The influence of the axial mount position of the guide vane on the pressure fluctuation in a nuclear pump(AP1000)is investigated.The characteristics of the three-dimensional flow inside the nuclear pump are analyzed b...The influence of the axial mount position of the guide vane on the pressure fluctuation in a nuclear pump(AP1000)is investigated.The characteristics of the three-dimensional flow inside the nuclear pump are analyzed by means of numerical simulation.Results indicate that when the axial relative distance between the guide vane and the pumping chamber is reduced,in conditions of“small flow,”the efficiency of the pump increases,the pressure inside the pumping chamber decreases,while the losses related to the guide vane grow.Under large flow conditions,as the efficiency of the pump decreases,the losses for the guide vane and the pumping chamber increase.The pressure fluctuation in the annular pumping chamber is basically determined by the rotation frequency and the blade passing frequency.The magnitude of these fluctuations is affected by the guide vane axial position.In particular,the smallest possible amplitude is obtained when the outlet central plane of the guide vane coincides with the outlet axis of the pumping chamber.展开更多
Development of nuclear pumped lasers (NPL) in the CFBR-Ⅱ reactor is briefly reviewed. The results of the two NPL experiments in CFBR-Ⅱ reactor are described. The first one focused on the principle of nuclear pumped ...Development of nuclear pumped lasers (NPL) in the CFBR-Ⅱ reactor is briefly reviewed. The results of the two NPL experiments in CFBR-Ⅱ reactor are described. The first one focused on the principle of nuclear pumped laser, and 4-mW laser output power achieved. The second NPL experiment focused on the small signal gain and the efficiency of the nuclear pumped He-Ar-Xe gas mixture at 1.73 μm. The maximum laser power measured to be 45 mW when thermal neutron flux rate is 6.9 × 1014 cm-2 · s-1. The small signal gain at 1.73 μm by the Rigrod analysis method is to be 0.24%-cm'1, and the saturation intensity is fitted to be 36 W/cm2.展开更多
An AP1000 nuclear reactor coolant pump is considered to assess the influence of the Impeller/Guide vane clearance on the performances of this type of pumps.Experiments and numerical simulations relying on an unidirect...An AP1000 nuclear reactor coolant pump is considered to assess the influence of the Impeller/Guide vane clearance on the performances of this type of pumps.Experiments and numerical simulations relying on an unidirectional fluid-solid coupling approach are used to investigate the problem(stress,strain and mode of the rotor).The results reveal the relationship existing between the hydraulic performance of the nuclear reactor coolant pump and the clearance ratio.The effect of clearance ratio on the maximum equivalent stress on the back surface of the impeller blade is greater than that on the working surface(the maximum equivalent stress on the back surface of impeller blade is about three times that on the working surface).The clearance ratio has a scarce effect on the first six natural frequencies of the rotor of the nuclear reactor coolant pump.The related vibrational modes have different waveforms.展开更多
The nuclear power plant is suitable for base-load operation, while the pumped-storage unit mainly gives play to capacity benefit in the electric power system;hence, the integrated development and hybrid operation mode...The nuclear power plant is suitable for base-load operation, while the pumped-storage unit mainly gives play to capacity benefit in the electric power system;hence, the integrated development and hybrid operation mode of the two can better meet the needs of the electric power system. This article first presents an analysis of the necessity and superiority of such mode, then explains its meaning and analyzes the working routes. Finally, it proposes the business modes as follows: low price pumping water electricity plus nuclear power in the near term;nuclear power shifted to pumped storage power participating in market competition in the middle term;and, in the long term, nuclear power shifted to pumped storage power as primary and serving as an electric power system when needed.展开更多
A model of an optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis is presented. Different coordinate frames for nuclear spin polarization vector are introduced, and ...A model of an optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis is presented. Different coordinate frames for nuclear spin polarization vector are introduced, and theoretical calculation is conducted to analyze this model. We demonstrate that when the optical pumping nuclear magnetic resonance system rotates in a plane parallel to the quantization axis, it will maintain a steady state with respect to the quantization axis which is independent of rotational speed and direction.展开更多
Requested by the authors, the article entitled "Optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis", published in Chinese Physics B, 2017, Vol. 26, Issue 9, Artic...Requested by the authors, the article entitled "Optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis", published in Chinese Physics B, 2017, Vol. 26, Issue 9, Article No. 093301, has been withdrawn from the publication. The authors found that the axes in the rotating frame xy'z are not all time-invariant, so Eq. (12) obtained from Eq. (11) is incorrect, and the conclusion is inaccurate.展开更多
Nuclear-spin states of gaseous-state Cs atoms in the ground state are optically manipulated using a Ti:sapphire laser in a magnetic field of 1.516 T, in which optical coupling of the nuclear-spin states is achieved t...Nuclear-spin states of gaseous-state Cs atoms in the ground state are optically manipulated using a Ti:sapphire laser in a magnetic field of 1.516 T, in which optical coupling of the nuclear-spin states is achieved through hyperfine interactions between electrons and nuclei. The steady-state population distribution in the hyperfine Zeeman sublevels of the ground state is detected by using a tunable diode laser. Furthermore, the state population transfer among the hyperfine Zeeman sublevels, which results from the collision-induced modification δa(S·I) of the hyperfine interaction of Cs in the ground state due to stochastic collisions between Cs atoms and buffer-gas molecules, is studied at different buffer-gas pressures. The experimental results show that high-field optical pumping and the small change δa(S · I) of the hyperfine interaction can strongly cause the state population transfer and spin-state interchange among the hyperfine Zeeman sublevels. The calculated results maybe explain the steady-state population in hyperfine Zeeman sublevels in terms of rates of optical-pumping, electron-spin flip, nuclear spin flip, and electron-nuclear spin flip-flop transitions among the hyperfine Zeeman sublevels of the ground state of Cs atoms. This method may be applied to the nuclear-spin-based solid-state quantum computation.展开更多
We theoretically investigate several parameters for the nuclear magnetic resonance gyroscope based on ^(133)C_(s–)^(129)Xe/^(131)Xe. For a cell containing a mixture of ^(133)Cs at saturated pressure, we inv...We theoretically investigate several parameters for the nuclear magnetic resonance gyroscope based on ^(133)C_(s–)^(129)Xe/^(131)Xe. For a cell containing a mixture of ^(133)Cs at saturated pressure, we investigate the optimal quenching gas(N_2) pressure and the corresponding pump laser intensity to achieve 30% ^(133)Cs polarization at the center of the cell when the static magnetic field B0 is 5 μT with different ^(129)Xe/^(131)Xe pressure. The effective field produced by spin-exchange polarized ^(129)Xe or ^(131)Xe sensed by ^(133)Cs can also be discussed in different^(129)Xe/^(131)Xe pressure conditions. Furthermore,the relationship between the detected signal and the probe laser frequency is researched. We obtain the optimum probe laser detuning from the D2(6~2S_(1/2)→ 6~2P_(3/2)) resonance with different ^(129)Xe/^(131)Xe pressure owing to the pressure broadening.展开更多
This paper focuses on pumped hydro energy storage(PHES)plants’current operations after electricity system reforms and variable renewable energy(VRE)installations in Japan.PHES plants have historically been developed ...This paper focuses on pumped hydro energy storage(PHES)plants’current operations after electricity system reforms and variable renewable energy(VRE)installations in Japan.PHES plants have historically been developed to create electricity demand at night in order to operate base load power plants,such as nuclear power plants,in stable conditions.Therefore,many PHES plants are located midway between nuclear power plants and large demand areas.However,all nuclear power plants had to–at least temporarily–shut down after the Great East Japan Earthquake followed by a nuclear accident at Fukushima Daiichi in 2011,and renewable energy power plants have been deployed rapidly after the introduction of a feed-in-tariff(FIT)scheme.Therefore,PHES plants are being used to mitigate fluctuations of VRE,especially in areas where renewable energy has been significantly installed.The daily highest capacity ratio of PHES plants in Kyushu area has recorded three times higher than it in the other areas where the past operating mode is still conducted.But those operations on PHES plants are simply followed as a dispatch rule of the Organization for Crossregional Coordination of Transmission Operators(OCCTO),market-based operations have not been conducted enough yet.The market design shall be changed to harmonize VRE installation and PHES plants’operations are necessary to make the transition from the past operating mode of PHES plants across Japan.展开更多
基金supported by the National Natural Science Foundation of China(No.51469013).
文摘The influence of the axial mount position of the guide vane on the pressure fluctuation in a nuclear pump(AP1000)is investigated.The characteristics of the three-dimensional flow inside the nuclear pump are analyzed by means of numerical simulation.Results indicate that when the axial relative distance between the guide vane and the pumping chamber is reduced,in conditions of“small flow,”the efficiency of the pump increases,the pressure inside the pumping chamber decreases,while the losses related to the guide vane grow.Under large flow conditions,as the efficiency of the pump decreases,the losses for the guide vane and the pumping chamber increase.The pressure fluctuation in the annular pumping chamber is basically determined by the rotation frequency and the blade passing frequency.The magnitude of these fluctuations is affected by the guide vane axial position.In particular,the smallest possible amplitude is obtained when the outlet central plane of the guide vane coincides with the outlet axis of the pumping chamber.
文摘Development of nuclear pumped lasers (NPL) in the CFBR-Ⅱ reactor is briefly reviewed. The results of the two NPL experiments in CFBR-Ⅱ reactor are described. The first one focused on the principle of nuclear pumped laser, and 4-mW laser output power achieved. The second NPL experiment focused on the small signal gain and the efficiency of the nuclear pumped He-Ar-Xe gas mixture at 1.73 μm. The maximum laser power measured to be 45 mW when thermal neutron flux rate is 6.9 × 1014 cm-2 · s-1. The small signal gain at 1.73 μm by the Rigrod analysis method is to be 0.24%-cm'1, and the saturation intensity is fitted to be 36 W/cm2.
基金This work is supported by the National Natural Science Foundation of China(No.51469013).
文摘An AP1000 nuclear reactor coolant pump is considered to assess the influence of the Impeller/Guide vane clearance on the performances of this type of pumps.Experiments and numerical simulations relying on an unidirectional fluid-solid coupling approach are used to investigate the problem(stress,strain and mode of the rotor).The results reveal the relationship existing between the hydraulic performance of the nuclear reactor coolant pump and the clearance ratio.The effect of clearance ratio on the maximum equivalent stress on the back surface of the impeller blade is greater than that on the working surface(the maximum equivalent stress on the back surface of impeller blade is about three times that on the working surface).The clearance ratio has a scarce effect on the first six natural frequencies of the rotor of the nuclear reactor coolant pump.The related vibrational modes have different waveforms.
基金funded by the Project “Resource Characteristics of Main Watersheds and Key Issues in Development and Utilization of Hydroelectricity in South America and Africa”the National Science Foundation of China (U1766201)
文摘The nuclear power plant is suitable for base-load operation, while the pumped-storage unit mainly gives play to capacity benefit in the electric power system;hence, the integrated development and hybrid operation mode of the two can better meet the needs of the electric power system. This article first presents an analysis of the necessity and superiority of such mode, then explains its meaning and analyzes the working routes. Finally, it proposes the business modes as follows: low price pumping water electricity plus nuclear power in the near term;nuclear power shifted to pumped storage power participating in market competition in the middle term;and, in the long term, nuclear power shifted to pumped storage power as primary and serving as an electric power system when needed.
基金Project supported by the National Natural Science Foundation of China(Grant No.61475192)
文摘A model of an optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis is presented. Different coordinate frames for nuclear spin polarization vector are introduced, and theoretical calculation is conducted to analyze this model. We demonstrate that when the optical pumping nuclear magnetic resonance system rotates in a plane parallel to the quantization axis, it will maintain a steady state with respect to the quantization axis which is independent of rotational speed and direction.
基金Project supported by the Special Scientific Research Fund of the Meteorological Public Welfare of the Ministry of Sciences and Technology,China(Grant Nos.GYHY201406003 and GYHY201406001) the Opening Foundation of the State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences(Grant Nos.2015LASW-B01 and 2015LASW-A02) the National Natural Science Foundation of China(Grant Nos.41375054,41575064,91437215,and 41405055)
文摘Requested by the authors, the article entitled "Optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis", published in Chinese Physics B, 2017, Vol. 26, Issue 9, Article No. 093301, has been withdrawn from the publication. The authors found that the axes in the rotating frame xy'z are not all time-invariant, so Eq. (12) obtained from Eq. (11) is incorrect, and the conclusion is inaccurate.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10374103 and 10574143), and the National Basic Research Program of China (Grant No 2001CB309309).
文摘Nuclear-spin states of gaseous-state Cs atoms in the ground state are optically manipulated using a Ti:sapphire laser in a magnetic field of 1.516 T, in which optical coupling of the nuclear-spin states is achieved through hyperfine interactions between electrons and nuclei. The steady-state population distribution in the hyperfine Zeeman sublevels of the ground state is detected by using a tunable diode laser. Furthermore, the state population transfer among the hyperfine Zeeman sublevels, which results from the collision-induced modification δa(S·I) of the hyperfine interaction of Cs in the ground state due to stochastic collisions between Cs atoms and buffer-gas molecules, is studied at different buffer-gas pressures. The experimental results show that high-field optical pumping and the small change δa(S · I) of the hyperfine interaction can strongly cause the state population transfer and spin-state interchange among the hyperfine Zeeman sublevels. The calculated results maybe explain the steady-state population in hyperfine Zeeman sublevels in terms of rates of optical-pumping, electron-spin flip, nuclear spin flip, and electron-nuclear spin flip-flop transitions among the hyperfine Zeeman sublevels of the ground state of Cs atoms. This method may be applied to the nuclear-spin-based solid-state quantum computation.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2014AA123401)the National Key BasResearch and Development Program of China(Grant Nos.2016YFA0302103 and 2012CB821302)+1 种基金the National Natural Science Foundation of China(Gra11134003)Shanghai Excellent Academic Leaders Program of China(Grant No.12XD1402400)
文摘We theoretically investigate several parameters for the nuclear magnetic resonance gyroscope based on ^(133)C_(s–)^(129)Xe/^(131)Xe. For a cell containing a mixture of ^(133)Cs at saturated pressure, we investigate the optimal quenching gas(N_2) pressure and the corresponding pump laser intensity to achieve 30% ^(133)Cs polarization at the center of the cell when the static magnetic field B0 is 5 μT with different ^(129)Xe/^(131)Xe pressure. The effective field produced by spin-exchange polarized ^(129)Xe or ^(131)Xe sensed by ^(133)Cs can also be discussed in different^(129)Xe/^(131)Xe pressure conditions. Furthermore,the relationship between the detected signal and the probe laser frequency is researched. We obtain the optimum probe laser detuning from the D2(6~2S_(1/2)→ 6~2P_(3/2)) resonance with different ^(129)Xe/^(131)Xe pressure owing to the pressure broadening.
文摘This paper focuses on pumped hydro energy storage(PHES)plants’current operations after electricity system reforms and variable renewable energy(VRE)installations in Japan.PHES plants have historically been developed to create electricity demand at night in order to operate base load power plants,such as nuclear power plants,in stable conditions.Therefore,many PHES plants are located midway between nuclear power plants and large demand areas.However,all nuclear power plants had to–at least temporarily–shut down after the Great East Japan Earthquake followed by a nuclear accident at Fukushima Daiichi in 2011,and renewable energy power plants have been deployed rapidly after the introduction of a feed-in-tariff(FIT)scheme.Therefore,PHES plants are being used to mitigate fluctuations of VRE,especially in areas where renewable energy has been significantly installed.The daily highest capacity ratio of PHES plants in Kyushu area has recorded three times higher than it in the other areas where the past operating mode is still conducted.But those operations on PHES plants are simply followed as a dispatch rule of the Organization for Crossregional Coordination of Transmission Operators(OCCTO),market-based operations have not been conducted enough yet.The market design shall be changed to harmonize VRE installation and PHES plants’operations are necessary to make the transition from the past operating mode of PHES plants across Japan.