Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical si...Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical simulation plays a significant role in quantitatively evaluating current processes and making targeted improvements,but its limitations lie in the inability to dynamically reflect the formation outcomes of castings under varying process conditions,making real-time adjustments to gating and riser designs challenging.In this study,an automated design model for gating and riser systems based on integrated parametric 3D modeling-simulation framework is proposed,which enhances the flexibility and usability of evaluating the casting process by simulation.Firstly,geometric feature extraction technology is employed to obtain the geometric information of the target casting.Based on this information,an automated design framework for gating and riser systems is established,incorporating multiple structural parameters for real-time process control.Subsequently,the simulation results for various structural parameters are analyzed,and the influence of these parameters on casting formation is thoroughly investigated.Finally,the optimal design scheme is generated and validated through experimental verification.Simulation analysis and experimental results show that using a larger gate neck(24 mm in side length) and external risers promotes a more uniform temperature distribution and a more stable flow state,effectively eliminating shrinkage cavities and enhancing process yield by 15%.展开更多
Tree rings provide long-term records of tree growth and climate changes,which makes them ideal benchmarks for forest modeling.Tree-ring information has greatly improved the reliability of 3-PG,which is one of the most...Tree rings provide long-term records of tree growth and climate changes,which makes them ideal benchmarks for forest modeling.Tree-ring information has greatly improved the reliability of 3-PG,which is one of the most commonly used process-based forest growth models.Here,we strengthen 3-PG's ability to simulate tree-ring width and stable carbon isotopes(δ^(13)C)by enhancing its descriptions of tree physiology.The major upgrade was adding a carbon storage pool for tree-ring formation using stored carbohydrates.We also incorporated previous modifications(replacing the age modifier with a height modifier)of 3-PG and tested their efficacy in improving tree-ring simulations.We ran the model based on two grand fir(Abies grandis)stands.The updated model greatly improved the simulations for both tree-ring widths andδ^(13)C.The results represent one of the best tree-ringδ^(13)C simulations,which accurately captured the amplitude in annual variations ofδ^(13)C.The correlations(R^(2))between simulations and observations reached 0.50 and 0.73 at two stands,respectively.The new model also greatly improved the simulations of raw tree-ring widths and detrended ring-width index(RWI).Because of better descriptions of tree physiology and more accurate simulations of tree rings than the previous model version,the updated 3-PG should provide more reliable simulations than previous 3-PG versions when tree-ring information is used as a benchmark in future studies.展开更多
Contact detection is the most time-consuming stage in 3D discontinuous deformation analysis(3D-DDA)computation.Improving the efficiency of 3D-DDA is beneficial for its application in large-scale computing.In this stud...Contact detection is the most time-consuming stage in 3D discontinuous deformation analysis(3D-DDA)computation.Improving the efficiency of 3D-DDA is beneficial for its application in large-scale computing.In this study,aiming at the continuous-discontinuous simulation of 3D-DDA,a highly efficient contact detection strategy is proposed.Firstly,the global direct search(GDS)method is integrated into the 3D-DDA framework to address intricate contact scenarios.Subsequently,all geometric elements,including blocks,faces,edges,and vertices are divided into searchable and unsearchable parts.Contacts between unsearchable geometric elements would be directly inherited,while only searchable geometric elements are involved in contact detection.This strategy significantly reduces the number of geometric elements involved in contact detection,thereby markedly enhancing the computation efficiency.Several examples are adopted to demonstrate the accuracy and efficiency of the improved 3D-DDA method.The rock pillars with different mesh sizes are simulated under self-weight.The deformation and stress are consistent with the analytical results,and the smaller the mesh size,the higher the accuracy.The maximum speedup ratio is 38.46 for this case.Furthermore,the Brazilian splitting test on the discs with different flaws is conducted.The results show that the failure pattern of the samples is consistent with the results obtained by other methods and experiments,and the maximum speedup ratio is 266.73.Finally,a large-scale impact test is performed,and approximately 3.2 times enhanced efficiency is obtained.The proposed contact detection strategy significantly improves efficiency when the rock has not completely failed,which is more suitable for continuous-discontinuous simulation.展开更多
Neutron well logging,using instruments equipped with neutron source and detectors(e.g.,^(3)He-tubes,Nal,BGO),plays a key role in lithological differentiation,porosity determination,and fluid property evaluation in the...Neutron well logging,using instruments equipped with neutron source and detectors(e.g.,^(3)He-tubes,Nal,BGO),plays a key role in lithological differentiation,porosity determination,and fluid property evaluation in the petroleum industry.The growing trend of multifu nctional neutron well logging,which enables simultaneous extraction of multiple reservoir characteristics,requiring high-performance detectors capable of withstanding high-temperature downhole conditions,limited space,and instrument vibrations,while also detecting multiple particle types.The Cs_(2)LiYCl_(6):Ce^(3+)(CLYC)elpasolite scintillator demonstrates excellent temperature resistance and detection efficiency,making it become a promising candidate for leading the development of the novel neutron-based double-particle logging technology.This study employed Monte Carlo simulations to generate equivalent gamma spectra and proposed a pulse shape discrimination simulation method based on theoretical analysis and probabilistic iteration.The performance of CLYC was compared to that of common detectors in terms of physical properties and detection efficiency.A double-particle pulsed neutron detection system for porosity determination was established,based on the count ratio of equivalent gamma rays from the range of 2.95-3.42 MeVee energy bins.Results showed that CLYC can effectively replace ^(3)He-tubes for porosity measurement,providing consistent responses.This study offers numerical simulation support for the design of future neutron well logging tools and the application of double-particle detectors in logging systems.展开更多
Upon the conservation of mass, momentum and energy, volume fraction and surface penetrative rate were employed to modify the conservative equations to simulate the effect of blockages on fluid flows and heat transfer....Upon the conservation of mass, momentum and energy, volume fraction and surface penetrative rate were employed to modify the conservative equations to simulate the effect of blockages on fluid flows and heat transfer. These equations were solved numerically with the finite differential method and the primitive variable approach. This method uses staggered grid and pressure correction schemes. A computer code FASTOR3D integrated the aforementioned algorithm. The preliminary results have been compared with conventional benchmark solutions. With auxiliary software DV, the numerical results were visualized in colorful images to demonstrate the variation of flow patterns and temperature profiles during the transient process. The results of the simulation code for the fluid flows and heat transfer in the sodium pool of a fast breeder reactor are acceptable.展开更多
The rapid solidification process of Mg7Zn3 alloy was simulated by the molecular dynamics method. The relationship between the local structure and the dynamics during the liquid-glass transition was deeply investigated...The rapid solidification process of Mg7Zn3 alloy was simulated by the molecular dynamics method. The relationship between the local structure and the dynamics during the liquid-glass transition was deeply investigated. It was found that the Mg-centered FK polyhedron and the Zn-centered icosahedron play a critical role in the formation of Mg7Zn3 metallic glass. The self-diffusion coefficients of Mg and Zn atoms deviate from the Arrhenius law near the melting temperature and then satisfy the power law. According to the time correlation functions of mean-square displacement, incoherent intermediate scattering function and non-Gaussian parameter, it was found that the β-relaxation in Mg7Zn3 supercooled liquid becomes more and more evident with decreasing temperature, and the α-relaxation time rapidly increases in the VFT law. Moreover, the smaller Zn atom has a faster relaxation behavior than the Mg atom. Some local atomic structures with short-range order have lower mobility, and they play a critical role in the appearance of cage effect in theβ-relaxation regime. The dynamics deviates from the Arrhenius law just at the temperature as the number of local atomic structures begins to rapidly increase. The dynamic glass transition temperature (Tc) is close to the glass transition point in structure (TgStr).展开更多
The three-dimensional (3D) processing maps considering strain based on the two-dimensional (2D) processing maps proposed by PRASAD can describe the distribution of the efficiency of power dissipation and flow inst...The three-dimensional (3D) processing maps considering strain based on the two-dimensional (2D) processing maps proposed by PRASAD can describe the distribution of the efficiency of power dissipation and flow instability regions at various temperatures, strain rates and strains, which exhibit intrinsic workability related to material itself. Finite element (FE) simulation can obtain the distribution of strain, strain rate, temperature and die filling status, which indicates state-of-stress (SOS) workability decided by die shape and different processing conditions. On the basis of this, a new material driven analysis method for hot deformation was put forward by the combination of FE simulation with 3D processing maps, which can demonstrate material workability of the entire hot deformation process including SOS workability and intrinsic workability. The hot forging process for hard-to-work metal magnesium alloy was studied, and the 3D thermomechanical FE simulation including 3D processing maps of complex hot forging spur bevel gear was first conducted. The hot forging experiments were carried out. The results show that the new method is reasonable and suitable to determine the aoorooriate nrocess narameters.展开更多
An SOI MOSFET with FINFET structure is simulated using a 3 D simulator. I V characteristics and sub threshold characteristics,as well as the short channel effect(SCE) are carefully investigated.SCE can be well c...An SOI MOSFET with FINFET structure is simulated using a 3 D simulator. I V characteristics and sub threshold characteristics,as well as the short channel effect(SCE) are carefully investigated.SCE can be well controlled by reducing fin height.Good performance can be achieved with thin height,so fin height is considered as a key parameter in device design.Simulation results show that FINFETs present performance superior to conventional single gate devices.展开更多
Single event transient of a real p-n junction in a 0.18μm bulk process is studied by 3D TCAD simulation. The impact of voltage, temperature, substrate concentration, and LET on SET is studied. Our simulation results ...Single event transient of a real p-n junction in a 0.18μm bulk process is studied by 3D TCAD simulation. The impact of voltage, temperature, substrate concentration, and LET on SET is studied. Our simulation results demonstrate that biases in the range 1.62 to 1.98V influence DSET current shape greatly and total collected charge weakly. Peak current and charge collection within 2ns decreases as temperature increases,and temperature has a stronger influence on SET currents than on total charge. Typical variation of substrate concentration in modern VDSM processes has a negligible effect on SEEs. Both peak current and total collection charge increases as LET increases.展开更多
Based on hot compression tests by a Gleeble-1500D thermo-mechanical simulator, the flow stress model and microstructure evolution model for SA508-3 steel were established through the classical theories on work hardeni...Based on hot compression tests by a Gleeble-1500D thermo-mechanical simulator, the flow stress model and microstructure evolution model for SA508-3 steel were established through the classical theories on work hardening and softening. The developed models were integrated into 3D thermal-mechanical coupled rigid plastic finite element software DEFORM3D. The inhomogeneous hot deformation (IHD) experiments of SA508 3 steel were designed and carried out. Meanwhile, numerical simulation was implemented to investigate the effect of temperature, strain and strain rate on microstructure during IHD process through measuring grain sizes at given positions. The simulated grain sizes were basically in agreement with the experimental ones. The results of experiment and simulation demonstrated that temperature is the main factor for the initiation of dynamic recrystallization (DRX), and higher temperature means lower critical strain so that DRX can be facilitated to obtain uniform fine microstructure.展开更多
Nowadays, extractive distillation is the main technique to produce 1,3-butadiene. This study simulated the 1,3-butadiene production process with DMF extractive distillation by Aspen Plus. The solvent ratio is the most...Nowadays, extractive distillation is the main technique to produce 1,3-butadiene. This study simulated the 1,3-butadiene production process with DMF extractive distillation by Aspen Plus. The solvent ratio is the most important parameter to the extractive distillation process. The article has given out the proper solvent ratios, reflux ratios, distillate ratios, and bottom product ratios of the columns. It also discusses the thermal loads of several columns. The results of simulation are consequently compared with the plant data, which shows good accordance with each other.展开更多
It was analyzed that the finite element-cellular automaton (CAFE) method was used to simulate 3D-microstructures in solidification processes. Based on this method, the 3D-microstructure of 9SMn28 free-cutting steel ...It was analyzed that the finite element-cellular automaton (CAFE) method was used to simulate 3D-microstructures in solidification processes. Based on this method, the 3D-microstructure of 9SMn28 free-cutting steel was simulated in solidification processes and the simulation results are consistent with the experimental ones. In addition, the effects of Gaussian distribution parameters were also studied. The simulation results show that the higher the mean undercooling, the larger the columnar dendrite zones, and the larger the maximum nucleation density, the smaller the size of grains. The larger the standard deviation, the less the number of minimum grains is. However, the uniformity degree decreases first, and then increases gradually.展开更多
The standard three dimensional(3D) k-ε turbulence model was applied to simulate the flow field of a small scale combined oxidation ditch. The moving mesh approach was used to model the rotor of the ditch. Compariso...The standard three dimensional(3D) k-ε turbulence model was applied to simulate the flow field of a small scale combined oxidation ditch. The moving mesh approach was used to model the rotor of the ditch. Comparison of the computed and the measured data is acceptable. A vertical reverse flow zone in the ditch was found, and it played a very important role in the ditch flow behavior. The flow pattern in the ditch is discussed in detail, and approaches are suggested to improve the hydrodynamic performance in the ditch.展开更多
The LaBr3(Ce)detector has attracted much attention in recent years because of its superior characteristics compared with other scintillating materials in terms of resolution and efficiency.However,it has a relatively ...The LaBr3(Ce)detector has attracted much attention in recent years because of its superior characteristics compared with other scintillating materials in terms of resolution and efficiency.However,it has a relatively high intrinsic background radiation because of the naturally occurring radioisotopes in lanthanum,actinium,and their daughter nuclei.This limits its applications in low-counting rate experiments.In this study,we identified the radioactive isotopes in theφ3"x 3"Saint-Gobain B380 detector by a coincidence measurement using a Clover detector in a low-background shielding system.Moreover,we carried out a Geant4 simulation of the experimental spectra to evaluate the activities of the main internal radiation components.The total activity of the background radiation of B380 is determined to be 1.523(34)Bq/cm^3.The main sources include 138La at 1.428(34)Bq/cm^3,207Tl at 0.0135(13)Bq/cm^3,211Bi at 0.0136(15)Bq/cm^3,215Po at 0.0135(3)Bq/cm^3,219Rn at 0.0125(12)Bq/cm^3,223Fr at 0.0019(11)Bq/cm^3,223Ra at 0.0127(10)Bq/cm^3,227Th at 0.0158(22)Bq/cm^3,and 227Ac at 0.0135(13)Bq/cm^3.Of these,the activities of 207Tl,211Po,215Po,223Fr,and 227Ac are deduced for the first time from the secular equilibrium established in the decay chain of 227Ac.展开更多
Historical simulations of annual mean surface air temperature over China with 25 CMIP5 models were assessed.The observational data from CRUT3v and CN05 were used and further compared with historical simulations of CMI...Historical simulations of annual mean surface air temperature over China with 25 CMIP5 models were assessed.The observational data from CRUT3v and CN05 were used and further compared with historical simulations of CMIP3.The results show that CMIP5 models were able to simulate the observed warming over China from 1906 to 2005(0.84 C per 100 years)with a warming rate of 0.77 C per 100 years based on the multi-model ensemble(MME).The simulations of surface air temperature in the late 20th century were much better than those in the early 20th century,when only two models could reproduce the extreme warming in the 1940s.The simulations for the spatial distribution of the 20-yearmean(1986–2005)surface air temperature over China fit relatively well with the observations.However,underestimations in surface air temperature climatology were still found almost all over China,and the largest cold bias and simulation uncertainty were found in western China.On sub-regional scale,northern China experienced stronger warming than southern China during 1961–1999,for which the CMIP5 MME provided better simulations.With CMIP5 the diference of warming trends in northern and southern China was underestimated.In general,the CMIP5 simulations are obviously improved in comparison with the CMIP3 simulations in terms of the variation in regional mean surface air temperature,the spatial distribution of surface air temperature climatology and the linear trends in surface air temperature all over China.展开更多
Basing on the analysis of the traits of the roll forging process, a system-model of computer simulation has been established. Three-dimensional rigid-plastic FEM has been used for the simulation of the deformation pro...Basing on the analysis of the traits of the roll forging process, a system-model of computer simulation has been established. Three-dimensional rigid-plastic FEM has been used for the simulation of the deformation process in the oval and round pass rolling, including the entering, rolling, and separating stages. The analysis was conducted using the Deform-3D ver.5.0 code. The important information concerned with the deformation area characteristic, material flow, and velocity field has been presented. Otherwise, the location of the neutral plane in the deformation area was shown clearly.展开更多
Abundant evidences of higher sea levels from Jiangsu and Fujian coasts have proved a marine transgression event during 30–40 ka BP, suggesting that there was a stage with high sea level and a warm climate when ice sh...Abundant evidences of higher sea levels from Jiangsu and Fujian coasts have proved a marine transgression event during 30–40 ka BP, suggesting that there was a stage with high sea level and a warm climate when ice sheets shrank in the Northern Hemisphere. The duration of 30–40 ka BP spanned a period in the late Marine Isotope Stage 3(MIS 3) and was in nature an interstadial epoch during the Last Glacial period of the Quaternary. Different from the glacial period with a cold climate, this marine transgression considered as a penultimate higher sea level during the Quaternary remains a puzzle that why the evidence is contrary to the Quaternary glacial theory. It is important to understand sea level rise for these areas sensitively responding to the global changes in the future. To recognize the key issues on sea level changes, the eustatic sea level(H_S) was defined as the glaciation-climateforced sea levels, and the relative sea level change(H_R) was defined as that a sea level record was preserved in sediment that experienced multiple secondary actions of land and sea effects. On the basis as defined above, we constructed multi-level models of climate-driven glacio-eustatic changes and land-sea systems. By integrating data sets from eight borehole cores and prescribing the boundary conditions, we simulated the changes of HS and HR in the East China Sea and southern Yellow Sea areas in the late MIS 3. The marine transgression strata from the borehole core data was identified at ca. 30 m below present sea level as a result of the collective influence of ice melting water, neotectonic subsidence, sediment compaction and terrestrial sediment filling since ca. 35 ka ago,whereas the simulated relative sea-levels turned out to be –26.3––29.9 m a.s.l. The small error involved in the simulation results of ±(2.5–4.5) m demonstrated the credibility of the results. Our results indicated that sea level change in the late MIS 3 was dominated by glacial effects, in which the eustatic sea-level was between –19.2––22.1m a.s.l. The study sheds light on the nature of sea-level changes along the east coast of China in the late MIS 3 and contributes to understanding the characteristics of marine transgression under the effects of multiple complex land-sea interactions.展开更多
Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling two- dimensional wave fields and therefore cannot accurately ...Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling two- dimensional wave fields and therefore cannot accurately simulate three-dimensional (3-D) full-wave fields or seismic records in a full-space observation system. In this study, we use the first-order velocity-stress staggered-grid finite difference algorithm to simulate 3-D full-wave fields with P-wave sources in front of coal mine roadways. We determine the three components of velocity Vx, Vy, and Vz for the same node in 3-D staggered-grid finite difference models by calculating the average value of Vy, and Vz of the nodes around the same node. We ascertain the wave patterns and their propagation characteristics in both symmetrical and asymmetric coal mine roadway models. Our simulation results indicate that the Rayleigh channel wave is stronger than the Love channel wave in front of the roadway face. The reflected Rayleigh waves from the roadway face are concentrated in the coal seam, release less energy to the roof and floor, and propagate for a longer distance. There are surface waves and refraction head waves around the roadway. In the seismic records, the Rayleigh wave energy is stronger than that of the Love channel wave along coal walls of the roadway, and the interference of the head waves and surface waves with the Rayleigh channel wave is weaker than with the Love channel wave. It is thus difficult to identify the Love channel wave in the seismic records. Increasing the depth of the receivers in the coal walls can effectively weaken the interference of surface waves with the Rayleigh channel wave, but cannot weaken the interference of surface waves with the Love channel wave. Our research results also suggest that the Love channel wave, which is often used to detect geological structures in coal mine stopes, is not suitable for detecting geological structures in front of coal mine roadways. Instead, the Rayleigh channel wave can be used for the advance detection of geological structures in coal mine roadways.展开更多
The lead-free perovskite solar cells(PSCs) have drawn a great deal of research interest due to the Pb toxicity of the lead halide perovskite.CHNHSnIis a viable alternative to CHNHPbX,because it has a narrower band gap...The lead-free perovskite solar cells(PSCs) have drawn a great deal of research interest due to the Pb toxicity of the lead halide perovskite.CHNHSnIis a viable alternative to CHNHPbX,because it has a narrower band gap of 1.3 eV and a wider visible absorption spectrum than the lead halide perovskite.The progress of fabricating tin iodide PSCs with good stability has stimulated the studies of these CHNHSnIbased cells greatly.In the paper,we study the influences of various parameters on the solar cell performance through theoretical analysis and device simulation.It is found in the simulation that the solar cell performance can be improved to some extent by adjusting the doping concentration of the perovskite absorption layer and the electron affinity of the buffer and HTM,while the reduction of the defect density of the perovskite absorption layer significantly improves the cell performance.By further optimizing the parameters of the doping concentration(1.3 × 10cm~3) and the defect density(1 × 10cm~3) of perovskite absorption layer,and the electron affinity of buffer(4.0 eV) and HTM(2.6 eV),we finally obtain some encouraging results of the Jof 31.59 mA/cm~2,Vof 0.92 V,FF of 79.99%,and PCE of 23.36%.The results show that the lead-free CHNHSnIPSC is a potential environmentally friendly solar cell with high efficiency.Improving the Snstability and reducing the defect density of CHNHSnIare key issues for the future research,which can be solved by improving the fabrication and encapsulation process of the cell.展开更多
基金financially supported by the National Key Research and Development Program of China (2022YFB3706802)。
文摘Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical simulation plays a significant role in quantitatively evaluating current processes and making targeted improvements,but its limitations lie in the inability to dynamically reflect the formation outcomes of castings under varying process conditions,making real-time adjustments to gating and riser designs challenging.In this study,an automated design model for gating and riser systems based on integrated parametric 3D modeling-simulation framework is proposed,which enhances the flexibility and usability of evaluating the casting process by simulation.Firstly,geometric feature extraction technology is employed to obtain the geometric information of the target casting.Based on this information,an automated design framework for gating and riser systems is established,incorporating multiple structural parameters for real-time process control.Subsequently,the simulation results for various structural parameters are analyzed,and the influence of these parameters on casting formation is thoroughly investigated.Finally,the optimal design scheme is generated and validated through experimental verification.Simulation analysis and experimental results show that using a larger gate neck(24 mm in side length) and external risers promotes a more uniform temperature distribution and a more stable flow state,effectively eliminating shrinkage cavities and enhancing process yield by 15%.
基金supported by the National Natural Science Foundation of China(Nos.42271048,42430503,and 31971492).
文摘Tree rings provide long-term records of tree growth and climate changes,which makes them ideal benchmarks for forest modeling.Tree-ring information has greatly improved the reliability of 3-PG,which is one of the most commonly used process-based forest growth models.Here,we strengthen 3-PG's ability to simulate tree-ring width and stable carbon isotopes(δ^(13)C)by enhancing its descriptions of tree physiology.The major upgrade was adding a carbon storage pool for tree-ring formation using stored carbohydrates.We also incorporated previous modifications(replacing the age modifier with a height modifier)of 3-PG and tested their efficacy in improving tree-ring simulations.We ran the model based on two grand fir(Abies grandis)stands.The updated model greatly improved the simulations for both tree-ring widths andδ^(13)C.The results represent one of the best tree-ringδ^(13)C simulations,which accurately captured the amplitude in annual variations ofδ^(13)C.The correlations(R^(2))between simulations and observations reached 0.50 and 0.73 at two stands,respectively.The new model also greatly improved the simulations of raw tree-ring widths and detrended ring-width index(RWI).Because of better descriptions of tree physiology and more accurate simulations of tree rings than the previous model version,the updated 3-PG should provide more reliable simulations than previous 3-PG versions when tree-ring information is used as a benchmark in future studies.
基金financially supported by the National Key R&D Program of China(Grant No.2023YFC3081200)the National Natural Science Foundation of China(Grant Nos.U21A20159 and 52179117).
文摘Contact detection is the most time-consuming stage in 3D discontinuous deformation analysis(3D-DDA)computation.Improving the efficiency of 3D-DDA is beneficial for its application in large-scale computing.In this study,aiming at the continuous-discontinuous simulation of 3D-DDA,a highly efficient contact detection strategy is proposed.Firstly,the global direct search(GDS)method is integrated into the 3D-DDA framework to address intricate contact scenarios.Subsequently,all geometric elements,including blocks,faces,edges,and vertices are divided into searchable and unsearchable parts.Contacts between unsearchable geometric elements would be directly inherited,while only searchable geometric elements are involved in contact detection.This strategy significantly reduces the number of geometric elements involved in contact detection,thereby markedly enhancing the computation efficiency.Several examples are adopted to demonstrate the accuracy and efficiency of the improved 3D-DDA method.The rock pillars with different mesh sizes are simulated under self-weight.The deformation and stress are consistent with the analytical results,and the smaller the mesh size,the higher the accuracy.The maximum speedup ratio is 38.46 for this case.Furthermore,the Brazilian splitting test on the discs with different flaws is conducted.The results show that the failure pattern of the samples is consistent with the results obtained by other methods and experiments,and the maximum speedup ratio is 266.73.Finally,a large-scale impact test is performed,and approximately 3.2 times enhanced efficiency is obtained.The proposed contact detection strategy significantly improves efficiency when the rock has not completely failed,which is more suitable for continuous-discontinuous simulation.
基金the support of the National Natural Science Foundation of China(42174147,42474155)the Scientific and Technological Innovation Projects of Laoshan Laboratory(LSKJ20220347)。
文摘Neutron well logging,using instruments equipped with neutron source and detectors(e.g.,^(3)He-tubes,Nal,BGO),plays a key role in lithological differentiation,porosity determination,and fluid property evaluation in the petroleum industry.The growing trend of multifu nctional neutron well logging,which enables simultaneous extraction of multiple reservoir characteristics,requiring high-performance detectors capable of withstanding high-temperature downhole conditions,limited space,and instrument vibrations,while also detecting multiple particle types.The Cs_(2)LiYCl_(6):Ce^(3+)(CLYC)elpasolite scintillator demonstrates excellent temperature resistance and detection efficiency,making it become a promising candidate for leading the development of the novel neutron-based double-particle logging technology.This study employed Monte Carlo simulations to generate equivalent gamma spectra and proposed a pulse shape discrimination simulation method based on theoretical analysis and probabilistic iteration.The performance of CLYC was compared to that of common detectors in terms of physical properties and detection efficiency.A double-particle pulsed neutron detection system for porosity determination was established,based on the count ratio of equivalent gamma rays from the range of 2.95-3.42 MeVee energy bins.Results showed that CLYC can effectively replace ^(3)He-tubes for porosity measurement,providing consistent responses.This study offers numerical simulation support for the design of future neutron well logging tools and the application of double-particle detectors in logging systems.
文摘Upon the conservation of mass, momentum and energy, volume fraction and surface penetrative rate were employed to modify the conservative equations to simulate the effect of blockages on fluid flows and heat transfer. These equations were solved numerically with the finite differential method and the primitive variable approach. This method uses staggered grid and pressure correction schemes. A computer code FASTOR3D integrated the aforementioned algorithm. The preliminary results have been compared with conventional benchmark solutions. With auxiliary software DV, the numerical results were visualized in colorful images to demonstrate the variation of flow patterns and temperature profiles during the transient process. The results of the simulation code for the fluid flows and heat transfer in the sodium pool of a fast breeder reactor are acceptable.
基金Project (51101022) supported by the National Natural Science Foundation of ChinaProject (CHD2012JC096) supported by the Fundamental Research Funds for the Central Universities,China
文摘The rapid solidification process of Mg7Zn3 alloy was simulated by the molecular dynamics method. The relationship between the local structure and the dynamics during the liquid-glass transition was deeply investigated. It was found that the Mg-centered FK polyhedron and the Zn-centered icosahedron play a critical role in the formation of Mg7Zn3 metallic glass. The self-diffusion coefficients of Mg and Zn atoms deviate from the Arrhenius law near the melting temperature and then satisfy the power law. According to the time correlation functions of mean-square displacement, incoherent intermediate scattering function and non-Gaussian parameter, it was found that the β-relaxation in Mg7Zn3 supercooled liquid becomes more and more evident with decreasing temperature, and the α-relaxation time rapidly increases in the VFT law. Moreover, the smaller Zn atom has a faster relaxation behavior than the Mg atom. Some local atomic structures with short-range order have lower mobility, and they play a critical role in the appearance of cage effect in theβ-relaxation regime. The dynamics deviates from the Arrhenius law just at the temperature as the number of local atomic structures begins to rapidly increase. The dynamic glass transition temperature (Tc) is close to the glass transition point in structure (TgStr).
基金Project(2011ZX04014-051)supported by the Key Scientific and Technical Project of ChinaProjects(51375306,50905110)supported by the National Natural Science Foundation of China
文摘The three-dimensional (3D) processing maps considering strain based on the two-dimensional (2D) processing maps proposed by PRASAD can describe the distribution of the efficiency of power dissipation and flow instability regions at various temperatures, strain rates and strains, which exhibit intrinsic workability related to material itself. Finite element (FE) simulation can obtain the distribution of strain, strain rate, temperature and die filling status, which indicates state-of-stress (SOS) workability decided by die shape and different processing conditions. On the basis of this, a new material driven analysis method for hot deformation was put forward by the combination of FE simulation with 3D processing maps, which can demonstrate material workability of the entire hot deformation process including SOS workability and intrinsic workability. The hot forging process for hard-to-work metal magnesium alloy was studied, and the 3D thermomechanical FE simulation including 3D processing maps of complex hot forging spur bevel gear was first conducted. The hot forging experiments were carried out. The results show that the new method is reasonable and suitable to determine the aoorooriate nrocess narameters.
文摘An SOI MOSFET with FINFET structure is simulated using a 3 D simulator. I V characteristics and sub threshold characteristics,as well as the short channel effect(SCE) are carefully investigated.SCE can be well controlled by reducing fin height.Good performance can be achieved with thin height,so fin height is considered as a key parameter in device design.Simulation results show that FINFETs present performance superior to conventional single gate devices.
文摘Single event transient of a real p-n junction in a 0.18μm bulk process is studied by 3D TCAD simulation. The impact of voltage, temperature, substrate concentration, and LET on SET is studied. Our simulation results demonstrate that biases in the range 1.62 to 1.98V influence DSET current shape greatly and total collected charge weakly. Peak current and charge collection within 2ns decreases as temperature increases,and temperature has a stronger influence on SET currents than on total charge. Typical variation of substrate concentration in modern VDSM processes has a negligible effect on SEEs. Both peak current and total collection charge increases as LET increases.
基金Item Sponsored by National Basic Research Program(973Program)of China(2011CB012903)National Natural Science Foundation of China(51075270)
文摘Based on hot compression tests by a Gleeble-1500D thermo-mechanical simulator, the flow stress model and microstructure evolution model for SA508-3 steel were established through the classical theories on work hardening and softening. The developed models were integrated into 3D thermal-mechanical coupled rigid plastic finite element software DEFORM3D. The inhomogeneous hot deformation (IHD) experiments of SA508 3 steel were designed and carried out. Meanwhile, numerical simulation was implemented to investigate the effect of temperature, strain and strain rate on microstructure during IHD process through measuring grain sizes at given positions. The simulated grain sizes were basically in agreement with the experimental ones. The results of experiment and simulation demonstrated that temperature is the main factor for the initiation of dynamic recrystallization (DRX), and higher temperature means lower critical strain so that DRX can be facilitated to obtain uniform fine microstructure.
文摘Nowadays, extractive distillation is the main technique to produce 1,3-butadiene. This study simulated the 1,3-butadiene production process with DMF extractive distillation by Aspen Plus. The solvent ratio is the most important parameter to the extractive distillation process. The article has given out the proper solvent ratios, reflux ratios, distillate ratios, and bottom product ratios of the columns. It also discusses the thermal loads of several columns. The results of simulation are consequently compared with the plant data, which shows good accordance with each other.
基金supported by the National Natural Science Foundation of China (No.50874007, 50774109)
文摘It was analyzed that the finite element-cellular automaton (CAFE) method was used to simulate 3D-microstructures in solidification processes. Based on this method, the 3D-microstructure of 9SMn28 free-cutting steel was simulated in solidification processes and the simulation results are consistent with the experimental ones. In addition, the effects of Gaussian distribution parameters were also studied. The simulation results show that the higher the mean undercooling, the larger the columnar dendrite zones, and the larger the maximum nucleation density, the smaller the size of grains. The larger the standard deviation, the less the number of minimum grains is. However, the uniformity degree decreases first, and then increases gradually.
基金The Specialized Research Fund for the Doctoral Programof Higher Education(No.20010610023) and the Sino-Finnish Scientific and TechnologicalCooperation Program
文摘The standard three dimensional(3D) k-ε turbulence model was applied to simulate the flow field of a small scale combined oxidation ditch. The moving mesh approach was used to model the rotor of the ditch. Comparison of the computed and the measured data is acceptable. A vertical reverse flow zone in the ditch was found, and it played a very important role in the ditch flow behavior. The flow pattern in the ditch is discussed in detail, and approaches are suggested to improve the hydrodynamic performance in the ditch.
基金This work was supported by the National Key R&D program of China(No.2016YFA0400504)by the National Natural Science Foundation of China(Nos.U1832211,U1867210,11922501,11961141004,11575018,11790322,and U1932209).
文摘The LaBr3(Ce)detector has attracted much attention in recent years because of its superior characteristics compared with other scintillating materials in terms of resolution and efficiency.However,it has a relatively high intrinsic background radiation because of the naturally occurring radioisotopes in lanthanum,actinium,and their daughter nuclei.This limits its applications in low-counting rate experiments.In this study,we identified the radioactive isotopes in theφ3"x 3"Saint-Gobain B380 detector by a coincidence measurement using a Clover detector in a low-background shielding system.Moreover,we carried out a Geant4 simulation of the experimental spectra to evaluate the activities of the main internal radiation components.The total activity of the background radiation of B380 is determined to be 1.523(34)Bq/cm^3.The main sources include 138La at 1.428(34)Bq/cm^3,207Tl at 0.0135(13)Bq/cm^3,211Bi at 0.0136(15)Bq/cm^3,215Po at 0.0135(3)Bq/cm^3,219Rn at 0.0125(12)Bq/cm^3,223Fr at 0.0019(11)Bq/cm^3,223Ra at 0.0127(10)Bq/cm^3,227Th at 0.0158(22)Bq/cm^3,and 227Ac at 0.0135(13)Bq/cm^3.Of these,the activities of 207Tl,211Po,215Po,223Fr,and 227Ac are deduced for the first time from the secular equilibrium established in the decay chain of 227Ac.
文摘Historical simulations of annual mean surface air temperature over China with 25 CMIP5 models were assessed.The observational data from CRUT3v and CN05 were used and further compared with historical simulations of CMIP3.The results show that CMIP5 models were able to simulate the observed warming over China from 1906 to 2005(0.84 C per 100 years)with a warming rate of 0.77 C per 100 years based on the multi-model ensemble(MME).The simulations of surface air temperature in the late 20th century were much better than those in the early 20th century,when only two models could reproduce the extreme warming in the 1940s.The simulations for the spatial distribution of the 20-yearmean(1986–2005)surface air temperature over China fit relatively well with the observations.However,underestimations in surface air temperature climatology were still found almost all over China,and the largest cold bias and simulation uncertainty were found in western China.On sub-regional scale,northern China experienced stronger warming than southern China during 1961–1999,for which the CMIP5 MME provided better simulations.With CMIP5 the diference of warming trends in northern and southern China was underestimated.In general,the CMIP5 simulations are obviously improved in comparison with the CMIP3 simulations in terms of the variation in regional mean surface air temperature,the spatial distribution of surface air temperature climatology and the linear trends in surface air temperature all over China.
基金supported by the National Natural Science Foundation of China(No.50675014).
文摘Basing on the analysis of the traits of the roll forging process, a system-model of computer simulation has been established. Three-dimensional rigid-plastic FEM has been used for the simulation of the deformation process in the oval and round pass rolling, including the entering, rolling, and separating stages. The analysis was conducted using the Deform-3D ver.5.0 code. The important information concerned with the deformation area characteristic, material flow, and velocity field has been presented. Otherwise, the location of the neutral plane in the deformation area was shown clearly.
基金the National Basic Research Program of China under contract Nos 2013CB956501 and 2012CB956103
文摘Abundant evidences of higher sea levels from Jiangsu and Fujian coasts have proved a marine transgression event during 30–40 ka BP, suggesting that there was a stage with high sea level and a warm climate when ice sheets shrank in the Northern Hemisphere. The duration of 30–40 ka BP spanned a period in the late Marine Isotope Stage 3(MIS 3) and was in nature an interstadial epoch during the Last Glacial period of the Quaternary. Different from the glacial period with a cold climate, this marine transgression considered as a penultimate higher sea level during the Quaternary remains a puzzle that why the evidence is contrary to the Quaternary glacial theory. It is important to understand sea level rise for these areas sensitively responding to the global changes in the future. To recognize the key issues on sea level changes, the eustatic sea level(H_S) was defined as the glaciation-climateforced sea levels, and the relative sea level change(H_R) was defined as that a sea level record was preserved in sediment that experienced multiple secondary actions of land and sea effects. On the basis as defined above, we constructed multi-level models of climate-driven glacio-eustatic changes and land-sea systems. By integrating data sets from eight borehole cores and prescribing the boundary conditions, we simulated the changes of HS and HR in the East China Sea and southern Yellow Sea areas in the late MIS 3. The marine transgression strata from the borehole core data was identified at ca. 30 m below present sea level as a result of the collective influence of ice melting water, neotectonic subsidence, sediment compaction and terrestrial sediment filling since ca. 35 ka ago,whereas the simulated relative sea-levels turned out to be –26.3––29.9 m a.s.l. The small error involved in the simulation results of ±(2.5–4.5) m demonstrated the credibility of the results. Our results indicated that sea level change in the late MIS 3 was dominated by glacial effects, in which the eustatic sea-level was between –19.2––22.1m a.s.l. The study sheds light on the nature of sea-level changes along the east coast of China in the late MIS 3 and contributes to understanding the characteristics of marine transgression under the effects of multiple complex land-sea interactions.
基金supported by National Natural Science Foundation of China(Nos.41204077,41372290,41572244,51034003,51174210,and 51304126)natural science foundation of Shandong Province(Nos.ZR2011EEZ002 and ZR2013EEQ019)State Key Research Development Program of China(No.2016YFC0600708-3)
文摘Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling two- dimensional wave fields and therefore cannot accurately simulate three-dimensional (3-D) full-wave fields or seismic records in a full-space observation system. In this study, we use the first-order velocity-stress staggered-grid finite difference algorithm to simulate 3-D full-wave fields with P-wave sources in front of coal mine roadways. We determine the three components of velocity Vx, Vy, and Vz for the same node in 3-D staggered-grid finite difference models by calculating the average value of Vy, and Vz of the nodes around the same node. We ascertain the wave patterns and their propagation characteristics in both symmetrical and asymmetric coal mine roadway models. Our simulation results indicate that the Rayleigh channel wave is stronger than the Love channel wave in front of the roadway face. The reflected Rayleigh waves from the roadway face are concentrated in the coal seam, release less energy to the roof and floor, and propagate for a longer distance. There are surface waves and refraction head waves around the roadway. In the seismic records, the Rayleigh wave energy is stronger than that of the Love channel wave along coal walls of the roadway, and the interference of the head waves and surface waves with the Rayleigh channel wave is weaker than with the Love channel wave. It is thus difficult to identify the Love channel wave in the seismic records. Increasing the depth of the receivers in the coal walls can effectively weaken the interference of surface waves with the Rayleigh channel wave, but cannot weaken the interference of surface waves with the Love channel wave. Our research results also suggest that the Love channel wave, which is often used to detect geological structures in coal mine stopes, is not suitable for detecting geological structures in front of coal mine roadways. Instead, the Rayleigh channel wave can be used for the advance detection of geological structures in coal mine roadways.
基金supported by the Graduate Student Education Teaching Reform Project,China(Grant No.JG201512)the Young Teachers Research Project of Yanshan University,China(Grant No.13LGB028)
文摘The lead-free perovskite solar cells(PSCs) have drawn a great deal of research interest due to the Pb toxicity of the lead halide perovskite.CHNHSnIis a viable alternative to CHNHPbX,because it has a narrower band gap of 1.3 eV and a wider visible absorption spectrum than the lead halide perovskite.The progress of fabricating tin iodide PSCs with good stability has stimulated the studies of these CHNHSnIbased cells greatly.In the paper,we study the influences of various parameters on the solar cell performance through theoretical analysis and device simulation.It is found in the simulation that the solar cell performance can be improved to some extent by adjusting the doping concentration of the perovskite absorption layer and the electron affinity of the buffer and HTM,while the reduction of the defect density of the perovskite absorption layer significantly improves the cell performance.By further optimizing the parameters of the doping concentration(1.3 × 10cm~3) and the defect density(1 × 10cm~3) of perovskite absorption layer,and the electron affinity of buffer(4.0 eV) and HTM(2.6 eV),we finally obtain some encouraging results of the Jof 31.59 mA/cm~2,Vof 0.92 V,FF of 79.99%,and PCE of 23.36%.The results show that the lead-free CHNHSnIPSC is a potential environmentally friendly solar cell with high efficiency.Improving the Snstability and reducing the defect density of CHNHSnIare key issues for the future research,which can be solved by improving the fabrication and encapsulation process of the cell.