Gas–liquid two-phase jets exhibit markedly enhanced impact performance due to the violent collapse of entrained bubbles,which generates transient microjets and shock waves.The geometry of the nozzle is a decisive fac...Gas–liquid two-phase jets exhibit markedly enhanced impact performance due to the violent collapse of entrained bubbles,which generates transient microjets and shock waves.The geometry of the nozzle is a decisive factor in controlling jet formation,flow modulation,and impact efficiency.In this work,the structural optimization of gas–liquid two-phase nozzles was investigated numerically using the Volume of Fluid(VOF).Simulation results show that the aero-shaped nozzle delivers a significantly stronger impact on the target surface than conventional geometries.Specifically,its impact pressure is 21%higher than that of a conical straight nozzle and 37%higher than that of a conical nozzle.The aero nozzle not only increases peak impact pressure but also sustains it over a longer duration,leading to an overall improvement in energy transfer efficiency.Parametric analyses further reveal the key geometric conditions governing performance.When the nozzle curvature is set to 0.01,the jet achieves a higher and more stable surface pressure profile,maintaining elevated impact for a prolonged period.At an aspect ratio of 15,the jet exhibits pronounced pulsation under high pressure,thereby enhancing impact intensity.The contraction ratio exerts a non-monotonic influence:as it increases,impact pressure initially rises and subsequently declines,with an optimal value of 4 yielding the highest and most persistent impact pressure.Likewise,when the ratio of inlet length to outlet diameter is 2.5,the jet demonstrates the strongest impact on the target surface.展开更多
The key to reduce shell breakout in the continuous casting process is to control shell thickness in the mold. A numerical simulation on the turbulent flow and heat transfer coupled with solidification in the slab mold...The key to reduce shell breakout in the continuous casting process is to control shell thickness in the mold. A numerical simulation on the turbulent flow and heat transfer coupled with solidification in the slab mold using the volume of fluid (VOF) model and the enthalpy-porosity scheme was conducted and the emphasis was put upon the flow effect on the shell thickness profiles in longitudinal and transverse directions. The results show that the jet acts a stronger impingement on the shell of narrow face, which causes a zero-increase of shell thickness in a certain range near the impingement point. The thinnest shell on the slab cross-section locates primarily in the center of the narrow face, and secondly near the comer of the wide face. Nozzle optimization can obviously increase the shell thickness and make it more uniform.展开更多
基金funded by the National Natural Science Foundation of China,grant number 52204022Natural Science Foundation of Shandong Province,grant number ZR2022ME152+3 种基金Youth Innovation and Technology Support Program for Shandong Provincial Universities,grant number 2022KJ066National Key Research and Development Program of China,grant number 2021YFE0111400Shandong Provincial Key Research and Development Program(2025TSGCCZZB0419)The Major Special Project for Scientific and Technological Innovation of Dongying City(Science and Technology Development Guidance Plan),grant number 2023ZDJH110.
文摘Gas–liquid two-phase jets exhibit markedly enhanced impact performance due to the violent collapse of entrained bubbles,which generates transient microjets and shock waves.The geometry of the nozzle is a decisive factor in controlling jet formation,flow modulation,and impact efficiency.In this work,the structural optimization of gas–liquid two-phase nozzles was investigated numerically using the Volume of Fluid(VOF).Simulation results show that the aero-shaped nozzle delivers a significantly stronger impact on the target surface than conventional geometries.Specifically,its impact pressure is 21%higher than that of a conical straight nozzle and 37%higher than that of a conical nozzle.The aero nozzle not only increases peak impact pressure but also sustains it over a longer duration,leading to an overall improvement in energy transfer efficiency.Parametric analyses further reveal the key geometric conditions governing performance.When the nozzle curvature is set to 0.01,the jet achieves a higher and more stable surface pressure profile,maintaining elevated impact for a prolonged period.At an aspect ratio of 15,the jet exhibits pronounced pulsation under high pressure,thereby enhancing impact intensity.The contraction ratio exerts a non-monotonic influence:as it increases,impact pressure initially rises and subsequently declines,with an optimal value of 4 yielding the highest and most persistent impact pressure.Likewise,when the ratio of inlet length to outlet diameter is 2.5,the jet demonstrates the strongest impact on the target surface.
基金supported by the National Natural Science Foundation of China (No.60672145)
文摘The key to reduce shell breakout in the continuous casting process is to control shell thickness in the mold. A numerical simulation on the turbulent flow and heat transfer coupled with solidification in the slab mold using the volume of fluid (VOF) model and the enthalpy-porosity scheme was conducted and the emphasis was put upon the flow effect on the shell thickness profiles in longitudinal and transverse directions. The results show that the jet acts a stronger impingement on the shell of narrow face, which causes a zero-increase of shell thickness in a certain range near the impingement point. The thinnest shell on the slab cross-section locates primarily in the center of the narrow face, and secondly near the comer of the wide face. Nozzle optimization can obviously increase the shell thickness and make it more uniform.