Lead(Pb)plays a significant role in the nuclear industry and is extensively used in radiation shielding,radiation protection,neutron moderation,radiation measurements,and various other critical functions.Consequently,...Lead(Pb)plays a significant role in the nuclear industry and is extensively used in radiation shielding,radiation protection,neutron moderation,radiation measurements,and various other critical functions.Consequently,the measurement and evaluation of Pb nuclear data are highly regarded in nuclear scientific research,emphasizing its crucial role in the field.Using the time-of-flight(ToF)method,the neutron leakage spectra from three^(nat)Pb samples were measured at 60°and 120°based on the neutronics integral experimental facility at the China Institute of Atomic Energy(CIAE).The^(nat)Pb sample sizes were30 cm×30 cm×5 cm,30 cm×30 cm×10 cm,and 30 cm×30 cm×15 cm.Neutron sources were generated by the Cockcroft-Walton accelerator,producing approximately 14.5 MeV and 3.5 MeV neutrons through the T(d,n)^(4)He and D(d,n)^(3)He reactions,respectively.Leakage neutron spectra were also calculated by employing the Monte Carlo code of MCNP-4C,and the nuclear data of Pb isotopes from four libraries:CENDL-3.2,JEFF-3.3,JENDL-5,and ENDF/B-Ⅷ.0 were used individually.By comparing the simulation and experimental results,improvements and deficiencies in the evaluated nuclear data of the Pb isotopes were analyzed.Most of the calculated results were consistent with the experimental results;however,a few areas did not fit well.In the(n,el)energy range,the simulated results from CENDL-3.2 were significantly overestimated;in the(n,inl)D and the(n,inl)C energy regions,the results from CENDL-3.2 and ENDF/B-Ⅷ.0 were significantly overestimated at 120°,and the results from JENDL-5 and JEFF-3.3 are underestimated at 60°in the(n,inl)D energy region.The calculated spectra were analyzed by comparing them with the experimental spectra in terms of the neutron spectrum shape and C/E values.The results indicate that the theoretical simulations,using different data libraries,overestimated or underestimated the measured values in certain energy ranges.Secondary neutron energies and angular distributions in the data files have been presented to explain these discrepancies.展开更多
A benchmark experiment on^(238)U slab samples was conducted using a deuterium-tritium neutron source at the China Institute of Atomic Energy.The leakage neutron spectra within energy levels of 0.8-16 MeV at 60°an...A benchmark experiment on^(238)U slab samples was conducted using a deuterium-tritium neutron source at the China Institute of Atomic Energy.The leakage neutron spectra within energy levels of 0.8-16 MeV at 60°and 120°were measured using the time-of-flight method.The samples were prepared as rectangular slabs with a 30 cm square base and thicknesses of 3,6,and 9 cm.The leakage neutron spectra were also calculated using the MCNP-4C program based on the latest evaluated files of^(238)U evaluated neutron data from CENDL-3.2,ENDF/B-Ⅷ.0,JENDL-5.0,and JEFF-3.3.Based on the comparison,the deficiencies and improvements in^(238)U evaluated nuclear data were analyzed.The results showed the following.(1)The calculated results for CENDL-3.2 significantly overestimated the measurements in the energy interval of elastic scattering at 60°and 120°.(2)The calculated results of CENDL-3.2 overestimated the measurements in the energy interval of inelastic scattering at 120°.(3)The calculated results for CENDL-3.2 significantly overestimated the measurements in the 3-8.5 MeV energy interval at 60°and 120°.(4)The calculated results with JENDL-5.0 were generally consistent with the measurement results.展开更多
Benchmark experiments are indispensable for the development of neutron nuclear data evaluation libraries.Given the lack of domestic benchmarking of nuclear data in the fission energy region,this study developed a neut...Benchmark experiments are indispensable for the development of neutron nuclear data evaluation libraries.Given the lack of domestic benchmarking of nuclear data in the fission energy region,this study developed a neutron leakage spectrum measurement system using a spherical sample based on the^(252)Cf spontaneous fission source.The EJ309 detector(for highenergy measurements)and CLYC detector(for low-energy measurements)were combined to measure the time-of-flight spectrum using theγtagging method.To assess the performance of the system,the time-of-flight spectrum without a sample was measured first.The experimental spectra were consistent with those simulated using the Monte Carlo method and the standard^(252)Cf spectrum from ISO:8529-1.This demonstrates that the system can effectively measure the neutron events in the 0.15-8.0 MeV range.Then,a spherical polyethylene sample was used as the standard to verify the accuracy of the system for the benchmark experiment.The simulation results were obtained using the Monte Carlo method with evaluated data from the ENDF/B-Ⅷ.0,CENDL-3.2,JEFF-3.3,and JENDL-5 libraries.The measured neutron leakage spectra were compared with the corresponding simulated results for the neutron spectrum shape and calculated C/E values.The results showed that the simulated spectra with different data libraries reproduced the experimental results well in the 0.15-8.0 MeV range.This study confirms that the leakage neutron spectrum measurement system based on the^(252)Cf source can perform benchmarking and provides a foundation for evaluating neutron nuclear data through benchmark experiments.展开更多
Beryllium(^(9)Be)serves as a crucial neutron multiplier and reflection material,being extensively employed in the nuclear industry.The evaluated nuclear data are utilized in the design of the nuclear devices.Following...Beryllium(^(9)Be)serves as a crucial neutron multiplier and reflection material,being extensively employed in the nuclear industry.The evaluated nuclear data are utilized in the design of the nuclear devices.Following the interaction between neutrons and^(9)Be,all neutrons generated stem from the^(9)Be(n,2n)^(8)Be reaction channel,except for the elastic scattering reaction channel.Nevertheless,the data of the outgoing neutron double differential cross section of the reaction channel provided by the latest internationally evaluated libraries still exhibit considerable discrepancies.A shielding integral experiment based on slab^(9)Be samples with measurements of neutron spectra leaked from different angles is an effective approach to verify the double differential cross-section data.Hence,in this study,a shielding integral experiment of^(9)Be samples of different thicknesses was conducted using a nanosecond pulsed deuterium-tritium neutron source established by the China Institute of Atomic Energy.The neutron time-of-flight spectra of three thicknesses(4.4 cm,8.8 cm,and 13.2 cm)and six angles(47°,58°,73°,107°,122°,and 133°)were measured by the neutron time-of-flight method,and 18 sets of experimental data were obtained.Additionally,the MCNP-4C program was used to obtain the simulated results of the leakage neutron spectra using the evaluated nuclear data of^(9)Be from the CENDL-3.2,ENDF/B-Ⅷ.0,JENDL-5,and JEFF-3.3 libraries.The simulated results of the leakage neutron spectra were compared with the experimental results,and the results showed that in the elastic scattering energy region,the simulated results from the CENDL-3.2,ENDF/B-Ⅷ.0,and JENDL-5 libraries were slightly higher at small angles and slightly lower at large angles.In the(n,2n)energy region,the simulated results from the CENDL-3.2 library were significantly different from the experimental results in terms of spectral shape,and the simulated results from the ENDF/B-Ⅷ.0 and the JENDL-5 libraries were in good agreement with the experimental results at small angles but low at large angles.The simulated results from the JEFF-3.3 library showed serious underestimation at all angles.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11775311 and U2067205)the Stable Support Basic Research Program Grant(BJ010261223282)the Research and Development Project of China National Nuclear Corporation。
文摘Lead(Pb)plays a significant role in the nuclear industry and is extensively used in radiation shielding,radiation protection,neutron moderation,radiation measurements,and various other critical functions.Consequently,the measurement and evaluation of Pb nuclear data are highly regarded in nuclear scientific research,emphasizing its crucial role in the field.Using the time-of-flight(ToF)method,the neutron leakage spectra from three^(nat)Pb samples were measured at 60°and 120°based on the neutronics integral experimental facility at the China Institute of Atomic Energy(CIAE).The^(nat)Pb sample sizes were30 cm×30 cm×5 cm,30 cm×30 cm×10 cm,and 30 cm×30 cm×15 cm.Neutron sources were generated by the Cockcroft-Walton accelerator,producing approximately 14.5 MeV and 3.5 MeV neutrons through the T(d,n)^(4)He and D(d,n)^(3)He reactions,respectively.Leakage neutron spectra were also calculated by employing the Monte Carlo code of MCNP-4C,and the nuclear data of Pb isotopes from four libraries:CENDL-3.2,JEFF-3.3,JENDL-5,and ENDF/B-Ⅷ.0 were used individually.By comparing the simulation and experimental results,improvements and deficiencies in the evaluated nuclear data of the Pb isotopes were analyzed.Most of the calculated results were consistent with the experimental results;however,a few areas did not fit well.In the(n,el)energy range,the simulated results from CENDL-3.2 were significantly overestimated;in the(n,inl)D and the(n,inl)C energy regions,the results from CENDL-3.2 and ENDF/B-Ⅷ.0 were significantly overestimated at 120°,and the results from JENDL-5 and JEFF-3.3 are underestimated at 60°in the(n,inl)D energy region.The calculated spectra were analyzed by comparing them with the experimental spectra in terms of the neutron spectrum shape and C/E values.The results indicate that the theoretical simulations,using different data libraries,overestimated or underestimated the measured values in certain energy ranges.Secondary neutron energies and angular distributions in the data files have been presented to explain these discrepancies.
基金This work was supported by the general program(No.1177531)joint funding(No.U2067205)from the National Natural Science Foundation of China.
文摘A benchmark experiment on^(238)U slab samples was conducted using a deuterium-tritium neutron source at the China Institute of Atomic Energy.The leakage neutron spectra within energy levels of 0.8-16 MeV at 60°and 120°were measured using the time-of-flight method.The samples were prepared as rectangular slabs with a 30 cm square base and thicknesses of 3,6,and 9 cm.The leakage neutron spectra were also calculated using the MCNP-4C program based on the latest evaluated files of^(238)U evaluated neutron data from CENDL-3.2,ENDF/B-Ⅷ.0,JENDL-5.0,and JEFF-3.3.Based on the comparison,the deficiencies and improvements in^(238)U evaluated nuclear data were analyzed.The results showed the following.(1)The calculated results for CENDL-3.2 significantly overestimated the measurements in the energy interval of elastic scattering at 60°and 120°.(2)The calculated results of CENDL-3.2 overestimated the measurements in the energy interval of inelastic scattering at 120°.(3)The calculated results for CENDL-3.2 significantly overestimated the measurements in the 3-8.5 MeV energy interval at 60°and 120°.(4)The calculated results with JENDL-5.0 were generally consistent with the measurement results.
基金supported by the National Natural Science Foundation of China(No.U2067205)。
文摘Benchmark experiments are indispensable for the development of neutron nuclear data evaluation libraries.Given the lack of domestic benchmarking of nuclear data in the fission energy region,this study developed a neutron leakage spectrum measurement system using a spherical sample based on the^(252)Cf spontaneous fission source.The EJ309 detector(for highenergy measurements)and CLYC detector(for low-energy measurements)were combined to measure the time-of-flight spectrum using theγtagging method.To assess the performance of the system,the time-of-flight spectrum without a sample was measured first.The experimental spectra were consistent with those simulated using the Monte Carlo method and the standard^(252)Cf spectrum from ISO:8529-1.This demonstrates that the system can effectively measure the neutron events in the 0.15-8.0 MeV range.Then,a spherical polyethylene sample was used as the standard to verify the accuracy of the system for the benchmark experiment.The simulation results were obtained using the Monte Carlo method with evaluated data from the ENDF/B-Ⅷ.0,CENDL-3.2,JEFF-3.3,and JENDL-5 libraries.The measured neutron leakage spectra were compared with the corresponding simulated results for the neutron spectrum shape and calculated C/E values.The results showed that the simulated spectra with different data libraries reproduced the experimental results well in the 0.15-8.0 MeV range.This study confirms that the leakage neutron spectrum measurement system based on the^(252)Cf source can perform benchmarking and provides a foundation for evaluating neutron nuclear data through benchmark experiments.
基金supported by the National Natural Science Foundation of China(Nos.11775311,U2167203,U2067205 and 12075105)Research and development project of China National Nuclear Corporation(FD010241222552)+2 种基金Continuous-Support Basic Scientific Research Project(BJ010261223282)Major Science and Technology Projects of Gansu Province(22ZD6GB020)Fundamental Research Funds for the Central Universities(lzujbky-2024-jdzx10)。
文摘Beryllium(^(9)Be)serves as a crucial neutron multiplier and reflection material,being extensively employed in the nuclear industry.The evaluated nuclear data are utilized in the design of the nuclear devices.Following the interaction between neutrons and^(9)Be,all neutrons generated stem from the^(9)Be(n,2n)^(8)Be reaction channel,except for the elastic scattering reaction channel.Nevertheless,the data of the outgoing neutron double differential cross section of the reaction channel provided by the latest internationally evaluated libraries still exhibit considerable discrepancies.A shielding integral experiment based on slab^(9)Be samples with measurements of neutron spectra leaked from different angles is an effective approach to verify the double differential cross-section data.Hence,in this study,a shielding integral experiment of^(9)Be samples of different thicknesses was conducted using a nanosecond pulsed deuterium-tritium neutron source established by the China Institute of Atomic Energy.The neutron time-of-flight spectra of three thicknesses(4.4 cm,8.8 cm,and 13.2 cm)and six angles(47°,58°,73°,107°,122°,and 133°)were measured by the neutron time-of-flight method,and 18 sets of experimental data were obtained.Additionally,the MCNP-4C program was used to obtain the simulated results of the leakage neutron spectra using the evaluated nuclear data of^(9)Be from the CENDL-3.2,ENDF/B-Ⅷ.0,JENDL-5,and JEFF-3.3 libraries.The simulated results of the leakage neutron spectra were compared with the experimental results,and the results showed that in the elastic scattering energy region,the simulated results from the CENDL-3.2,ENDF/B-Ⅷ.0,and JENDL-5 libraries were slightly higher at small angles and slightly lower at large angles.In the(n,2n)energy region,the simulated results from the CENDL-3.2 library were significantly different from the experimental results in terms of spectral shape,and the simulated results from the ENDF/B-Ⅷ.0 and the JENDL-5 libraries were in good agreement with the experimental results at small angles but low at large angles.The simulated results from the JEFF-3.3 library showed serious underestimation at all angles.