the infectious disease(COVID-19)to prevent subsequent secondary spread.Polymerase chain reaction(PCR)is regarded as a gold standard test for the molecular diagnosis of viral and bacterial infections with high sensitivity and specificity.Isothermal nucleic acid amplification is considered to be a highly promising candidate method due to its fundamental advantage in quick procedure time at constant temperature without thermocycler opera-tion.A variety of improved or new approaches also have been developed.This review summarizes the currently available detection methods for coronavirus nucleic acid.It is anticipated that this will assist researchers and clinicians in developing better techniques for timely and effective detection of coro-navirus infection.
文摘Real-time PCR is a closed DNA amplification system that skillfully integrates biochemical, photoelectric and computer techniques. Fluorescence data acquired once per cycle provides rapid absolute quantification of initial template copy numbers as PCR products are generated. This technique significantly simplifies and accelerates the process of producing reproducible quantification of nucleic acid molecules. It not only is a sensitive, accurate and rapid quantitative method, but it also provides an easier way to calculate the absolute starting copy number of nucleic acid molecules to be tested. Together with molecular bio-techniques, like microarray, real-time PCR will play a very important role in many aspects of molecular life science such as functional gene analysis and disease molecular diagnostics. This review introduces the detailed principles and application of the real-time PCR technique, describes a recently developed system for exact quantification of AUX/IAA genes In Arabidopsis, and discusses the problems with the real-time PCR process.
文摘During infections,nucleic acids of pathogens are also engaged in recognition via several exogenous and cytosolic pattern recognition receptors,such as the toll-like receptors,retinoic acid inducible gene-I-like receptors,and nucleotide-binding and oligomerization domain-like receptors.The binding of the pathogen-derived nucleic acids to their corresponding sensors initiates certain downstream signaling cascades culminating in the release of type-I interferons(IFNs),especially IFN-αand other cytokines to induce proinflammatory responses towards invading pathogens leading to their clearance from the host.Although these sensors are hardwired to recognize pathogen associated molecular patterns,like viral and bacterial nucleic acids,under unusual physiological conditions,such as excessive cellular stress and increased apoptosis,endogenous self-nucleic acids like DNA,RNA,and mitochondrial DNA are also released.The presence of these self-nucleic acids in extranuclear compartments or extracellular spaces or their association with certain proteins sometimes leads to the failure of discriminating mechanisms of nucleic acid sensors leading to proinflammatory responses as seen in autoimmune disorders,like systemic lupus erythematosus,psoriasis and to some extent in type 1 diabetes(T1D).This review discusses the involvement of various nucleic acid sensors in autoimmunity and discusses how aberrant recognition of self-nucleic acids by their sensors activates the innate immune responses during the pathogenesis of T1D.
文摘Hepatocellular carcinoma(HCC), with its high incidence and mortality rate, is one of the most common malignant tumors. Despite recent development of a diagnostic and treatment method, the prognosis of HCC remains poor. Therefore, to provide optimal treatment for each patient with HCC, more precise and effective biomarkers are urgently needed which could facilitate a more detailed individualized decision-making during HCC treatment, including the following; risk assessment, early cancer detection, prediction of treatment or prognostic outcome. In the blood of cancer patients, accumulating evidence about circulating tumor cells and cell-free nucleic acids has suggested their potent clinical utilities as novel biomarker. This concept, so-called "liquid biopsy" is widely known as an alternative approach to cancer tissue biopsy. This method might facilitate a more sensitive diagnosis and better decision-making by obtaining genetic and epigenetic aberrations that are closely associated with cancer initiation and progression. In this article, we review recent developments based on the available literature on both circulating tumor cells and cell-free nucleic acids in cancer patients, especially focusing on Hepatocellular carcinoma.
文摘Despite recent advances in surgical techniques and perioperative management, the prognosis of pancreatic cancer(PCa) remains extremely poor. To provide optimal treatment for each patient with Pca, superior biomarkers are urgently needed in all phases of management from early detection to staging, treatment monitoring, and prognosis. In the blood of patients with cancer, circulating tumor cells(CTCs) and cell-free nucleic acids(cf NAs), such as DNA, m RNA, and noncoding RNA have been recognized. In the recent years, their presence in the blood has encouraged researchers to investigate their potential use as novel blood biomarkers, and numerous studies have demonstrated their potential clinical utility as a biomarker for certain types of cancer. This concept, called "liquid biopsy" has been focused on as a less invasive, alternative approach to cancer tissue biopsy for obtaining genetic and epigenetic aberrations that contribute to oncogenesis and cancer progression. In this article, we review the available literature on CTCs and cfN As in patients with cancer, particularly focusing on PCa, and discuss future perspectives in this field.
文摘Despite major achievements in the treatment ofchronic hepatitis C with the combination ofinterferons and the nucleoside analog ribavirin themajority of patients with chronic hepatitis C virus(HCV) infection cannot be treated effectively.Toimprove this response rate we used antisensetechnologies to inhibit HCV translation as possibleadditional option for experimental treatment.Antisense oligodeoxynucleotides(ODN) are
基金"211"project fund (No.98X207)National Natural Science Foundation of China,No.38970279
文摘AIM To clone expressed genes associated withrepair of irradiation-damaged mice intestinalgland cells treated by small intestinal RNA,andto explore the molecular mechanism ofexogenous nucleic acids improving repair ofintestinal crypt.METHODS The animal mode of test group andcontrol group was established,forty-five micebeing irradiated by γ ray were treated with smallintestinal RNA as test group,forty mice beingirradiated by γ ray were treated withphysiological saline as control group,five micewithout irradiation were used as normal control,their jejunal specimens were collectedrespectively at 6h,12h,24h,4d and 8d afterirradiation.Then by using LD-PCR based onsubtractive hybridization,these gene fragmentsdifferentially expressed between test group andcontrol group were obtained,and then werecloned into T vectors as well as beingsequenced.Obtained sequences were screenedagainst.GeneBank,if being new sequences,they were submitted to GeneBank.RESULTS Ninety clones were associated withrepair of irradiation-damaged intestinal glandcells treated by intestinal RNA.These clonesfrom test group of 6h,12h,24h,4d and 8dwere respectively 18,22,25,13,12.By screening against GeneBank,18 of which werenew sequences,the others were dramaticallysimilar to the known sequences,mainly similarto hsp,Nmi,Dutt1,alkaline phosphatase,homeobox,anti-CEA ScFv antibody,arginine/serine kinase and BMP-4,repA.Eighteen genefragments were new sequences,their acceptnumbers in GeneBank were respectivelyAF240164-AF240181.CONCLUSION Ninety clones were obtained tobe associated with repair of irradiation-damagedmice intestinal gland cells treated by smallintestinal RNA,which may be related toabnormal expression of genes and matchedproteins of hsp,Nmi,Duttl,Na,K-ATPase,alkalineph-osphatase,glkA,single strandedreplicative centromeric gene as well as 18 newsequences.
文摘To improve the clinical outcomes of cancer patients, early detection and accurate monitoring of diseases are necessary. Numerous genetic and epigenetic alterations contribute to oncogenesis and cancer progression, and analyses of these changes have been increasingly utilized for diagnostic, prognostic and therapeutic purposes in malignant diseases including gastric cancer (GC). Surgical and/or biopsy specimens are generally used to understand the tumor-associated alterations; however, those approaches cannot always be performed because of their invasive characteristics and may fail to reflect current tumor dynamics and drug sensitivities, which may change during the therapeutic process. Therefore, the importance of developing a non-invasive biomarker with the ability to monitor real-time tumor dynamics should be emphasized. This concept, so called “liquid biopsy”, would provide an ideal therapeutic strategy for an individual cancer patient and would facilitate the development of “tailor-made” cancer management programs. In the blood of cancer patients, the presence and potent utilities of circulating tumor cells (CTCs) and cell-free nucleic acids (cfNAs) such as DNA, mRNA and microRNA have been recognized, and their clinical relevance is attracting considerable attention. In this review, we discuss recent developments in this research field as well as the relevance and future perspectives of CTCs and cfNAs in cancer patients, especially focusing on GC.
文摘Circulating free nucleic acids; cell free DNA and circulating micro-RNA, are found in the plasma of patients with hematologic and solid malignancies at levels higher than that of healthy individuals. In patients with hematologic malignancy cell free DNA reflects the underlying tumor mutational profile, whilst micro-RNAs reflect genetic interference mechanisms within a tumor and potentially the surrounding microenvironment and immune effector cells. These circulating nucleic acids offer a potentially simple, non-invasive, repeatable analysis that can aid in diagnosis, prognosis and therapeutic decisions in cancer treatment.
基金supported by the National Science Foundation of China(No.82003689,to Mengnan Zhao,China)the Outstanding Young Scientific Talent Foundation of Sichuan Province(No.2022JDJQ0052,to Sanjun Shi,China)+3 种基金the China Postdoctoral Science Foundation(No.2021M690489,to Mengnan Zhao,China)the Project of High-Level Talents in Sichuan Province(No.003113014003,to Sanjun Shi,China)the International Postdoctoral Exchange Fellowship Program(No.YJ20200040,to Mengnan Zhao,China)the Xinglin Scholar Research Promotion Project of Chengdu University of Traditional Chinese Medicine(No.BSH2020006,to Mengnan Zhao,China).
文摘RNAs are involved in the crucial processes of disease progression and have emerged as powerful therapeutic targets and diagnostic biomarkers.However,efficient delivery of therapeutic RNA to the targeted location and precise detection of RNA markers remains challenging.Recently,more and more attention has been paid to applying nucleic acid nanoassemblies in diagnosing and treating.Due to the flexibility and deformability of nucleic acids,the nanoassemblies could be fabricated with different shapes and structures.With hybridization,nucleic acid nanoassemblies,including DNA and RNA nanostructures,can be applied to enhance RNA therapeutics and diagnosis.This review briefly introduces the construction and properties of different nucleic acid nanoassemblies and their applications for RNA therapy and diagnosis and makes further prospects for their development.
基金financially supported by the CAMS Initiative for Innovative Medicine(Grant Number 2017-I2M3-022)Central basic scientific research in colleges and universities(Grant Number 3332019162)+1 种基金the National Natural Science Foundation of China(Grant Number 81503117)the Foundation for Studying Abroad from the China Scholarship Council(Grant Number 201808110121)
文摘The subunit herpes zoster vaccine Shingrix is superior to attenuated vaccine Zostavax in both safety and efficacy,yet its unlyophilizable liposome delivery system and the limited supply of naturally sourced immunological adjuvant QS-21 still need to be improved.Based on poly(lactic-co-glycolic acid)(PLGA)delivery systems that are stable during the lyophilization and rehydration process and using a double-emulsion(w/o/w)solvent evaporation method,we designed a series of nanoparticles with varicella-zoster virus antigen glycoprotein E(VZV-g E)as an antigen and nucleic acids including polyinosinic-polycytidylic acid(Poly I:C)and phosphodiester Cp G oligodeoxynucleotide(Cp G ODN),encapsulated as immune stimulators.While cationic lipids(DOTAP)have more potential than neutral lipids(DOPC)for activating g E-specific cell-mediated immunity(CMI)in immunized mice,especially when g E is encapsulated in and presented on the surface of nanoparticles,PLGA particles without lipids have the greatest potential to induce not only the highest g Especific Ig G titers but also the strongest g E-specific CMI responses,including the highest proportions of interferon-c(IFNc)-and interleukin-2(IL-2)-producing CD4?/CD8?T cells according to a flow cytometry assay and the greatest numbers of IFN-c-and IL-2-producing splenocytes according to an enzyme-linked immunospot(ELISPOT)assay.These results showed that immune-stimulating nucleic acids together with the PLGA delivery system showed promise as a safe and economical varicella and zoster vaccine candidate.
基金Supported by National Natural Science Foundation of China,No.81460123Guangxi Graduate Innovation Program,No.201601005Guangxi Clinic Medicine Research Center of Hepatobiliary Disease,No.AD17129025
文摘AIM To assess the antiviral effects of hepatitis B virus(HBV) S gene-specific anti-gene locked nucleic acid(LNA) in transgenic mice.METHODS Thirty HBV transgenic mice were acclimatized to laboratory conditions and positive for serum HBV surface antigen(HBs Ag) and HBV DNA, were randomly divided into 5 groups(n = 7), including negative control(blank control, unrelated sequence control), positive control(lamivudine, anti-sense-LNA), and anti-gene-LNA experimental group. LNA was injected into transgenic mice by tail vein while lamivudine was administeredby gavage. Serum HBV DNA and HBs Ag levels were determined by fluorescence-based PCR and enzymelinked immune sorbent assay, respectively. HBV S gene expression amounts were assessed by reverse transcription polymerase chain reaction. Positive rates of HBsA g in liver cells were evaluated immunohistochemistry.RESULTS Average rate reductions of HBs Ag after treatment on the 3 rd, 5 th, and 7 th days were 32.34%, 45.96%, and 59.15%, respectively. The inhibitory effect of antigene-LNA on serum HBs Ag peaked on day 7, with statistically significant differences compared with pretreatment(0.96 ± 0.18 vs 2.35 ± 0.33, P < 0.05) and control values(P < 0.05 for all). Average reduction rates of HBV DNA on the 3 rd, 5 th, and 7 th days were 38.55%, 50.95%, and 62.26%, respectively. This inhibitory effect peaked on the 7 th day after treatment with anti-gene-LNA, with statistically significant differences compared with pre-treatment(4.17 ± 1.29 vs 11.05 ± 1.25, P < 0.05) and control values(P < 0.05 for all). The mR NA levels of the HBV S gene(P < 0.05 for all) and rates of HBsA g positive liver cells(P < 0.05 for all) were significantly reduced compared with the control groups. Liver and kidney function, and histology showed no abnormalities. CONCLUSION Anti-gene-LNA targeting the S gene of HBV displays strong inhibitory effects on HBV in transgenic mice, providing theoretical and experimental bases for gene therapy in HBV.