期刊文献+
共找到16,942篇文章
< 1 2 250 >
每页显示 20 50 100
Revealing the intrinsic connection between residual strain distribution and dissolution mode in Mg-Sc-Y-Ag anode for Mg-air battery 被引量:2
1
作者 Wei-li Cheng Xu-bang Hao +4 位作者 Jin-hui Wang Hui Yu Li-fei Wang Ze-qin Cui Cheng Chang 《Journal of Magnesium and Alloys》 2025年第3期1020-1033,共14页
The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconci... The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconcile this contradiction,two Mg-0.1Sc-0.1Y-0.1Ag anodes with different residual strain distribution through extrusion with/without annealing are fabricated.The results indicate that annealing can significantly lessen the“pseudo-anode”regions,thereby changing the dissolution mode of the matrix and achieving an effective dissolution during discharge.Additionally,p-type semiconductor characteristic of discharge productfilm could suppress the self-corrosion reaction without reducing the polarization of anode.The magnesium-air battery utilizing annealed Mg-0.1Sc-0.1Y-0.1Ag as anode achieves a synergistic improvement in specific capacity(1388.89 mA h g^(-1))and energy density(1960.42 mW h g^(-1)).This anode modification method accelerates the advancement of high efficiency and long lifespan magnesium-air batteries,offering renewable and cost-effective energy solutions for electronics and emergency equipment. 展开更多
关键词 Mg-air batteries ANODE Residual strain distribution dissolution mode Discharge mechanism
在线阅读 下载PDF
Impact of Burial Dissolution on the Development of Ultradeep Fault-controlled Carbonate Reservoirs:Insights from High-temperature and High-pressure Dissolution Kinetic Simulation 被引量:1
2
作者 TAN Xiaolin ZENG Lianbo +6 位作者 SHE Min LI Hao MAO Zhe SONG Yichen YAO Yingtao WANG Junpeng LU Yuzhen 《Acta Geologica Sinica(English Edition)》 2025年第1期228-242,共15页
Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temper... Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temperature and highpressure dissolution kinetic simulations were conducted.The results demonstrate that the intensity of burial dissolution is controlled by temperature and pressure,while tectonic-fluid activity influences the development pattern of burial dissolution,ultimately determining the direction of its differential modification.Extensive burial dissolution is likely to occur primarily at relatively shallow depths,significantly influencing reservoir formation,preservation,modification,and adjustment.The development of faults facilitates the maintenance of the intensity of burial dissolution.The maximum intensity of burial dissolution occurs at the tips and overlap zones of faults and intersections of multiple faults.The larger the scale of the faults,the more conducive it is to the development of burial dissolution.Burial dissolution fosters the formation of fault networks characterized by enhanced reservoir capacity and permeability.Burial dissolution controlled by episodic tectonic-fluid activity is a plausible explanation for forming the Tarim Basin's ultra-deep fault-controlled“stringbead-like”reservoirs. 展开更多
关键词 burial dissolution tectonic-fluid ultra-deep carbonate reservoirs high-temperature and high-pressure dissolution kinetic simulation
在线阅读 下载PDF
Introducing high-density growth twins in aluminum alloys by laser surface remelting via templated nucleation of grains 被引量:1
3
作者 Chunfeng Ma Qinglong Zhao +2 位作者 Xiao Liu Yanjun Li Qichuan Jiang 《Journal of Materials Science & Technology》 2025年第10期315-324,共10页
It is difficult to generate coherent twin boundaries in bulk Al alloys due to their high intrinsic stacking fault energy. Here, we report a strategy to induce high-density growth twins in aluminum alloys through the h... It is difficult to generate coherent twin boundaries in bulk Al alloys due to their high intrinsic stacking fault energy. Here, we report a strategy to induce high-density growth twins in aluminum alloys through the heterogeneous nucleation of twinned Al grains on twin-structured TiC nucleants and the preferred growth of twinned dendrites by laser surface remelting of bulk metals. The solidification structure at the surface shows a mixture of lamellar twinned dendrites with ultra-fine twin boundary spacing (∼2 µm), isolated twinned dendrites, and regular dendrites. EBSD analysis and finite element method (FEM) simulations have been used to understand the competitive growth between twinned and regular dendrites, and the solidification conditions for the preferred growth of twinned dendrites during laser remelting and subsequent rapid solidification are established. It is shown that the reduction in the ratio of temperature gradient G to solidification rate V promotes the formation of lamellar twinned dendrites. The primary trunk spacing of lamellar twinned dendrites is refined by the high thermal gradient and solidification rate. The present work paves a new way to generate high-density growth twins in additive-manufactured Al alloys. 展开更多
关键词 Heterogeneous nucleation Twinned dendrites Solidification Aluminum alloys
原文传递
In-situ observation on dissolution of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions in refining slag 被引量:1
4
作者 Yu-die Gu Ying Ren Li-feng Zhang 《Journal of Iron and Steel Research International》 2025年第2期376-387,共12页
The dissolution behavior of complex inclusions in refining slag was studied using confocal laser scanning microscope.Based on the dissolution curve of complex inclusions,the main rate-limiting link of CaO-SiO_(2)-Al_(... The dissolution behavior of complex inclusions in refining slag was studied using confocal laser scanning microscope.Based on the dissolution curve of complex inclusions,the main rate-limiting link of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was the diffusion in the molten slag.The dissolution rate of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was affected by the composition and size of inclusion.The functional relationship between the dimensionless inclusion capacity(Zh)and the dimensionless dissolution rate(Ry)of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was calculated as Ry=2.10×10^(-6)Zh^(0.160),while it was Ry=2.10×10^(-6)Zh^(0.0087)for Al_(2)O_(3)-CaO complex inclusions.On this basis,the complete dissolution time and rate of the complex inclusions were calculated by using the function relation between the Zh and Ry numbers. 展开更多
关键词 INCLUSION Confocal laser scanning microscope Refining slag dissolution kinetics
原文传递
Nucleation control for the growth of two-dimensional single crystals
5
作者 Jinxia Bai Chi Zhang +3 位作者 Fankai Zeng Jinzong Kou Jinhuan Wang Xiaozhi Xu 《Journal of Semiconductors》 2025年第9期10-18,共9页
The unique structure and exceptional properties of two-dimensional(2D)materials offer significant potential for transformative advancements in semiconductor industry.Similar to the reliance on wafer-scale single-cryst... The unique structure and exceptional properties of two-dimensional(2D)materials offer significant potential for transformative advancements in semiconductor industry.Similar to the reliance on wafer-scale single-crystal ingots for silicon-based chips,practical applications of 2D materials at the chip level need large-scale,high-quality production of 2D single crystals.Over the past two decades,the size of 2D single-crystals has been improved to wafer or meter scale,where the nucleation control during the growth process is particularly important.Therefore,it is essential to conduct a comprehensive review of nucleation control to gain fundamental insights into the growth of 2D single-crystal materials.This review mainly focuses on two aspects:controlling nucleation density to enable the growth from a single nucleus,and controlling nucleation position to achieve the unidirectionally aligned islands and subsequent seamless stitching.Finally,we provide an overview and forecast of the strategic pathways for emerging 2D materials. 展开更多
关键词 2D materials single crystals nucleation density nucleation position
在线阅读 下载PDF
The dilemma of Luhuitou fringing reefs:net dissolution in winter and enhanced acidification in summer
6
作者 Junxiao ZHANG Hui HUANG +4 位作者 Xiangcheng YUAN Yong LUO Haorui LIANG Peixi LIANG Xin XU 《Journal of Oceanology and Limnology》 2025年第3期785-802,共18页
Global coral reef ecosystems have been severely degraded due to the combined effects of climate change and human activities.Changes in the seawater carbonate system of coral reef ecosystems can reflect their status an... Global coral reef ecosystems have been severely degraded due to the combined effects of climate change and human activities.Changes in the seawater carbonate system of coral reef ecosystems can reflect their status and their responses to the impacts of climate change and human activities.Winter and summer surveys in 2019 found that the ecological community of the Luhuitou coral reef flat was dominated by macroalgae and corals,respectively,contrasting with the conditions 10 years ago.The Luhuitou fringing reefs were sources of atmospheric CO_(2) in both seasons.In winter,the daily variation range of dissolved inorganic carbon(DIC)in Luhuitou coral reefs was up to 450μmol/kg,while that of total alkalinity(TA)was only 68μmol/kg.This indicated that the organic production was significantly higher than the calcification process during this period.The TA/DIC was approximately 0.15,which was less than half of that in healthy coral reefs;hence,photosynthesis-respiration processes were the most important factors controlling daily changes in the seawater carbonate system.The net community production(NCP)of the Luhuitou coral reef ecosystem in winter was as high as 47.65 mmol C/(m^(2)·h).While the net community calcification(NCC)was approximately 3.35 and-4.15 mmol CaCO_(3)/(m^(2)·h)during the daytime and nighttime respectively.Therefore,the NCC for the entire day was-21.9 mmol CaCO_(3)/(m^(2)·d),indicating a net autotrophic dissolved state.In summer,the acidification was enhanced by thunderstorms and heavy rain with the highest seawater partial pressure of CO_(2)(p CO_(2))and lowest pH T.Over the past 10 years,the increase rate of seawater p CO_(2) in Luhuitou reef was approximately 13.3μatm/a***,six times that of the open ocean,while the decrease rate of pH was approximately 0.0083/a,being five times that of the global ocean.These findings underscore the importance of protecting and restoring Luhuitou fringing reef,as well as similar reefs worldwide. 展开更多
关键词 Luhuitou coral reef carbonate system ACIDIFICATION CALCIFICATION dissolution
在线阅读 下载PDF
Coke dissolution with FeO-containing slag in hydrogen-rich blast furnace
7
作者 Hao Liu Huang-jie Hua +3 位作者 Yue-lin Qin Wei-qiang Liu Shi-hong Peng Fei Meng 《Journal of Iron and Steel Research International》 2025年第11期3778-3789,共12页
In a hydrogen-rich blast furnace,an increased coke load accentuates the support skeleton role of coke,particularly in the cohesive and dripping zones following partial dissolution with slag.To investigate the dissolut... In a hydrogen-rich blast furnace,an increased coke load accentuates the support skeleton role of coke,particularly in the cohesive and dripping zones following partial dissolution with slag.To investigate the dissolution behaviours of coke in these regions,coke samples were gasified in a N2-CO-CO_(2)-H_(2)-H_(2)O atmosphere,simulating hydrogen-rich blast furnace conditions.Subsequently,the dissolution of gasified coke with slag containing FeO was analysed.The influence of coke gasification degree and FeO concentration in slag on coke dissolution was examined.The results showed that both higher coke gasification degrees and increased FeO content accelerate coke mass loss and exacerbate surface degradation upon dissolution,while effects on the internal structure of coke remain relatively minor,especially regarding FeO concentration.Additionally,hydrogen-rich gasification raised the graphitisation level of coke,with dissolution further enhancing the graphitisation of gasified coke. 展开更多
关键词 COKE dissolution Hydrogen-rich blast furnace SLAG
原文传递
A novel strategy for ingot cogging without homogenization:Dynamical recrystallization and nucleation mechanisms associated with as-cast dendrites of nickel-based superalloys
8
作者 B.C.Xie Y.W.Luo +3 位作者 Z.T.Wang Q.Q.Meng Y.Q.Ning M.W.Fu 《Journal of Materials Science & Technology》 2025年第17期78-91,共14页
Since the as-cast microstructure benefits dynamic recrystallization(DRX)nucleation,the present research is focused on the microstructure evolution associated with the dendrites and precipitates during the thermal defo... Since the as-cast microstructure benefits dynamic recrystallization(DRX)nucleation,the present research is focused on the microstructure evolution associated with the dendrites and precipitates during the thermal deformation of an ingot without homogenization treatment aiming at exploring a new efficient strategy of ingot cogging for superalloys.The as-cast samples were deformed at the sub-solvus temperature,and the DRX evolution from dendritic arms(DAs)to inter-dendritic regions(IDRs)was discussed based on the observation of the fishnet-like DRX microstructures and the gradient of DRX grain size at IDRs.The difference in the precipitates at DAs and IDRs played an essential role during the deformation and DRX process,which finally resulted in very different microstructures in the two areas.A selective straininduced grain boundary bulging(SIGBB)mechanism was found to function well and dominate the DRX nucleation at DAs.The grain boundary was able to migrate and bulge to nucleate on the condition that the boundary was located at DAs and had a great difference in dislocation density between its opposite sides at the same time.As for DRX nucleation at IDRs,the particle-stimulated nucleation(PSN)mechanism played a leading role,and the progressive subgrain rotation(PSR)and geometric DRX were two important supplementary mechanisms.The dislocation accumulation around the coarse precipitates at IDR resulted in progressive orientation rotation,which would generate DRX nuclei once the maximum misorientation there was sufficient to form a high-angle boundary with the matrix.The PSR or geometric DRX functioned at the severely elongated IDRs at the later stage of deformation,depending on the thickness of the elongated IDRs.The uniform microstructure was obtained by the deformation without homogenization and the subsequent annealing treatment.The smaller strain,the lower annealing temperature,and the much shorter soaking time requested in the above process lead to a smaller risk of cracking and a lower consumption of energy during the ingot-cogging process. 展开更多
关键词 SUPERALLOYS Ingot cogging DENDRITES Dynamic recrystallization nucleation mechanisms
原文传递
Synergistic inhibition to dissolution corrosion by de-twinning and precipitation in alumina-forming austenitic steel exposed to lead-bismuth eutectic with 10-8 wt.%oxygen at 600℃
9
作者 Decang Zhang Xiaoxin Zhang +4 位作者 Jun Zhang Hao Ren Zhonghui Liao Xian Zeng Qingzhi Yan 《Journal of Materials Science & Technology》 2025年第19期55-67,共13页
This work investigated the original microstructure of cold-worked alumina-forming austenitic steel,along with its precipitation and dissolution corrosion behaviors in lead-bismuth eutectic with 10-8 wt.%oxygen at 600... This work investigated the original microstructure of cold-worked alumina-forming austenitic steel,along with its precipitation and dissolution corrosion behaviors in lead-bismuth eutectic with 10-8 wt.%oxygen at 600℃,using solution-annealed steel for comparison.Anomalously,cold-worked steel presented milder corrosion compared to solution-annealed steel,with average corrosion depths of 314.3 and 401.0μm after 1700 h exposure.Cold working-induced de-twinning transformed the annealing twin boundaries into normal high-angle grain boundaries(NGBs),increasing NGBs proportion from 36%to 89%.The increased NGBs provided more nucleation sites for intergranular barriers composed of alternate NiAl and M23C6 precipitates,thus better obstructing the dissolution attack. 展开更多
关键词 Alumina-forming austenitic steel Lead-bismuth eutectic dissolution corrosion De-twinning PRECIPITATION
原文传递
Efficiency of Natural Phosphate(Apatite)Dissolution by Vegetal Organic Matter
10
作者 Kokou Justin Agoudou Amine Ezzariai +4 位作者 Diyakadola Dihéénane Bafai BassaïMagnoudéwa Bodjona Moursalou Koriko Mohamed Hafidi Gado Tchangbedji 《Journal of Minerals and Materials Characterization and Engineering》 2025年第6期318-327,共10页
Natural phosphates(Apatite)are the main sources of phosphorus,one of the three major chemical elements for plant development.The present work aims to study the efficiency of dissolution of natural phosphate from Togo ... Natural phosphates(Apatite)are the main sources of phosphorus,one of the three major chemical elements for plant development.The present work aims to study the efficiency of dissolution of natural phosphate from Togo during composting of a mixture of this ore with different types of vegetal matter.Phospho-composts of mixtures of ore and cow dung(A+P),poultry droppings(B+P),nymphea(C+P),domestic organic waste(D+P)and vegetal organic composts without phosphate(A,B,C and D)were elaborated.Determination of available phosphorus concentrations by the colorimetry method(HACH DR 3800)in composts and phospho-composts was realized.Analysis results revealed that organic matter has a solubilizing effect on natural phosphate.Nymphea phospho-compost has the best ore dissolved because its assimilable phosphorus content is the highest(0.88%).These results also showed that phosphocomposts maturation time has a beneficial effect on the ore dissolution. 展开更多
关键词 Natural Phosphate APATITE Available Phosphorus Organic Matter COMPOST dissolution
在线阅读 下载PDF
Near-infrared responsive polycaprolactone coatings for magnesium implants:Photodynamic antibacterial and controllable dissolution
11
作者 Xi Liu Jinglong Pan +5 位作者 You Lv Xu Wang Xiaoze Ma Xinxin Zhang Guangyi Cai Zehua Dong 《Journal of Magnesium and Alloys》 2025年第4期1671-1684,共14页
Magnesium implants have received widespread attention in orthopaedic surgery.However,the mechanical degradation and concurrent inflammation caused by the rapid corrosion of Mg limits their applications.In this study,a... Magnesium implants have received widespread attention in orthopaedic surgery.However,the mechanical degradation and concurrent inflammation caused by the rapid corrosion of Mg limits their applications.In this study,a kind of unique core-shell heterojunction CuS@PPy nanostructures was synthesized and then incorporated in polycaprolactone(PCL)to construct an intelligent coating(CuS@PPy/PCL)on micro-arc-oxidized Mg implants.The PCL-based coating can realize near-infrared(NIR)-driven antibacterial and controllable Mg dissolution according to different bone healing stages.At the beginning of bone remodelling,the coating exhibits promising antibacterial properties with 99.67%and 99.17%efficacy against S.aureus and E.coli,respectively,thanks to the singlet oxygen(^(1)O_(2))and alkoxyl radicals(RO·)generated by the photodynamic effect of CuS@PPy heterojunction under low-power NIR light(1.5 W/cm^(2)).In the bone reparative stage,the PCL-based coating can maintain high corrosion resistance to meet the mechanical requirements of Mg implants in human body fluid.However,after the complete rehabilitation of bones,through a high-power(2 W/cm^(2))NIR light,the PCL-based coating changed from an elastic to a viscous flow state(44.7℃)under the photothermal effects of CuS@PPy,leading to quick degradation of the PCL-based coating and following accelerating dissolution of the Mg implant(avoiding secondary surgery).Hopefully,this NIR-responsive coating may provide an innovative method for the antibacterial and controllable dissolution of Mg implants. 展开更多
关键词 MAGNESIUM Near infrared irradiation Photodynamic antibacterial Photothermal effect Controlled dissolution
暂未订购
A molecular dynamics study of bubble nucleation on grooved surfaces:Effects of wettability and heat flux
12
作者 Mian Yu Bingheng Li +3 位作者 Lianfeng Wu Lianxiang Ma Xiangwen Meng Yuanzheng Tang 《Chinese Physics B》 2025年第11期18-28,共11页
Bubble nucleation plays a crucial role in boiling heat transfer and other applications.Traditional experiments struggle to capture its microscopic mechanisms,making molecular dynamics simulations a powerful tool for s... Bubble nucleation plays a crucial role in boiling heat transfer and other applications.Traditional experiments struggle to capture its microscopic mechanisms,making molecular dynamics simulations a powerful tool for such studies.This work uses molecular dynamics simulations to investigate bubble nucleation of water on copper surfaces with sinusoidal groove roughness under varying heat flux and surface wettability.Results show that at the same wettability,higher heat flux leads to higher surface temperatures after the same heating time,promoting bubble nucleation,growth,and departure.Moreover,under constant heat flux,stronger surface hydrophilicity enhances heat transfer from the solid to the liquid,further accelerating the nucleation.This study provides valuable insights into the mechanism of bubble nucleation and offers theoretical guidance for enhancing heat transfer. 展开更多
关键词 molecular dynamics bubble nucleation wettability conditions heat flux
原文传递
Impact of dissolution and precipitation on pore structure in CO_(2)sequestration within tight sandstone reservoirs
13
作者 Hui Gao Kai-Qing Luo +6 位作者 Chen Wang Teng Li Zhi-Lin Cheng Liang-Bin Dou Kai Zhao Nan Zhang Yue-Liang Liu 《Petroleum Science》 2025年第2期868-883,共16页
Complex physical and chemical reactions during CO_(2)sequestration alter the microscopic pore structure of geological formations,impacting sequestration stability.To investigate CO_(2)sequestration dynamics,comprehens... Complex physical and chemical reactions during CO_(2)sequestration alter the microscopic pore structure of geological formations,impacting sequestration stability.To investigate CO_(2)sequestration dynamics,comprehensive physical simulation experiments were conducted under varied pressures,coupled with assessments of changes in mineral composition,ion concentrations,pore morphology,permeability,and sequestration capacity before and after experimentation.Simultaneously,a method using NMR T2spectra changes to measure pore volume shift and estimate CO_(2)sequestration is introduced.It quantifies CO_(2)needed for mineralization of soluble minerals.However,when CO_(2)dissolves in crude oil,the precipitation of asphaltene compounds impairs both seepage and storage capacities.Notably,the impact of dissolution and precipitation is closely associated with storage pressure,with a particularly pronounced influence on smaller pores.As pressure levels rise,the magnitude of pore alterations progressively increases.At a pressure threshold of 25 MPa,the rate of change in small pores due to dissolution reaches a maximum of 39.14%,while precipitation results in a change rate of-58.05%for small pores.The observed formation of dissolution pores and micro-cracks during dissolution,coupled with asphaltene precipitation,provides crucial insights for establishing CO_(2)sequestration parameters and optimizing strategies in low permeability reservoirs. 展开更多
关键词 dissolution PRECIPITATION Pore structure CO_(2)sequestration Unconventional reservoirs
原文传递
Physical mechanisms of earthquake nucleation and foreshocks:Cascade triggering,aseismic slip,or fluid flows?
14
作者 Zhigang Peng Xinglin Lei 《Earthquake Research Advances》 2025年第2期32-47,共16页
Earthquakes are caused by the rapid slip along seismogenic faults.Whether large or small,there is inevitably a certain nucleation process involved before the dynamic rupture.At the same time,significant foreshock acti... Earthquakes are caused by the rapid slip along seismogenic faults.Whether large or small,there is inevitably a certain nucleation process involved before the dynamic rupture.At the same time,significant foreshock activity has been observed before some but not all large earthquakes.Understanding the nucleation process and foreshocks of earthquakes,especially large damaging ones,is crucial for accurate earthquake prediction and seismic hazard mitigation.The physical mechanism of earthquake nucleation and foreshock generation is still in debate.While the earthquake nucleation process is present in laboratory experiments and numerical simulations,it is difficult to observe such a process directly in the field.In addition,it is currently impossible to effectively distinguish foreshocks from ordinary earthquake sequences.In this article,we first summarize foreshock observations in the last decades and attempt to classify them into different types based on their temporal behaviors.Next,we present different mechanisms for earthquake nucleation and foreshocks that have been proposed so far.These physical models can be largely grouped into the following three categories:elastic stress triggering,aseismic slip,and fluid flows.We also review several recent studies of foreshock sequences before moderate to large earthquakes around the world,focusing on how different results/conclusions can be made by different datasets/methods.Finally,we offer some suggestions on how to move forward on the research topic of earthquake nucleation and foreshock mechanisms and their governing factors. 展开更多
关键词 FORESHOCKS Earthquake swarms 2024 Noto earthquake Earthquake nucleation FLUIDS Aseismic slip Haicheng earthquake
在线阅读 下载PDF
Numerical Modelling of CO_(2) Plume Evolution and Dissolution in a Stratified Saline Aquifer
15
作者 Bohao Wu Xiuqi Zhang +1 位作者 Haoheng Liu Yulong Ji 《Fluid Dynamics & Materials Processing》 2025年第10期2359-2387,共29页
Geological sequestration of carbon dioxide(CO_(2))entails the long-term storage of captured emissions from CCUS(Carbon Capture,Utilization,and Storage)facilities in deep saline aquifers to mitigate greenhouse gas accu... Geological sequestration of carbon dioxide(CO_(2))entails the long-term storage of captured emissions from CCUS(Carbon Capture,Utilization,and Storage)facilities in deep saline aquifers to mitigate greenhouse gas accumulation.Among various trapping mechanisms,dissolution trapping is particularly effective in enhancing storage security.However,the stratified structure of saline aquifers plays a crucial role in controlling the efficiency of CO_(2) dissolution into the resident brine.In this study,a two-dimensional numerical model of a stratified saline aquifer is developed,integrating both two-phase flow and mass transfer dynamics.The model captures the temporal evolution of gas saturation,reservoir pressure,and CO_(2) dissolution behavior under varying geological and operational conditions.Specifically,the effects of porosity heterogeneity,permeability distribution,and injection rate on the dissolution process are examined,and sequestration efficiencies across distinct stratigraphic layers are compared.Simulation results reveal that in the early phase of CO_(2) injection,the plume spreads radially along the lower portion of the aquifer.With continued injection,high-saturation regions expand upward and eventually accumulate beneath the shale and caprock layers.Pressure within the reservoir rises in response to CO_(2) injection,propagating both vertically and laterally.CO_(2) migration and dissolution are strongly influenced by reservoir properties,with progressive dissolution occurring in the pore spaces of individual layers.High-porosity zones favor CO_(2) accumulation and enhance local dissolution,whereas low-porosity regions facilitate vertical diffusion.An increase in porosity from 0.25 to 0.30 reduces the radial extent of dissolution in the high-permeability layer by 16.5%.Likewise,increasing permeability promotes radial dispersion;each 10 mD increment extends the CO_(2) dissolution front by approximately 18 m.Elevated injection rates intensify both vertical and lateral plume migration:every 0.25×10^(−6) m/s increase in rate yields an average 100–120 m increase in radial dissolution distance within high-permeability zones. 展开更多
关键词 Stratified saline aquifer CO_(2)migration dissolution POROSITY PERMEABILITY
在线阅读 下载PDF
Corrigendum to‘Tuning the nucleation kinetics of phosphate chemical conversion coating on Mg-Gd-Y-Zr magnesium alloy:The effect of pretreatment and organic additive’[Journal of Magnesium and Alloys 13(2025)207–218]
16
作者 Siyu Sun Peng Zhou +5 位作者 Yan Chen JinTao Xiao Jingli Sun Yong Yuan Tao Zhang Fuhui Wang 《Journal of Magnesium and Alloys》 2025年第5期2433-2434,共2页
The authors regret that due to negligence,the picture was misplaced in the original manuscript,resulting in Fig.6d being incorrectly included.The correct version of Fig.6d is provided below for reference.This error do... The authors regret that due to negligence,the picture was misplaced in the original manuscript,resulting in Fig.6d being incorrectly included.The correct version of Fig.6d is provided below for reference.This error does not affect the conclusions of the study,and we apologize for any confusion it may have caused. 展开更多
关键词 nucleation kinetics fig d PRETREATMENT phosphate chemical conversion coating organic additive magnesium alloy
在线阅读 下载PDF
Regulation of Lithium Nucleation by Designing a Biomimetic Carbon Frame for Super Compact and Non-Expanding Lithium Metal Anode
17
作者 Ziyi Chen Ying Yao +4 位作者 Feiyang Yang Zhaolin Gou Lipu Sun Feng Wu Jun Lu 《Carbon Energy》 2025年第8期90-99,共10页
Lithium metal is a compelling choice as an anode material for high-energy-density batteries,attributed to its elevated theoretical specific energy and low redox potential.Nevertheless,challenges arise due to its susce... Lithium metal is a compelling choice as an anode material for high-energy-density batteries,attributed to its elevated theoretical specific energy and low redox potential.Nevertheless,challenges arise due to its susceptibility to high-volume changes and the tendency for dendritic development during cycling,leading to restricted cycle life and diminished Coulombic efficiency(CE).Here,we innovatively engineered a kind of porous biocarbon to serve as the framework for a lithium metal anode,which boasts a heightened specific surface area and uniformly dispersed ZnO active sites,directly derived from metasequoia cambium.The porous structure efficiently mitigates local current density and alleviates the volume expansion of lithium.Also,incorporating the ZnO lithiophilic site notably reduces the nucleation overpotential to a mere 16 mV,facilitating the deposition of lithium in a compact form.As a result,this innovative material ensures an impressive CE of 98.5%for lithium plating/stripping over 500 cycles,a remarkable cycle life exceeding 1200 h in a Li symmetrical cell,and more than 82%capacity retention ratio after an astonishing 690 cycles in full cells.In all,such a rationally designed Li composite anode effectively mitigates volume change,enhances lithophilicity,and reduces local current density,thereby inhibiting dendrite formation.The preparation of a highperformance lithium anode frame proves the feasibility of using biocarbon in a lithium anode frame. 展开更多
关键词 Li nucleation Li plating/stripping lithium metal anode porous biocarbon
在线阅读 下载PDF
Rapid lime dissolution for efficient dephosphorization by self-disintegrating effect of core–shell structured lime in converter slag
18
作者 Jia-xin Zhang Yu-feng Tian +1 位作者 Guang-qiang Li Yu Liu 《Journal of Iron and Steel Research International》 2025年第9期3089-3095,共7页
The dissolution behaviors of lime,limestone,and core–shell structured lime,as well as their effects on dephosphorization behavior were studied.The results show that the slow dissolution of lime in converter slag is m... The dissolution behaviors of lime,limestone,and core–shell structured lime,as well as their effects on dephosphorization behavior were studied.The results show that the slow dissolution of lime in converter slag is mainly attributed to the calcium silicate layer at the lime/slag interface.CO_(2)generated by CaCO_(3)decomposition can destroy the calcium silicate layer,and thus accelerates the dissolution of limestone and core–shell structured lime.However,in the initial stage,a large amount of CO_(2)emission generated by limestone decomposition results in the poor contact between molten slag and limestone,and the dissolution rate is slower in the test of limestone than that of lime.For core–shell structured lime,the initial dissolution rate is not affected due to the lime surface,and is accelerated by the appropriate CO_(2)emission.Rapid CaO pickup in molten slag by fast dissolution of the lime sample can remarkably accelerate the dephosphorization reaction.Because of the fastest dissolution rate,the core–shell structured lime slagging mode shows the most promising prospects for the efficient dephosphorization. 展开更多
关键词 Lime dissolution DEPHOSPHORIZATION Slag-metal interaction Core-shell structured lime CaCO_(3)decomposition
原文传递
TiO_(2) doping promoted nucleation of CsPb X_(3)(X=Cl,Br,I)quantum dots in glass with improved luminescent performance and stability
19
作者 Xiaotu Yang Zihao Yue +3 位作者 Ruixiang Deng Zhengliang Zhang Tao Zhang Lixin Song 《Journal of Materials Science & Technology》 2025年第6期185-195,共11页
Stability hinders further development of all-inorganic CsPb X_(3)(X=Cl,Br,I)quantum dots(QDs)although they exhibit promising prospects in optoelectronic applications.Coating perovskite quantum dots(PQDs)with a glass n... Stability hinders further development of all-inorganic CsPb X_(3)(X=Cl,Br,I)quantum dots(QDs)although they exhibit promising prospects in optoelectronic applications.Coating perovskite quantum dots(PQDs)with a glass network to form QD glass can significantly improve their stability.However,the dense glass network degrades their luminescent performance.In this work,the crystallization behavior of PQDs in glass and better luminescence properties are prompted by introducing titanium dioxide into borosilicate glass.The luminescence intensity of TiO_(2)-doped CsPbBr_(3)QD glass is increased by 1.6 times and the PLQY is increased from 49.8%to 79%compared to the undoped glass.Evidence proves that the improved prop-erties are attributed to the enhanced nucleation effect of titanium dioxide during the annealing process.Benefiting from the densification of the glass network caused by titanium dioxide doping,the stability of the PQD glass is further improved.LED devices with an ultra-wide color gamut that fully covers the NTSC1953 standard and achieves 128.6%of the NTSC1953 standard as well as 91.1%of the Rec.2020 stan-dard were fabricated by coupling PQD glass powder,demonstrating promising commercial applications of PQD glass in optoelectronic displays. 展开更多
关键词 CsPbX_(3)QDs Titanium dioxide nucleation promotion Luminescent performance WLED device
原文传递
Dynamic instantaneous dissolution of the precipitates in aged Mg-Zn-Zr alloy at high strain rate
20
作者 LIU Yue-yang YANG Yang +6 位作者 HU Li-xiang CHEN Yi KE Yu-bin LI Dan WEI Shao-hong XU Wen-lin CHEN Xiang 《Journal of Central South University》 2025年第6期2038-2050,共13页
The commercial ZK 60 magnesium alloy with extruded state experienced aging heat treatment(T 6)was dynamically loaded at strain rate of 3000 s−1 by means of the split Hopkinson pressure bar(SHPB)in this paper.Transmiss... The commercial ZK 60 magnesium alloy with extruded state experienced aging heat treatment(T 6)was dynamically loaded at strain rate of 3000 s−1 by means of the split Hopkinson pressure bar(SHPB)in this paper.Transmission electron microscopy(TEM)observations showed that the precipitatedβ′_(1) phases partially dissolved(spheroidized)with blurred interfaces within 160μs at 3000 s^(−1).The average length and diameter of the rod-shapedβ′_(1) phase particles were 48.5 and 9.8 nm after the T 6 heat treatment;while the average diameter of the sphericalβ′_(1) phases changed to 8.8 nm after loading.The deformedβ′_(1) phase generated larger lattice distortion energy than Mg matrix under high strain rate loading.Therefore,the difference of free energy(the driving force of dissolution)between theβ′_(1) phase and the matrix increased,making the instantaneous dissolution of theβ′_(1) phase thermodynamically feasible.The dissolution(spheroidization)of theβ′_(1) phase particles was kinetically promoted because the diffusion rate of the solute Zn atoms was accelerated by combined actions of adiabatic temperature rise,high density of dislocations(vacancies)and high deviatoric stresses during high strain rate loading.The increase in hardness of ZK 60-T 6 alloy could be attributed to solid solution strengthening,dislocation strengthening and second phase particle strengthening. 展开更多
关键词 dynamic dissolution(spheroidization) THERMODYNAMICS kinetics high strain rate ZK 60-T 6 magnesium alloy
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部