期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Structural Optimization of Nozzles for Gas-Liquid Two-Phase Jets
1
作者 Fengxia Shi Jian Zhao +3 位作者 Xiaodong Dai Guoxin Zhang Yuan Lu Yuyan Shang 《Fluid Dynamics & Materials Processing》 2025年第12期2963-2980,共18页
Gas–liquid two-phase jets exhibit markedly enhanced impact performance due to the violent collapse of entrained bubbles,which generates transient microjets and shock waves.The geometry of the nozzle is a decisive fac... Gas–liquid two-phase jets exhibit markedly enhanced impact performance due to the violent collapse of entrained bubbles,which generates transient microjets and shock waves.The geometry of the nozzle is a decisive factor in controlling jet formation,flow modulation,and impact efficiency.In this work,the structural optimization of gas–liquid two-phase nozzles was investigated numerically using the Volume of Fluid(VOF).Simulation results show that the aero-shaped nozzle delivers a significantly stronger impact on the target surface than conventional geometries.Specifically,its impact pressure is 21%higher than that of a conical straight nozzle and 37%higher than that of a conical nozzle.The aero nozzle not only increases peak impact pressure but also sustains it over a longer duration,leading to an overall improvement in energy transfer efficiency.Parametric analyses further reveal the key geometric conditions governing performance.When the nozzle curvature is set to 0.01,the jet achieves a higher and more stable surface pressure profile,maintaining elevated impact for a prolonged period.At an aspect ratio of 15,the jet exhibits pronounced pulsation under high pressure,thereby enhancing impact intensity.The contraction ratio exerts a non-monotonic influence:as it increases,impact pressure initially rises and subsequently declines,with an optimal value of 4 yielding the highest and most persistent impact pressure.Likewise,when the ratio of inlet length to outlet diameter is 2.5,the jet demonstrates the strongest impact on the target surface. 展开更多
关键词 Gas-liquid two-phase jet impact modulation nozzle optimization fluid volume method
在线阅读 下载PDF
Characteristics of shell thickness in a slab continuous casting mold 被引量:3
2
作者 Di-feng Wu Shu-sen Cheng Zi-jian Cheng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第1期25-31,共7页
The key to reduce shell breakout in the continuous casting process is to control shell thickness in the mold. A numerical simulation on the turbulent flow and heat transfer coupled with solidification in the slab mold... The key to reduce shell breakout in the continuous casting process is to control shell thickness in the mold. A numerical simulation on the turbulent flow and heat transfer coupled with solidification in the slab mold using the volume of fluid (VOF) model and the enthalpy-porosity scheme was conducted and the emphasis was put upon the flow effect on the shell thickness profiles in longitudinal and transverse directions. The results show that the jet acts a stronger impingement on the shell of narrow face, which causes a zero-increase of shell thickness in a certain range near the impingement point. The thinnest shell on the slab cross-section locates primarily in the center of the narrow face, and secondly near the comer of the wide face. Nozzle optimization can obviously increase the shell thickness and make it more uniform. 展开更多
关键词 continuous casting slab mold shell thickness nozzle optimization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部