非特异性脂质转移蛋白(non-specific lipid transfer protein,nsLTPs)广泛存在于植物界中,参与许多关键的生物学过程,如花粉的发育、种子发育及细胞壁的延伸等。OsLTPL166基因编码区长度是465 bp,其编码的蛋白质由154个氨基酸组成;根据...非特异性脂质转移蛋白(non-specific lipid transfer protein,nsLTPs)广泛存在于植物界中,参与许多关键的生物学过程,如花粉的发育、种子发育及细胞壁的延伸等。OsLTPL166基因编码区长度是465 bp,其编码的蛋白质由154个氨基酸组成;根据跨膜结构域及信号肽预测,OsLTPL166在13~35氨基酸处含有跨膜结构域,N端存在一个32个氨基酸残基的信号肽,切割位点位于氨基酸残基32和33之间,产生具有122个氨基酸残基的成熟蛋白质。组织表达分析发现,OsLTPL166仅在种子中特异性表达,且种子发育后期表达量较高。为了研究水稻Os LTPL166在种子发育中的功能,本研究以‘浙辐粳83’为遗传背景构建了敲除载体,利用CRISPR/Cas9技术对OsLTPL166进行定点编辑,共获得24个独立的转基因株系,其中纯合突变株系有7株,编辑方式主要为碱基的插入和缺失,导致氨基酸序列发生移码,成功获得OsLTPL166功能缺陷型突变体。本研究为进一步探究该基因在种子发育进程中的生物学功能提供了遗传材料。展开更多
Plant non-specific lipid transfer proteins (nsLtps) have been reported to be involved in plant defense activity against bacterial and fungal pathogens. In this study, we identified 135 (122 putative and 13 previous...Plant non-specific lipid transfer proteins (nsLtps) have been reported to be involved in plant defense activity against bacterial and fungal pathogens. In this study, we identified 135 (122 putative and 13 previously identified) Solanaceae nsLtps, which are clustered into 8 different groups. By comparing with Boutrot’s nsLtp classification, we classified these eight groups into five types (I, II, IV, IX and X). We compared Solanaceae nsLtps with Arabidopsis and Gramineae nsLtps and found that (1) Types I, II and IV are shared by Solanaceae, Gramineae and Arabidopsis; (2) Types III, V, VI and VIII are shared by Gramineae and Arabidopsis but not detected in Solanaceae so far; (3) Type VII is only found in Gramineae whereas type IX is present only in Arabidopsis and Solanaceae; (4) Type X is a new type that accounts for 52.59% Solanaceae nsLtps in our data, and has not been reported in any other plant so far. We further built and compared the three-dimensional structures of the eight groups, and found that the major functional diversification within the nsLtp family could be predated to the monocot/dicot divergence, and many gene duplications and sequence variations had happened in the nsLtp family after the monocot/dicot divergence, especially in Solanaceae.展开更多
【目的】AsE246是我们首次报道的紫云英根瘤特异表达的非特异性转脂蛋白(nsLTP1:non specificlipid transfer protein 1)编码基因。本实验旨在筛选和鉴定与AsE246相互作用的宿主植物靶蛋白,并分析靶基因在共生和胁迫条件下的表达特征。...【目的】AsE246是我们首次报道的紫云英根瘤特异表达的非特异性转脂蛋白(nsLTP1:non specificlipid transfer protein 1)编码基因。本实验旨在筛选和鉴定与AsE246相互作用的宿主植物靶蛋白,并分析靶基因在共生和胁迫条件下的表达特征。【方法】利用酵母双杂交技术、小范围杂交技术及实时荧光定量PCR,筛选与AsE246的相互作用蛋白,并定量分析靶基因在结瘤与固氮过程中的时空表达特性。【结果】获取一个阳性克隆,其cDNA序列经Blast分析表明:候选靶蛋白是一个DnaJ-like蛋白,该蛋白相应基因命名为AsDJL1。AsE246与AsDJL1在酵母体内确实相互作用。AsDJL1在固氮根瘤中特异性增强表达,在NaCl胁迫下表达水平显著提高,在(NH4)2SO4胁迫下表达水平显著下降。【结论】本实验是筛选与LTP相互作用蛋白的首次报道。获得了直接的实验证据表明互作基因AsDJL1与AsE246具有高度相似的表达特征和功能,为深入研究二者的相互作用及其在共生固氮和应答环境胁迫中的调控机制,提供了一定的工作基础和理论依据。展开更多
以芹菜(Apium graveolens)‘六合黄心芹’、‘津南实芹’和‘美国西芹’为试验材料,采用RT-PCR技术分别获得其cDNA序列。序列分析表明:来源于3个芹菜品种的非特异性脂转移蛋白(Non-specific lipid transfer protein,nsLTP)基因核苷酸序...以芹菜(Apium graveolens)‘六合黄心芹’、‘津南实芹’和‘美国西芹’为试验材料,采用RT-PCR技术分别获得其cDNA序列。序列分析表明:来源于3个芹菜品种的非特异性脂转移蛋白(Non-specific lipid transfer protein,nsLTP)基因核苷酸序列高度保守,全长357bp,编码118个氨基酸,起始密码子ATG之后含有27个氨基酸残基的信号肽序列,推测其成熟的蛋白含91个氨基酸残基,预测其蛋白质分子量为11.75kD,pI值为9.36。芹菜的nsLTP蛋白主要由α-螺旋和随机卷曲组成。空间结构上分析显示,芹菜nsLTP蛋白中H1区域明显分为H1a和H1b两个亚区域,而模板碧桃中H1区域为一个连续的螺旋结构,存在明显的差异。进化分析显示,芹菜nsLTP与香石竹、大洋洲滨藜等植物的nsLTP相似性较高,在保守位置具有8个半胱氨酸残基。实时定量PCR表达分析表明,该基因主要在芹菜的茎以及茎尖生长活跃中心表达,具有明显的组织特异性。展开更多
脂质转移蛋(白Lipid transfer protein,LTP)是一类分泌蛋白,曾被认为是一种在体外膜间进行脂质转移的蛋白,因其作用对象很广泛,所以目前又称其为非特异性LTP(non-specific lipid transfer proteins,nsLTPs)。有很多证据表明nsLTPs可能...脂质转移蛋(白Lipid transfer protein,LTP)是一类分泌蛋白,曾被认为是一种在体外膜间进行脂质转移的蛋白,因其作用对象很广泛,所以目前又称其为非特异性LTP(non-specific lipid transfer proteins,nsLTPs)。有很多证据表明nsLTPs可能参与多方面的植物细胞与生理生化反应,这些生物学功能包括:参与角质层的合成和胚胎的发育;适应各种胁迫环境;抗病原微生物等作用,尤其是在适应胁迫环境中,起到很大作用。介绍了nsLTPs在植物抗环境胁迫中所发挥的作用,同时对应用研究作了简单展望。展开更多
Non-specific lipid transfer proteins(nsLTPs/LTPs) that can transport various phospholipids across the membrane in vitro are widespread in the plant kingdom, and they play important roles in many biological processes t...Non-specific lipid transfer proteins(nsLTPs/LTPs) that can transport various phospholipids across the membrane in vitro are widespread in the plant kingdom, and they play important roles in many biological processes that are closely related to plant growth and development. Recently, nsLTPs have been shown to respond to different forms of abiotic stresses. Despite the vital roles of nsLTPs in many plants, little is known about the nsLTPs in wheat. In this study, 330 nsLTP proteins were identified in wheat and they clustered into five types(1, 2, c, d, and g) by phylogenetic analysis with the nsLTPs from maize, Arabidopsis, and rice. The wheat nsLTPs of type d included three subtypes(d1, d2, and d3) and type g included seven subtypes(g1–g7). Genetic structure and motif pattern analyses showed that members of each type had similar structural composition. Moreover, GPI-anchors were found to exist in non-g type members from wheat for the first time. Chromosome mapping revealed that all five types were unevenly and unequally distributed on 21 chromosomes. Furthermore, gene duplication events contributed to the proliferation of the nsLTP genes. Large-scale data mining of RNA-seq data covering multiple growth stages and numerous stress treatments showed that the transcript levels of some of the nsLTP genes could be strongly induced by abiotic stresses, including drought and salinity, indicating their potential roles in mediating the responses of the wheat plants to these abiotic stress conditions. These findings provide comprehensive insights into the nsLTP family members in wheat, and offer candidate nsLTP genes for further studies on their roles in stress resistance and potential for improving wheat breeding programs.展开更多
TaMs1 encodes a non-specific lipid transfer protein(nsLTP) and is required for pollen development in wheat. Although MS1 is a Poaceae-specific gene, the roles of MS1 genes in other Poaceae plants are unknown, especial...TaMs1 encodes a non-specific lipid transfer protein(nsLTP) and is required for pollen development in wheat. Although MS1 is a Poaceae-specific gene, the roles of MS1 genes in other Poaceae plants are unknown, especially in rice and maize. Here, we identified one ortholog in rice(OsLTPg29) and two orthologs in maize(ZmLTPg11 and ZmLTPx2). Similar to TaMs1, both OsLTPg29 and ZmLTPg11 genes are specifically expressed in the microsporocytes, and both OsLTPg29 and ZmLTPg11 proteins showed lipid-binding ability to phosphatidic acid and several phosphoinositides. To determine their roles in pollen development, we created osltpg29 mutants and zmltpg11 zmltpx2 double mutants by CRISPR/Cas9.osltpg29, not zmltpg11 zmltpx2, is defective in pollen development, and only OsLTPg29, not ZmLTPg11,can rescue the male sterility of tams1 mutant. Our results demonstrate that the biological function of MS1 in pollen development differs in the evolution of Poaceae plants.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 30900831)
文摘Plant non-specific lipid transfer proteins (nsLtps) have been reported to be involved in plant defense activity against bacterial and fungal pathogens. In this study, we identified 135 (122 putative and 13 previously identified) Solanaceae nsLtps, which are clustered into 8 different groups. By comparing with Boutrot’s nsLtp classification, we classified these eight groups into five types (I, II, IV, IX and X). We compared Solanaceae nsLtps with Arabidopsis and Gramineae nsLtps and found that (1) Types I, II and IV are shared by Solanaceae, Gramineae and Arabidopsis; (2) Types III, V, VI and VIII are shared by Gramineae and Arabidopsis but not detected in Solanaceae so far; (3) Type VII is only found in Gramineae whereas type IX is present only in Arabidopsis and Solanaceae; (4) Type X is a new type that accounts for 52.59% Solanaceae nsLtps in our data, and has not been reported in any other plant so far. We further built and compared the three-dimensional structures of the eight groups, and found that the major functional diversification within the nsLtp family could be predated to the monocot/dicot divergence, and many gene duplications and sequence variations had happened in the nsLtp family after the monocot/dicot divergence, especially in Solanaceae.
文摘【目的】AsE246是我们首次报道的紫云英根瘤特异表达的非特异性转脂蛋白(nsLTP1:non specificlipid transfer protein 1)编码基因。本实验旨在筛选和鉴定与AsE246相互作用的宿主植物靶蛋白,并分析靶基因在共生和胁迫条件下的表达特征。【方法】利用酵母双杂交技术、小范围杂交技术及实时荧光定量PCR,筛选与AsE246的相互作用蛋白,并定量分析靶基因在结瘤与固氮过程中的时空表达特性。【结果】获取一个阳性克隆,其cDNA序列经Blast分析表明:候选靶蛋白是一个DnaJ-like蛋白,该蛋白相应基因命名为AsDJL1。AsE246与AsDJL1在酵母体内确实相互作用。AsDJL1在固氮根瘤中特异性增强表达,在NaCl胁迫下表达水平显著提高,在(NH4)2SO4胁迫下表达水平显著下降。【结论】本实验是筛选与LTP相互作用蛋白的首次报道。获得了直接的实验证据表明互作基因AsDJL1与AsE246具有高度相似的表达特征和功能,为深入研究二者的相互作用及其在共生固氮和应答环境胁迫中的调控机制,提供了一定的工作基础和理论依据。
文摘以芹菜(Apium graveolens)‘六合黄心芹’、‘津南实芹’和‘美国西芹’为试验材料,采用RT-PCR技术分别获得其cDNA序列。序列分析表明:来源于3个芹菜品种的非特异性脂转移蛋白(Non-specific lipid transfer protein,nsLTP)基因核苷酸序列高度保守,全长357bp,编码118个氨基酸,起始密码子ATG之后含有27个氨基酸残基的信号肽序列,推测其成熟的蛋白含91个氨基酸残基,预测其蛋白质分子量为11.75kD,pI值为9.36。芹菜的nsLTP蛋白主要由α-螺旋和随机卷曲组成。空间结构上分析显示,芹菜nsLTP蛋白中H1区域明显分为H1a和H1b两个亚区域,而模板碧桃中H1区域为一个连续的螺旋结构,存在明显的差异。进化分析显示,芹菜nsLTP与香石竹、大洋洲滨藜等植物的nsLTP相似性较高,在保守位置具有8个半胱氨酸残基。实时定量PCR表达分析表明,该基因主要在芹菜的茎以及茎尖生长活跃中心表达,具有明显的组织特异性。
文摘脂质转移蛋(白Lipid transfer protein,LTP)是一类分泌蛋白,曾被认为是一种在体外膜间进行脂质转移的蛋白,因其作用对象很广泛,所以目前又称其为非特异性LTP(non-specific lipid transfer proteins,nsLTPs)。有很多证据表明nsLTPs可能参与多方面的植物细胞与生理生化反应,这些生物学功能包括:参与角质层的合成和胚胎的发育;适应各种胁迫环境;抗病原微生物等作用,尤其是在适应胁迫环境中,起到很大作用。介绍了nsLTPs在植物抗环境胁迫中所发挥的作用,同时对应用研究作了简单展望。
基金supported by the National Transgenic Key Project of the Ministry of Agriculture of China(2018ZX0800909B)the Major Program of Technological Innovation of Hubei Province,China(2018ABA085)+1 种基金the Open Project Program of Engineering Research Center of Ecology and Agricultural Use of Wetland,Ministry of Education,China(KF201802)the Southwest Agricultural Crop Pest Management Key Laboratory Open Fund of Ministry of Agriculture,China(2018-XNZD-01)。
文摘Non-specific lipid transfer proteins(nsLTPs/LTPs) that can transport various phospholipids across the membrane in vitro are widespread in the plant kingdom, and they play important roles in many biological processes that are closely related to plant growth and development. Recently, nsLTPs have been shown to respond to different forms of abiotic stresses. Despite the vital roles of nsLTPs in many plants, little is known about the nsLTPs in wheat. In this study, 330 nsLTP proteins were identified in wheat and they clustered into five types(1, 2, c, d, and g) by phylogenetic analysis with the nsLTPs from maize, Arabidopsis, and rice. The wheat nsLTPs of type d included three subtypes(d1, d2, and d3) and type g included seven subtypes(g1–g7). Genetic structure and motif pattern analyses showed that members of each type had similar structural composition. Moreover, GPI-anchors were found to exist in non-g type members from wheat for the first time. Chromosome mapping revealed that all five types were unevenly and unequally distributed on 21 chromosomes. Furthermore, gene duplication events contributed to the proliferation of the nsLTP genes. Large-scale data mining of RNA-seq data covering multiple growth stages and numerous stress treatments showed that the transcript levels of some of the nsLTP genes could be strongly induced by abiotic stresses, including drought and salinity, indicating their potential roles in mediating the responses of the wheat plants to these abiotic stress conditions. These findings provide comprehensive insights into the nsLTP family members in wheat, and offer candidate nsLTP genes for further studies on their roles in stress resistance and potential for improving wheat breeding programs.
基金supported by grants from the National Science and Technology Pillar Program of China(2007BAD78B03)the “Eleventh-Five” Key Project of Sichuan ProvinceChina(07SG111-003-1)
基金supported by Peking University Institute of Advanced Agricultural Sciences, and Beijing Municipal Government Science Foundation (IDHT20170513)。
文摘TaMs1 encodes a non-specific lipid transfer protein(nsLTP) and is required for pollen development in wheat. Although MS1 is a Poaceae-specific gene, the roles of MS1 genes in other Poaceae plants are unknown, especially in rice and maize. Here, we identified one ortholog in rice(OsLTPg29) and two orthologs in maize(ZmLTPg11 and ZmLTPx2). Similar to TaMs1, both OsLTPg29 and ZmLTPg11 genes are specifically expressed in the microsporocytes, and both OsLTPg29 and ZmLTPg11 proteins showed lipid-binding ability to phosphatidic acid and several phosphoinositides. To determine their roles in pollen development, we created osltpg29 mutants and zmltpg11 zmltpx2 double mutants by CRISPR/Cas9.osltpg29, not zmltpg11 zmltpx2, is defective in pollen development, and only OsLTPg29, not ZmLTPg11,can rescue the male sterility of tams1 mutant. Our results demonstrate that the biological function of MS1 in pollen development differs in the evolution of Poaceae plants.