期刊文献+
共找到1,343篇文章
< 1 2 68 >
每页显示 20 50 100
Normalized Cut与分水岭变换在高光谱影像混合像元端元提取中的应用 被引量:3
1
作者 许菡 李小娟 《中国图象图形学报》 CSCD 北大核心 2012年第7期880-885,共6页
现有的遥感影像端元提取方法主要是从光谱特征角度提出,而结合空间信息的端元提取方法是近些年遥感影像混合像元分解的研究热点,为此使用图论的图像分割Normalized Cut与分水岭变换方法提出了一种改进的空间预处理模型用于高光谱遥感影... 现有的遥感影像端元提取方法主要是从光谱特征角度提出,而结合空间信息的端元提取方法是近些年遥感影像混合像元分解的研究热点,为此使用图论的图像分割Normalized Cut与分水岭变换方法提出了一种改进的空间预处理模型用于高光谱遥感影像混合像元的端元提取。该方法在混合像元端元提取过程中不仅利用遥感影像的光谱信息而且引入了像元的空间位置信息,实验结果表明本文提出的端元提取方法与现有的方法相比提高了遥感影像的混合像元分解精度。 展开更多
关键词 遥感影像分割 分水岭变换 normalized Cut 端元提取 高光谱数据
原文传递
基于Swin Transformer和归一化流的色织物表面缺陷检测 被引量:1
2
作者 张宏伟 张思怡 王海博 《纺织高校基础科学学报》 2025年第3期39-47,共9页
针对传统深度学习方法在色织物缺陷检测中受限于缺陷样本稀缺、背景复杂和小目标缺陷难以识别的问题,提出一种基于Swin Transformer和归一化流的无监督色织物缺陷检测与定位方法。首先,在训练阶段,仅利用无缺陷色织物图像构建训练集,并... 针对传统深度学习方法在色织物缺陷检测中受限于缺陷样本稀缺、背景复杂和小目标缺陷难以识别的问题,提出一种基于Swin Transformer和归一化流的无监督色织物缺陷检测与定位方法。首先,在训练阶段,仅利用无缺陷色织物图像构建训练集,并采用Swin Transformer提取多尺度特征。接着,利用归一化流建立概率密度估计模型,对正常样本特征进行分布建模,使模型能够学习正常织物特征的潜在空间表示。在推理阶段,将待测色织物图像的特征投影到已学习的特征分布,并计算其异常分数。最后,通过异常分数实现色织物缺陷区域的检测和定位。实验结果表明,该方法能够有效学习正常色织物的特征分布,在复杂背景下准确检测和定位多种织物的缺陷。在YDFID-1数据集上,该方法实现了98.4%的图像级AUROC和96.9%的像素级AUROC,显著优于现有无监督色织物缺陷检测方法。该方法无需缺陷样本和缺陷标注,仅依赖正常样本的特征分布即可进行缺陷判别,提高了检测的泛化能力和鲁棒性。 展开更多
关键词 织物缺陷检测 色织物 Swin transformer 无监督缺陷检测 概率密度估计模型 归一化流
在线阅读 下载PDF
Support vector machine regression(SVR)-based nonlinear modeling of radiometric transforming relation for the coarse-resolution data-referenced relative radiometric normalization(RRN) 被引量:3
3
作者 Jing Geng Wenxia Gan +2 位作者 Jinying Xu Ruqin Yang Shuliang Wang 《Geo-Spatial Information Science》 SCIE CSCD 2020年第3期237-247,I0004,共12页
Radiometric normalization,as an essential step for multi-source and multi-temporal data processing,has received critical attention.Relative Radiometric Normalization(RRN)method has been primarily used for eliminating ... Radiometric normalization,as an essential step for multi-source and multi-temporal data processing,has received critical attention.Relative Radiometric Normalization(RRN)method has been primarily used for eliminating the radiometric inconsistency.The radiometric trans-forming relation between the subject image and the reference image is an essential aspect of RRN.Aimed at accurate radiometric transforming relation modeling,the learning-based nonlinear regression method,Support Vector machine Regression(SVR)is used for fitting the complicated radiometric transforming relation for the coarse-resolution data-referenced RRN.To evaluate the effectiveness of the proposed method,a series of experiments are performed,including two synthetic data experiments and one real data experiment.And the proposed method is compared with other methods that use linear regression,Artificial Neural Network(ANN)or Random Forest(RF)for radiometric transforming relation modeling.The results show that the proposed method performs well on fitting the radiometric transforming relation and could enhance the RRN performance. 展开更多
关键词 Support Vector machine Regression(SVR) non-linear radiometric transforming relation Relative Radiometric normalization(RRN) multi-source data
原文传递
Computation of the Simplest Normal Forms for Resonant Double Hopf Bifurcations System Based on Lie Transform 被引量:2
4
作者 张琪昌 何学军 郝淑英 《Transactions of Tianjin University》 EI CAS 2006年第3期180-185,共6页
The simplest normal form of resonant double Hopf bifurcation was studied based on Lie operator. The coefficients of the simplest normal forms of resonant double Hopf bifurcation and the nonlinear transformations in te... The simplest normal form of resonant double Hopf bifurcation was studied based on Lie operator. The coefficients of the simplest normal forms of resonant double Hopf bifurcation and the nonlinear transformations in terms of the original system coefficients were given explicitly. The nonlinear transformations were used for reducing the lower- and higher-order normal forms, and the rank of system matrix was used to determine the coefficient of normal form which could be reduced. These make the gained normal form simpler than the traditional one. A general program was compiled with Mathematica. This program can compute the simplest normal form of resonant double Hopf bifurcation and the non-resonant form up to the 7th order. 展开更多
关键词 nonlinear systems normal form bifurcation mathematical transformations Lie operator computer program
在线阅读 下载PDF
Point Transformations and Relationships among Linear Anomalous Diffusion, Normal Diffusion and the Central Limit Theorem 被引量:1
5
作者 Donald Kouri Nikhil Pandya +2 位作者 Cameron L. Williams Bernhard G. Bodmann Jie Yao 《Applied Mathematics》 2018年第2期178-197,共20页
We present new connections among linear anomalous diffusion (AD), normal diffusion (ND) and the Central Limit Theorem (CLT). This is done by defining a point transformation to a new position variable, which we postula... We present new connections among linear anomalous diffusion (AD), normal diffusion (ND) and the Central Limit Theorem (CLT). This is done by defining a point transformation to a new position variable, which we postulate to be Cartesian, motivated by considerations from super-symmetric quantum mechanics. Canonically quantizing in the new position and momentum variables according to Dirac gives rise to generalized negative semi-definite and self-adjoint Laplacian operators. These lead to new generalized Fourier transformations and associated probability distributions, which are form invariant under the corresponding transform. The new Laplacians also lead us to generalized diffusion equations, which imply a connection to the CLT. We show that the derived diffusion equations capture all of the Fractal and Non-Fractal Anomalous Diffusion equations of O’Shaughnessy and Procaccia. However, we also obtain new equations that cannot (so far as we can tell) be expressed as examples of the O’Shaughnessy and Procaccia equations. The results show, in part, that experimentally measuring the diffusion scaling law can determine the point transformation (for monomial point transformations). We also show that AD in the original, physical position is actually ND when viewed in terms of displacements in an appropriately transformed position variable. We illustrate the ideas both analytically and with a detailed computational example for a non-trivial choice of point transformation. Finally, we summarize our results. 展开更多
关键词 Generalized Fourier Analysis normal DIFFUSION ANOMALOUS DIFFUSION Point transformATIONS CANONICAL Quantization Super Symmetric Quantum Mechanics
在线阅读 下载PDF
Quantum Mechanical Hilbert Transformation for Normally Ordering Coulomb Potential-Type Operators 被引量:1
6
作者 FAN Hong-Yi FU Liang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第2X期213-216,共4页
We show that the technique of integration within an ordered product of operators can be extended to Hilbert transform. In so doing we derive normally ordered expansion of Coulomb potential-type operators directly by u... We show that the technique of integration within an ordered product of operators can be extended to Hilbert transform. In so doing we derive normally ordered expansion of Coulomb potential-type operators directly by using the mathematical Hilbert transform formula. 展开更多
关键词 quantum Hilbert transform normally ordering Coulomb potential
在线阅读 下载PDF
Topological Transformation during Normal Grain Growth
7
作者 ChaogangLOU MichaelA.PLayer 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第5期601-604,共4页
This paper investigates topological transformation during normal grain growth by carrying out a computer vertex simulation. Results show that topological correlation agrees with the models proposed by Blanc et al. and... This paper investigates topological transformation during normal grain growth by carrying out a computer vertex simulation. Results show that topological correlation agrees with the models proposed by Blanc et al. and Weaire. Topological transformation occurs more often on grains with some topological classes instead of equal probability on each boundary. This can be qualitatively explained by topological correlation. 展开更多
关键词 Topological transformation normal grain growth SIMULATION
在线阅读 下载PDF
Depth-Guided Vision Transformer With Normalizing Flows for Monocular 3D Object Detection
8
作者 Cong Pan Junran Peng Zhaoxiang Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期673-689,共17页
Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input t... Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input to augment the RGB images.Depth-based methods attempt to convert estimated depth maps to pseudo-LiDAR and then use LiDAR-based object detectors or focus on the perspective of image and depth fusion learning.However,they demonstrate limited performance and efficiency as a result of depth inaccuracy and complex fusion mode with convolutions.Different from these approaches,our proposed depth-guided vision transformer with a normalizing flows(NF-DVT)network uses normalizing flows to build priors in depth maps to achieve more accurate depth information.Then we develop a novel Swin-Transformer-based backbone with a fusion module to process RGB image patches and depth map patches with two separate branches and fuse them using cross-attention to exchange information with each other.Furthermore,with the help of pixel-wise relative depth values in depth maps,we develop new relative position embeddings in the cross-attention mechanism to capture more accurate sequence ordering of input tokens.Our method is the first Swin-Transformer-based backbone architecture for monocular 3D object detection.The experimental results on the KITTI and the challenging Waymo Open datasets show the effectiveness of our proposed method and superior performance over previous counterparts. 展开更多
关键词 Monocular 3D object detection normalizing flows Swin transformer
在线阅读 下载PDF
The Thinking Path of Deepening Transformation and Innovation of Chinese Banking Industry under the Background of “New Normal” Economy
9
作者 Guaili Zhang 《Journal of Economic Science Research》 2019年第4期16-24,共9页
This paper analyzes the three big impact in the development of Chinese banking industry and discusses the limitations of financial innovation of Chinese banking industry.The results showed that:(1)deepening the bankin... This paper analyzes the three big impact in the development of Chinese banking industry and discusses the limitations of financial innovation of Chinese banking industry.The results showed that:(1)deepening the banking system innovation to adapt to the new situation;(2)improving customers’experience by deepening model innovation of the internet financial;(3)improving intensive of bank branch operation and the intelligent of network service with the aid of informatization;(4)Providing individualized,characteristic and differentiated services for high-quality customers of banks and enhancing customer value through lightweight network outlets;and(5)Adapting to the development of new entity economy by comprehensive management,optimizing the operation mode of outlets,and strengthening the supply side reform of commercial banks themselves. 展开更多
关键词 Economic NEW normal BANKING INDUSTRY transformATION and innovation
在线阅读 下载PDF
基于双路视觉Transformer的图像风格迁移
10
作者 纪宗杏 贝佳 +1 位作者 刘润泽 任桐炜 《北京航空航天大学学报》 北大核心 2025年第7期2488-2497,共10页
图像风格迁移旨在根据风格图像调整内容图像的视觉属性,使其保留原始内容的同时呈现出特定风格样式,从而生成具有视觉吸引力的风格化图像。针对现有代表性方法大多未考虑不同图像域间的编码差异,专注提取图像局部特征而忽视了全局上下... 图像风格迁移旨在根据风格图像调整内容图像的视觉属性,使其保留原始内容的同时呈现出特定风格样式,从而生成具有视觉吸引力的风格化图像。针对现有代表性方法大多未考虑不同图像域间的编码差异,专注提取图像局部特征而忽视了全局上下文信息的重要性,提出一种新型的基于双路视觉Transformer的图像风格迁移方法Bi-Trans,对内容图像域和风格图像域进行独立编码,提取风格参数向量以离散化表征图像风格,通过交叉注意力机制与条件实例归一化(CIN)将内容图像标定至目标域风格,从而生成风格化图像。实验结果表明,该方法无论是内容保留度还是风格还原度均优于现有方法。 展开更多
关键词 图像风格迁移 视觉transformer 任意风格化 条件实例归一化 注意力机制
原文传递
Research and Analysis of Transformation and Development of China's Green Economy under the New Normal
11
作者 Qi'nan ZHANG Fanfan ZHANG 《Asian Agricultural Research》 2018年第7期19-21,共3页
In May 2014,Chairman Xi Jinping mentioned the "new normal" for the first time during his inspection of Henan,and proposed that China's development is still in an important period of strategic opportunity... In May 2014,Chairman Xi Jinping mentioned the "new normal" for the first time during his inspection of Henan,and proposed that China's development is still in an important period of strategic opportunity. It was advocated to promote the transformation and development of China's green economy and to go out an ecological path of green innovation,green production and green consumption. This paper mainly explains the current situation,problems,corresponding countermeasures and suggestions of the transformation and development of China's green economy under the new normal to let readers understand the necessity of the transformation and development of China's green economy. 展开更多
关键词 习近平 河南 生态农业 农业经济
在线阅读 下载PDF
A Note on “Limit Distributions of Self-Normalized Sums” Using Cauchy-Generated Samples
12
作者 Jan Vrbik 《Applied Mathematics》 2019年第11期863-875,共13页
In this case study, we would like to illustrate the utility of characteristic functions, using an example of a sample statistic defined for samples from Cauchy distribution. The derivation of the corresponding asympto... In this case study, we would like to illustrate the utility of characteristic functions, using an example of a sample statistic defined for samples from Cauchy distribution. The derivation of the corresponding asymptotic probability density function is based on [1], elaborating and expanding the individual steps of their presentation, and including a small extension;our reason for such a plagiarism is to make the technique, its mathematical tools and ingenious arguments available to the widest possible audience. 展开更多
关键词 SELF-normalized SUM CAUCHY Distribution Characteristic Functions FOURIER transform Padé Approximation
在线阅读 下载PDF
Analysis on the Transformation of Financial Management Mode of Geological Prospecting Units under the New Normal
13
作者 ZHANGXiaowen 《外文科技期刊数据库(文摘版)经济管理》 2022年第5期027-030,共4页
Under the new normal, geological prospecting units are required to re-examine their current development model, observe the deficiencies in the financial management process, and take this as a guide to transform, upgra... Under the new normal, geological prospecting units are required to re-examine their current development model, observe the deficiencies in the financial management process, and take this as a guide to transform, upgrade and optimize the management model. This requires geological prospecting units to grasp the direction and focus of the transformation, for example, from the aspects of budget execution, supervision and audit to strengthen the control of financial management of enterprises, and effectively play the macro guidance and control role of the units, so as to play a greater value and effectiveness of the financial management model. This paper discusses and analyzes the necessity and ways of the transformation of the financial management mode of geological prospecting units under the new normal. 展开更多
关键词 new normal financial management of geological prospecting units analysis of model transformation
原文传递
Leveraging the knee point:Boosting remaining useful life prediction accuracy for lithium-ion batteries with virtual-enhanced normalizing flow
14
作者 Bowei Zhang Mingzhe Leng +5 位作者 Changhua Hu Hong Pei Zhaoqiang Wang Chuanyang Li Li Wang Xiangming He 《Journal of Energy Chemistry》 2025年第11期535-547,I0013,共14页
Deep learning has emerged as a powerful tool for predicting the remaining useful life(RUL)of batteries,contingent upon access to ample data.However,the inherent limitations of data availability from traditional or acc... Deep learning has emerged as a powerful tool for predicting the remaining useful life(RUL)of batteries,contingent upon access to ample data.However,the inherent limitations of data availability from traditional or accelerated life testing pose significant challenges.To mitigate the prediction accuracy issues arising from small sample sizes in existing intelligent methods,we introduce a novel data augmentation framework for RUL prediction.This framework harnesses the inherent high coincidence of degradation patterns exhibited by lithium-ion batteries to pinpoint the knee point,a critical juncture marking a significant shift in the degradation trajectory.By focusing on this critical knee point,we leverage the power of normalizing flow models to generate virtual data,effectively augmenting the training sample size.Additionally,we integrate a Bayesian Long Short-Term Memory network,optimized with Box-Cox transformation,to address the inherent uncertainty associated with predictions based on augmented data.This integration allows for a more nuanced understanding of RUL prediction uncertainties,offering valuable confidence intervals.The efficacy and superiority of the proposed framework are validated through extensive experiments on the CS2 dataset from the University of Maryland and the CrFeMnNiCo dataset from our laboratory.The results clearly demonstrate a substantial improvement in the confidence interval of RUL predictions compared to pre-optimization,highlighting the ability of the framework to achieve high-precision RUL predictions even with limited data. 展开更多
关键词 Remaining useful life Data augmentation Knee point normalizing flow Box-Cox transformation
在线阅读 下载PDF
基于TCN和Transformer的鸡胚心跳混淆信号分类方法 被引量:1
15
作者 耿磊 吴寒冰 +2 位作者 张芳 肖志涛 李晓捷 《农业机械学报》 EI CAS CSCD 北大核心 2023年第8期296-308,共13页
鸡蛋胚胎培养法是制备禽流感疫苗常用的方法,快速准确地对鸡蛋胚胎进行成活性分类并将死胚从活胚中尽早剔除可以有效避免因胚胎死亡导致的细菌或霉菌污染,对孵化效率的提高有着重要意义。目前,主要以鸡胚心跳信号作为分辨死胚和活胚的... 鸡蛋胚胎培养法是制备禽流感疫苗常用的方法,快速准确地对鸡蛋胚胎进行成活性分类并将死胚从活胚中尽早剔除可以有效避免因胚胎死亡导致的细菌或霉菌污染,对孵化效率的提高有着重要意义。目前,主要以鸡胚心跳信号作为分辨死胚和活胚的依据。然而,鸡蛋活胚在注入禽流感病毒96 h后,其心跳信号特征介于普通活胚和死胚之间,易与死胚混淆,本文将该类数据称为鸡胚心跳混淆信号,单独作为一类加入数据集,将原本死胚、活胚二分类改为死胚、普通活胚和96 h活胚三分类,根据信号特征设计了绝对值均值标准化预处理方法,增强原始数据特征以提升数据可分类性,并针对全局特征和细节特征提出了一种基于时间卷积网络(Temporal convolutional network,TCN)和Transformer的残差结构浅层双分支网络结构(Residual fully temporal convolutional with transformer network,RFTNet)。实验结果表明,本文提出的三分类绝对值均值标准化预处理方法和RFTNet双分支网络在鸡胚混淆数据集分类任务中展现出良好性能,检测准确率高达99.75%。此外,在精确率、召回率和F1值3个评价指标上分别达到99.75%、99.74%和99.75%,进一步验证了本文方法的有效性。 展开更多
关键词 鸡胚成活性分类 鸡胚心跳混淆信号 绝对值均值标准化 时间卷积网络 transformER
在线阅读 下载PDF
基于NSTFT-WVD变换的VFTO频谱分析方法 被引量:5
16
作者 刘世明 李帅 +4 位作者 谈翀 臧英 张舜钦 程军卫 王传勇 《华北电力大学学报(自然科学版)》 CAS 北大核心 2018年第5期52-61,共10页
特快速暂态过电压(very fast transient overvoltage,VFTO)包含的频率成分与变压器等绕组类设备的谐振频率匹配时,会在其内部产生谐振过电压,威胁其绝缘安全,因此有必要对VFTO的频谱特征进行分析。从信号分析的角度看,VFTO波形是一种非... 特快速暂态过电压(very fast transient overvoltage,VFTO)包含的频率成分与变压器等绕组类设备的谐振频率匹配时,会在其内部产生谐振过电压,威胁其绝缘安全,因此有必要对VFTO的频谱特征进行分析。从信号分析的角度看,VFTO波形是一种非平稳信号,傅里叶变换无法描述其频率随时间的变化情况,因此提出采用归一化短时傅里叶变换-魏格纳威尔分布(normalized STFT-WVD,NSTFT-WVD)分析VFTO的频谱特征。首先介绍了NSTFT-WVD变换的原理及实现步骤,然后比较了NSTFT-WVD变换与其他时频变换方法的性能,并采用该变换分析了VFTO现场试验波形,验证了该变换用于VFTO频谱分析的有效性,最后基于NSTFT-WVD变换定量分析了隔离开关类型和避雷器对VFTO频谱的影响,验证了该变换用于VFTO频谱分析的优良性能。 展开更多
关键词 特快速暂态过电压 Nstft-wvd变换 频谱分析 隔离开关类型 避雷器
在线阅读 下载PDF
基于Transformer的机动目标跟踪技术 被引量:8
17
作者 党晓方 蔡兴雨 《电子科技》 2023年第9期86-92,共7页
为解决递归神经网络(Recurrent Neural Network,RNN)和长短期记忆网络(Long Short-Term Memory,LSTM)在跟踪机动目标时,由于序列过长容易出现梯度消失和梯度爆炸导致目标发生机动后跟踪效果变差的问题,文中构建了一种基于Transformer的... 为解决递归神经网络(Recurrent Neural Network,RNN)和长短期记忆网络(Long Short-Term Memory,LSTM)在跟踪机动目标时,由于序列过长容易出现梯度消失和梯度爆炸导致目标发生机动后跟踪效果变差的问题,文中构建了一种基于Transformer的网络(Transformer-Based Network,TBN)来跟踪机动目标。该网络使用基于注意力机制设计的编码器提取目标序列的历史航迹特征,提高对目标机动情况的捕获能力。使用基于卷积网络设计的解码器输出最终的航迹序列,提高机动目标跟踪能力。通过中心最大值(Center-Max,CM)归一化方法,将所有序列减去其初值,降低了网络学习的复杂度,增强了网络的泛化性。实验结果证明,在存在机动情况的大规模航迹数据集下,与长短期记忆网络相比,CM归一化和TBN相组合的方法的位置精度提高了11.2%,速度精度提高了41.9%。文中所提方法在观测值存在缺失时仍能正确跟踪目标。 展开更多
关键词 机动目标跟踪 注意力机制 transformer网络 循环神经网络 长短期记忆网络 归一化 状态空间模型 神经网络
在线阅读 下载PDF
一种基于NORMAL FORM变换的时间序列轨迹预测方法
18
作者 谢欢 郝治国 《陕西电力》 2007年第7期5-9,共5页
随着基于GPS的功角测量技术在电力系统中的广泛应用,在线轨迹的预测成为了可能,其对于暂态稳定紧急控制具有重要意义。本文基于Normal Form分析,提出了一种复幂指数时间序列的预测方法;针对轨迹预测特点和各种预测模型对观测数据窗长短... 随着基于GPS的功角测量技术在电力系统中的广泛应用,在线轨迹的预测成为了可能,其对于暂态稳定紧急控制具有重要意义。本文基于Normal Form分析,提出了一种复幂指数时间序列的预测方法;针对轨迹预测特点和各种预测模型对观测数据窗长短的要求不同,提出了一种变结构的思想。所提预测方法是基于Prony非线性拟合,Prony方法及其最近的研究显示了其在线应用的可能。轨迹预测过程和结果使用中国电科院8机36母线系统进行分析,其时域仿真结果验证了所提方法的有效性和可行性。 展开更多
关键词 非线性时间序列预测 暂态稳定预测 同步多参量测量装置 PRONY方法 电力系统
在线阅读 下载PDF
基于Transformer神经网络的滚动轴承故障类型识别 被引量:18
19
作者 邱大伟 刘子辰 +3 位作者 周一青 龙隆 谭雯雯 曹欢 《高技术通讯》 EI CAS 2021年第1期1-11,共11页
工程应用中的滚动轴承故障类型识别要求同时具有较高的识别准确度和时间效率,基于上述需求提出基于Transformer神经网络的滚动轴承故障类型识别方法。所提方法结合小波包变换时频域能量特征和快速傅里叶变换频域特征生成满足Transforme... 工程应用中的滚动轴承故障类型识别要求同时具有较高的识别准确度和时间效率,基于上述需求提出基于Transformer神经网络的滚动轴承故障类型识别方法。所提方法结合小波包变换时频域能量特征和快速傅里叶变换频域特征生成满足Transformer神经网络的输入样本矩阵,解决Transformer神经网络的输入问题。同时,提出应用于滚动轴承故障类型识别的归一化位置编码方法,解决Transformer神经网络在滚动轴承故障分析领域的位置编码问题。在此基础上,提出Transformer神经网络双向输入样本矩阵处理机制和算法训练过程中错误样本权重增强机制,提升所提方法的鲁棒性。使用KAt数据中心的滚动轴承数据集验证所提方法的识别性能,与现有常用深度学习方法相比,所提方法在时间效率和准确度性能上均有一定的优势,其中,准确度能够提升11%以上,单个样本的平均处理时间小于1 ms。 展开更多
关键词 滚动轴承 故障类型识别 transformer神经网络 前向特征矩阵 后向特征矩阵 归一化位置编码 权重增强
在线阅读 下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部