期刊文献+
共找到1,541篇文章
< 1 2 78 >
每页显示 20 50 100
Super-Resolution Generative Adversarial Network with Pyramid Attention Module for Face Generation
1
作者 Parvathaneni Naga Srinivasu G.JayaLakshmi +4 位作者 Sujatha Canavoy Narahari Victor Hugo C.de Albuquerque Muhammad Attique Khan Hee-Chan Cho Byoungchol Chang 《Computers, Materials & Continua》 2025年第10期2117-2139,共23页
The generation of high-quality,realistic face generation has emerged as a key field of research in computer vision.This paper proposes a robust approach that combines a Super-Resolution Generative Adversarial Network(... The generation of high-quality,realistic face generation has emerged as a key field of research in computer vision.This paper proposes a robust approach that combines a Super-Resolution Generative Adversarial Network(SRGAN)with a Pyramid Attention Module(PAM)to enhance the quality of deep face generation.The SRGAN framework is designed to improve the resolution of generated images,addressing common challenges such as blurriness and a lack of intricate details.The Pyramid Attention Module further complements the process by focusing on multi-scale feature extraction,enabling the network to capture finer details and complex facial features more effectively.The proposed method was trained and evaluated over 100 epochs on the CelebA dataset,demonstrating consistent improvements in image quality and a marked decrease in generator and discriminator losses,reflecting the model’s capacity to learn and synthesize high-quality images effectively,given adequate computational resources.Experimental outcome demonstrates that the SRGAN model with PAM module has outperformed,yielding an aggregate discriminator loss of 0.055 for real,0.043 for fake,and a generator loss of 10.58 after training for 100 epochs.The model has yielded an structural similarity index measure of 0.923,that has outperformed the other models that are considered in the current study for analysis. 展开更多
关键词 Artificial intelligence generative adversarial network pyramid attention module face generation deep learning
在线阅读 下载PDF
Enhanced Cutaneous Melanoma Segmentation in Dermoscopic Images Using a Dual U-Net Framework with Multi-Path Convolution Block Attention Module and SE-Res-Conv
2
作者 Kun Lan Feiyang Gao +2 位作者 Xiaoliang Jiang Jianzhen Cheng Simon Fong 《Computers, Materials & Continua》 2025年第9期4805-4824,共20页
With the continuous development of artificial intelligence and machine learning techniques,there have been effective methods supporting the work of dermatologist in the field of skin cancer detection.However,object si... With the continuous development of artificial intelligence and machine learning techniques,there have been effective methods supporting the work of dermatologist in the field of skin cancer detection.However,object significant challenges have been presented in accurately segmenting melanomas in dermoscopic images due to the objects that could interfere human observations,such as bubbles and scales.To address these challenges,we propose a dual U-Net network framework for skin melanoma segmentation.In our proposed architecture,we introduce several innovative components that aim to enhance the performance and capabilities of the traditional U-Net.First,we establish a novel framework that links two simplified U-Nets,enabling more comprehensive information exchange and feature integration throughout the network.Second,after cascading the second U-Net,we introduce a skip connection between the decoder and encoder networks,and incorporate a modified receptive field block(MRFB),which is designed to capture multi-scale spatial information.Third,to further enhance the feature representation capabilities,we add a multi-path convolution block attention module(MCBAM)to the first two layers of the first U-Net encoding,and integrate a new squeeze-and-excitation(SE)mechanism with residual connections in the second U-Net.To illustrate the performance of our proposed model,we conducted comprehensive experiments on widely recognized skin datasets.On the ISIC-2017 dataset,the IoU value of our proposed model increased from 0.6406 to 0.6819 and the Dice coefficient increased from 0.7625 to 0.8023.On the ISIC-2018 dataset,the IoU value of proposed model also improved from 0.7138 to 0.7709,while the Dice coefficient increased from 0.8285 to 0.8665.Furthermore,the generalization experiments conducted on the jaw cyst dataset from Quzhou People’s Hospital further verified the outstanding segmentation performance of the proposed model.These findings collectively affirm the potential of our approach as a valuable tool in supporting clinical decision-making in the field of skin cancer detection,as well as advancing research in medical image analysis. 展开更多
关键词 Dual U-Net skin lesion segmentation squeeze-and-excitation modified receptive field block multi-path convolution block attention module
在线阅读 下载PDF
Unsupervised multi-modal image translation based on the squeeze-and-excitation mechanism and feature attention module 被引量:1
3
作者 胡振涛 HU Chonghao +1 位作者 YANG Haoran SHUAI Weiwei 《High Technology Letters》 EI CAS 2024年第1期23-30,共8页
The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-genera... The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-generator mechanism is employed among the advanced approaches available to model different domain mappings,which results in inefficient training of neural networks and pattern collapse,leading to inefficient generation of image diversity.To address this issue,this paper introduces a multi-modal unsupervised image translation framework that uses a generator to perform multi-modal image translation.Specifically,firstly,the domain code is introduced in this paper to explicitly control the different generation tasks.Secondly,this paper brings in the squeeze-and-excitation(SE)mechanism and feature attention(FA)module.Finally,the model integrates multiple optimization objectives to ensure efficient multi-modal translation.This paper performs qualitative and quantitative experiments on multiple non-paired benchmark image translation datasets while demonstrating the benefits of the proposed method over existing technologies.Overall,experimental results have shown that the proposed method is versatile and scalable. 展开更多
关键词 multi-modal image translation generative adversarial network(GAN) squeezeand-excitation(SE)mechanism feature attention(FA)module
在线阅读 下载PDF
Residual Attention-BiConvLSTM:一种新的全球电离层TEC map预测模型
4
作者 王浩然 刘海军 +5 位作者 袁静 乐会军 李良超 陈羿 单维锋 袁国铭 《地球物理学报》 北大核心 2025年第2期413-430,共18页
电离层总电子含量(TEC)预测对提高全球卫星导航系统(GNSS)的精度具有重要意义.现有的TEC map预测模型主要通过顺序堆叠时空特征提取单元来实现.这种模型搭建方法会因多个卷积层顺序堆叠而损失细粒度的TEC map的空间特征,导致模型精度不... 电离层总电子含量(TEC)预测对提高全球卫星导航系统(GNSS)的精度具有重要意义.现有的TEC map预测模型主要通过顺序堆叠时空特征提取单元来实现.这种模型搭建方法会因多个卷积层顺序堆叠而损失细粒度的TEC map的空间特征,导致模型精度不够;还会由于多层堆叠导致梯度消失或梯度爆炸问题.本文借鉴残差注意力(Residual Attention)的思想,在TEC map预测模型中增加了残差注意力模块,提出了Residual Attention-BiConvLSTM模型.该模型中的残差注意力模块能同时提取粗、细粒度空间特征,并对其进行加权.本文在全球TEC map数据上与ConvLSTM、ConvGRU、ED-ConvLSTM和C1PG进行了对比实验.实验结果表明,本文所提出的Residual Attention-BiConvLSTM模型的RMSE、MAE、MAPE和R^(2)在太阳活动高年和年均优于对比模型.本文还在一次磁暴事件中对比了5种模型的预测效果.实验结果表明,大磁暴发生时,本文模型与C1PG相近,优于其他3种对比模型.本文的研究工作为电离层map预测模型搭建提供一个新思路. 展开更多
关键词 电离层TEC map预测 残差注意力模块 Residual attention-BiConvLSTM 时空预测模型
在线阅读 下载PDF
Double Self-Attention Based Fully Connected Feature Pyramid Network for Field Crop Pest Detection
5
作者 Zijun Gao Zheyi Li +2 位作者 Chunqi Zhang Ying Wang Jingwen Su 《Computers, Materials & Continua》 2025年第6期4353-4371,共19页
Pest detection techniques are helpful in reducing the frequency and scale of pest outbreaks;however,their application in the actual agricultural production process is still challenging owing to the problems of intersp... Pest detection techniques are helpful in reducing the frequency and scale of pest outbreaks;however,their application in the actual agricultural production process is still challenging owing to the problems of interspecies similarity,multi-scale,and background complexity of pests.To address these problems,this study proposes an FD-YOLO pest target detection model.The FD-YOLO model uses a Fully Connected Feature Pyramid Network(FC-FPN)instead of a PANet in the neck,which can adaptively fuse multi-scale information so that the model can retain small-scale target features in the deep layer,enhance large-scale target features in the shallow layer,and enhance the multiplexing of effective features.A dual self-attention module(DSA)is then embedded in the C3 module of the neck,which captures the dependencies between the information in both spatial and channel dimensions,effectively enhancing global features.We selected 16 types of pests that widely damage field crops in the IP102 pest dataset,which were used as our dataset after data supplementation and enhancement.The experimental results showed that FD-YOLO’s mAP@0.5 improved by 6.8%compared to YOLOv5,reaching 82.6%and 19.1%–5%better than other state-of-the-art models.This method provides an effective new approach for detecting similar or multiscale pests in field crops. 展开更多
关键词 Pest detection YOLOv5 feature pyramid network transformer attention module
在线阅读 下载PDF
Transmission Facility Detection with Feature-Attention Multi-Scale Robustness Network and Generative Adversarial Network
6
作者 Yunho Na Munsu Jeon +4 位作者 Seungmin Joo Junsoo Kim Ki-Yong Oh Min Ku Kim Joon-Young Park 《Computer Modeling in Engineering & Sciences》 2025年第7期1013-1044,共32页
This paper proposes an automated detection framework for transmission facilities using a featureattention multi-scale robustness network(FAMSR-Net)with high-fidelity virtual images.The proposed framework exhibits thre... This paper proposes an automated detection framework for transmission facilities using a featureattention multi-scale robustness network(FAMSR-Net)with high-fidelity virtual images.The proposed framework exhibits three key characteristics.First,virtual images of the transmission facilities generated using StyleGAN2-ADA are co-trained with real images.This enables the neural network to learn various features of transmission facilities to improve the detection performance.Second,the convolutional block attention module is deployed in FAMSR-Net to effectively extract features from images and construct multi-dimensional feature maps,enabling the neural network to perform precise object detection in various environments.Third,an effective bounding box optimization method called Scylla-IoU is deployed on FAMSR-Net,considering the intersection over union,center point distance,angle,and shape of the bounding box.This enables the detection of power facilities of various sizes accurately.Extensive experiments demonstrated that FAMSRNet outperforms other neural networks in detecting power facilities.FAMSR-Net also achieved the highest detection accuracy when virtual images of the transmission facilities were co-trained in the training phase.The proposed framework is effective for the scheduled operation and maintenance of transmission facilities because an optical camera is currently the most promising tool for unmanned aerial vehicles.This ultimately contributes to improved inspection efficiency,reduced maintenance risks,and more reliable power delivery across extensive transmission facilities. 展开更多
关键词 Object detection virtual image transmission facility convolutional block attention module Scylla-IoU
在线阅读 下载PDF
MMIF:Multimodal Medical Image Fusion Network Based on Multi-Scale Hybrid Attention
7
作者 Jianjun Liu Yang Li +2 位作者 Xiaoting Sun Xiaohui Wang Hanjiang Luo 《Computers, Materials & Continua》 2025年第11期3551-3568,共18页
Multimodal image fusion plays an important role in image analysis and applications.Multimodal medical image fusion helps to combine contrast features from two or more input imaging modalities to represent fused inform... Multimodal image fusion plays an important role in image analysis and applications.Multimodal medical image fusion helps to combine contrast features from two or more input imaging modalities to represent fused information in a single image.One of the critical clinical applications of medical image fusion is to fuse anatomical and functional modalities for rapid diagnosis of malignant tissues.This paper proposes a multimodal medical image fusion network(MMIF-Net)based on multiscale hybrid attention.The method first decomposes the original image to obtain the low-rank and significant parts.Then,to utilize the features at different scales,we add amultiscalemechanism that uses three filters of different sizes to extract the features in the encoded network.Also,a hybrid attention module is introduced to obtain more image details.Finally,the fused images are reconstructed by decoding the network.We conducted experiments with clinical images from brain computed tomography/magnetic resonance.The experimental results show that the multimodal medical image fusion network method based on multiscale hybrid attention works better than other advanced fusion methods. 展开更多
关键词 Medical image fusion multiscale mechanism hybrid attention module encoded network
在线阅读 下载PDF
AG-GCN: Vehicle Re-Identification Based on Attention-Guided Graph Convolutional Network
8
作者 Ya-Jie Sun Li-Wei Qiao Sai Ji 《Computers, Materials & Continua》 2025年第7期1769-1785,共17页
Vehicle re-identification involves matching images of vehicles across varying camera views.The diversity of camera locations along different roadways leads to significant intra-class variation and only minimal inter-c... Vehicle re-identification involves matching images of vehicles across varying camera views.The diversity of camera locations along different roadways leads to significant intra-class variation and only minimal inter-class similarity in the collected vehicle images,which increases the complexity of re-identification tasks.To tackle these challenges,this study proposes AG-GCN(Attention-Guided Graph Convolutional Network),a novel framework integrating several pivotal components.Initially,AG-GCN embeds a lightweight attention module within the ResNet-50 structure to learn feature weights automatically,thereby improving the representation of vehicle features globally by highlighting salient features and suppressing extraneous ones.Moreover,AG-GCN adopts a graph-based structure to encapsulate deep local features.A graph convolutional network then amalgamates these features to understand the relationships among vehicle-related characteristics.Subsequently,we amalgamate feature maps from both the attention and graph-based branches for a more comprehensive representation of vehicle features.The framework then gauges feature similarities and ranks them,thus enhancing the accuracy of vehicle re-identification.Comprehensive qualitative and quantitative analyses on two publicly available datasets verify the efficacy of AG-GCN in addressing intra-class and inter-class variability issues. 展开更多
关键词 Vehicle re-identification a lightweight attention module global features local features graph convolution network
在线阅读 下载PDF
Multimodal medical image fusion based on mask optimization and parallel attention mechanism
9
作者 DI Jing LIANG Chan +1 位作者 GUO Wenqing LIAN Jing 《Journal of Measurement Science and Instrumentation》 2025年第1期26-36,共11页
Medical image fusion technology is crucial for improving the detection accuracy and treatment efficiency of diseases,but existing fusion methods have problems such as blurred texture details,low contrast,and inability... Medical image fusion technology is crucial for improving the detection accuracy and treatment efficiency of diseases,but existing fusion methods have problems such as blurred texture details,low contrast,and inability to fully extract fused image information.Therefore,a multimodal medical image fusion method based on mask optimization and parallel attention mechanism was proposed to address the aforementioned issues.Firstly,it converted the entire image into a binary mask,and constructed a contour feature map to maximize the contour feature information of the image and a triple path network for image texture detail feature extraction and optimization.Secondly,a contrast enhancement module and a detail preservation module were proposed to enhance the overall brightness and texture details of the image.Afterwards,a parallel attention mechanism was constructed using channel features and spatial feature changes to fuse images and enhance the salient information of the fused images.Finally,a decoupling network composed of residual networks was set up to optimize the information between the fused image and the source image so as to reduce information loss in the fused image.Compared with nine high-level methods proposed in recent years,the seven objective evaluation indicators of our method have improved by 6%−31%,indicating that this method can obtain fusion results with clearer texture details,higher contrast,and smaller pixel differences between the fused image and the source image.It is superior to other comparison algorithms in both subjective and objective indicators. 展开更多
关键词 multimodal medical image fusion binary mask contrast enhancement module parallel attention mechanism decoupling network
在线阅读 下载PDF
Marine organism classification method based on hierarchical multi-scale attention mechanism
10
作者 XU Haotian CHENG Yuanzhi +1 位作者 ZHAO Dong XIE Peidong 《Optoelectronics Letters》 2025年第6期354-361,共8页
We propose a hierarchical multi-scale attention mechanism-based model in response to the low accuracy and inefficient manual classification of existing oceanic biological image classification methods. Firstly, the hie... We propose a hierarchical multi-scale attention mechanism-based model in response to the low accuracy and inefficient manual classification of existing oceanic biological image classification methods. Firstly, the hierarchical efficient multi-scale attention(H-EMA) module is designed for lightweight feature extraction, achieving outstanding performance at a relatively low cost. Secondly, an improved EfficientNetV2 block is used to integrate information from different scales better and enhance inter-layer message passing. Furthermore, introducing the convolutional block attention module(CBAM) enhances the model's perception of critical features, optimizing its generalization ability. Lastly, Focal Loss is introduced to adjust the weights of complex samples to address the issue of imbalanced categories in the dataset, further improving the model's performance. The model achieved 96.11% accuracy on the intertidal marine organism dataset of Nanji Islands and 84.78% accuracy on the CIFAR-100 dataset, demonstrating its strong generalization ability to meet the demands of oceanic biological image classification. 展开更多
关键词 integrate information different scales hierarchical multi scale attention lightweight feature extraction focal loss efficientnetv marine organism classification oceanic biological image classification methods convolutional block attention module
原文传递
基于Attention-Conv1D-2Bi-LSTM模型的交通流预测
11
作者 张瑜 刘德斌 +1 位作者 戴志敏 杨子兰 《计算机仿真》 2025年第2期181-186,共6页
在智能交通中,实时准确的交通流预测对市民的出行和政府部门的管理至关重要。针对智能交通预测效果不佳的问题,提出了一种基于注意力机制的一维卷积和双层双向长短时记忆的交通流预测模型。模型结合了一维卷积模块和两层双向长短时记忆... 在智能交通中,实时准确的交通流预测对市民的出行和政府部门的管理至关重要。针对智能交通预测效果不佳的问题,提出了一种基于注意力机制的一维卷积和双层双向长短时记忆的交通流预测模型。模型结合了一维卷积模块和两层双向长短时记忆模块提取交通流的时空特征和前后依赖的周期性特征,同时引入注意力机制关注不同时刻的交通流的影响。实验结果表明,提出模型的预测效果优于对比模型,说明所提模型一定程度上提高了交通流的预测精度。 展开更多
关键词 注意力机制 一维卷积模块 循环神经网络 交通预测模型
在线阅读 下载PDF
ANC: Attention Network for COVID-19 Explainable Diagnosis Based on Convolutional Block Attention Module 被引量:10
12
作者 Yudong Zhang Xin Zhang Weiguo Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第6期1037-1058,共22页
Aim: To diagnose COVID-19 more efficiently and more correctly, this study proposed a novel attention network forCOVID-19 (ANC). Methods: Two datasets were used in this study. An 18-way data augmentation was proposed t... Aim: To diagnose COVID-19 more efficiently and more correctly, this study proposed a novel attention network forCOVID-19 (ANC). Methods: Two datasets were used in this study. An 18-way data augmentation was proposed toavoid overfitting. Then, convolutional block attention module (CBAM) was integrated to our model, the structureof which is fine-tuned. Finally, Grad-CAM was used to provide an explainable diagnosis. Results: The accuracyof our ANC methods on two datasets are 96.32% ± 1.06%, and 96.00% ± 1.03%, respectively. Conclusions: Thisproposed ANC method is superior to 9 state-of-the-art approaches. 展开更多
关键词 Deep learning convolutional block attention module attention mechanism COVID-19 explainable diagnosis
在线阅读 下载PDF
MobileNet network optimization based on convolutional block attention module 被引量:3
13
作者 ZHAO Shuxu MEN Shiyao YUAN Lin 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第2期225-234,共10页
Deep learning technology is widely used in computer vision.Generally,a large amount of data is used to train the model weights in deep learning,so as to obtain a model with higher accuracy.However,massive data and com... Deep learning technology is widely used in computer vision.Generally,a large amount of data is used to train the model weights in deep learning,so as to obtain a model with higher accuracy.However,massive data and complex model structures require more calculating resources.Since people generally can only carry and use mobile and portable devices in application scenarios,neural networks have limitations in terms of calculating resources,size and power consumption.Therefore,the efficient lightweight model MobileNet is used as the basic network in this study for optimization.First,the accuracy of the MobileNet model is improved by adding methods such as the convolutional block attention module(CBAM)and expansion convolution.Then,the MobileNet model is compressed by using pruning and weight quantization algorithms based on weight size.Afterwards,methods such as Python crawlers and data augmentation are employed to create a garbage classification data set.Based on the above model optimization strategy,the garbage classification mobile terminal application is deployed on mobile phones and raspberry pies,realizing completing the garbage classification task more conveniently. 展开更多
关键词 MobileNet convolutional block attention module(CBAM) model pruning and quantization edge machine learning
在线阅读 下载PDF
Traffic Sign Recognition for Autonomous Vehicle Using Optimized YOLOv7 and Convolutional Block Attention Module 被引量:2
14
作者 P.Kuppusamy M.Sanjay +1 位作者 P.V.Deepashree C.Iwendi 《Computers, Materials & Continua》 SCIE EI 2023年第10期445-466,共22页
The infrastructure and construction of roads are crucial for the economic and social development of a region,but traffic-related challenges like accidents and congestion persist.Artificial Intelligence(AI)and Machine ... The infrastructure and construction of roads are crucial for the economic and social development of a region,but traffic-related challenges like accidents and congestion persist.Artificial Intelligence(AI)and Machine Learning(ML)have been used in road infrastructure and construction,particularly with the Internet of Things(IoT)devices.Object detection in Computer Vision also plays a key role in improving road infrastructure and addressing trafficrelated problems.This study aims to use You Only Look Once version 7(YOLOv7),Convolutional Block Attention Module(CBAM),the most optimized object-detection algorithm,to detect and identify traffic signs,and analyze effective combinations of adaptive optimizers like Adaptive Moment estimation(Adam),Root Mean Squared Propagation(RMSprop)and Stochastic Gradient Descent(SGD)with the YOLOv7.Using a portion of German traffic signs for training,the study investigates the feasibility of adopting smaller datasets while maintaining high accuracy.The model proposed in this study not only improves traffic safety by detecting traffic signs but also has the potential to contribute to the rapid development of autonomous vehicle systems.The study results showed an impressive accuracy of 99.7%when using a batch size of 8 and the Adam optimizer.This high level of accuracy demonstrates the effectiveness of the proposed model for the image classification task of traffic sign recognition. 展开更多
关键词 Object detection traffic sign detection YOLOv7 convolutional block attention module road sign detection ADAM
在线阅读 下载PDF
Simplified Inception Module Based Hadamard Attention Mechanism for Medical Image Classification
15
作者 Yanlin Jin Zhiming You Ningyin Cai 《Journal of Computer and Communications》 2023年第6期1-18,共18页
Medical image classification has played an important role in the medical field, and the related method based on deep learning has become an important and powerful technique in medical image classification. In this art... Medical image classification has played an important role in the medical field, and the related method based on deep learning has become an important and powerful technique in medical image classification. In this article, we propose a simplified inception module based Hadamard attention (SI + HA) mechanism for medical image classification. Specifically, we propose a new attention mechanism: Hadamard attention mechanism. It improves the accuracy of medical image classification without greatly increasing the complexity of the model. Meanwhile, we adopt a simplified inception module to improve the utilization of parameters. We use two medical image datasets to prove the superiority of our proposed method. In the BreakHis dataset, the AUCs of our method can reach 98.74%, 98.38%, 98.61% and 97.67% under the magnification factors of 40×, 100×, 200× and 400×, respectively. The accuracies can reach 95.67%, 94.17%, 94.53% and 94.12% under the magnification factors of 40×, 100×, 200× and 400×, respectively. In the KIMIA Path 960 dataset, the AUCs and accuracy of our method can reach 99.91% and 99.03%. It is superior to the currently popular methods and can significantly improve the effectiveness of medical image classification. 展开更多
关键词 Deep Learning Medical Image Classification attention Mechanism Inception module
在线阅读 下载PDF
Improved multi-scale inverse bottleneck residual network based on triplet parallel attention for apple leaf disease identification 被引量:2
16
作者 Lei Tang Jizheng Yi Xiaoyao Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期901-922,共22页
Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from ima... Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from image texture and structural information. The difficulties in disease feature extraction in complex backgrounds slow the related research progress. To address the problems, this paper proposes an improved multi-scale inverse bottleneck residual network model based on a triplet parallel attention mechanism, which is built upon ResNet-50, while improving and combining the inception module and ResNext inverse bottleneck blocks, to recognize seven types of apple leaf(including six diseases of alternaria leaf spot, brown spot, grey spot, mosaic, rust, scab, and one healthy). First, the 3×3 convolutions in some of the residual modules are replaced by multi-scale residual convolutions, the convolution kernels of different sizes contained in each branch of the multi-scale convolution are applied to extract feature maps of different sizes, and the outputs of these branches are multi-scale fused by summing to enrich the output features of the images. Second, the global layer-wise dynamic coordinated inverse bottleneck structure is used to reduce the network feature loss. The inverse bottleneck structure makes the image information less lossy when transforming from different dimensional feature spaces. The fusion of multi-scale and layer-wise dynamic coordinated inverse bottlenecks makes the model effectively balances computational efficiency and feature representation capability, and more robust with a combination of horizontal and vertical features in the fine identification of apple leaf diseases. Finally, after each improved module, a triplet parallel attention module is integrated with cross-dimensional interactions among channels through rotations and residual transformations, which improves the parallel search efficiency of important features and the recognition rate of the network with relatively small computational costs while the dimensional dependencies are improved. To verify the validity of the model in this paper, we uniformly enhance apple leaf disease images screened from the public data sets of Plant Village, Baidu Flying Paddle, and the Internet. The final processed image count is 14,000. The ablation study, pre-processing comparison, and method comparison are conducted on the processed datasets. The experimental results demonstrate that the proposed method reaches 98.73% accuracy on the adopted datasets, which is 1.82% higher than the classical ResNet-50 model, and 0.29% better than the apple leaf disease datasets before preprocessing. It also achieves competitive results in apple leaf disease identification compared to some state-ofthe-art methods. 展开更多
关键词 multi-scale module inverse bottleneck structure triplet parallel attention apple leaf disease
在线阅读 下载PDF
An enhanced method for predicting and analysing forest fires using an attention-based CNN model
17
作者 Shaifali Bhatt Usha Chouhan 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第4期115-127,共13页
Prediction,prevention,and control of forest fires are crucial on at all scales.Developing effective fire detection systems can aid in their control.This study proposes a novel CNN(convolutional neural network)using an... Prediction,prevention,and control of forest fires are crucial on at all scales.Developing effective fire detection systems can aid in their control.This study proposes a novel CNN(convolutional neural network)using an attention blocks module which combines an attention module with numerous input layers to enhance the performance of neural networks.The suggested model focuses on predicting the damage affected/burned areas due to possible wildfires and evaluating the multilateral interactions between the pertinent factors.The results show the impacts of CNN using attention blocks for feature extraction and to better understand how ecosystems are affected by meteorological factors.For selected meteorological data,RMSE 12.08 and MAE 7.45 values provide higher predictive power for selecting relevant and necessary features to provide optimal performance with less operational and computational costs.These findings show that the suggested strategy is reliable and effective for planning and managing fire-prone regions as well as for predicting forest fire damage. 展开更多
关键词 CNN attention module Fire prediction ECOSYSTEM Damage prediction
在线阅读 下载PDF
Attention Mechanism-Based Method for Intrusion Target Recognition in Railway
18
作者 SHI Jiang BAI Dingyuan +2 位作者 GUO Baoqing WANG Yao RUAN Tao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期541-554,共14页
The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conven... The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conventional comprehensive video monitoring systems for railways,a railway foreign object intrusion recognition and detection system is conceived and implemented using edge computing and deep learning technologies.In a bid to raise detection accuracy,the convolutional block attention module(CBAM),including spatial and channel attention modules,is seamlessly integrated into the YOLOv5 model,giving rise to the CBAM-YOLOv5 model.Furthermore,the distance intersection-over-union_non-maximum suppression(DIo U_NMS)algorithm is employed in lieu of the weighted nonmaximum suppression algorithm,resulting in improved detection performance for intrusive targets.To accelerate detection speed,the model undergoes pruning based on the batch normalization(BN)layer,and Tensor RT inference acceleration techniques are employed,culminating in the successful deployment of the algorithm on edge devices.The CBAM-YOLOv5 model exhibits a notable 2.1%enhancement in detection accuracy when evaluated on a selfconstructed railway dataset,achieving 95.0%for mean average precision(m AP).Furthermore,the inference speed on edge devices attains a commendable 15 frame/s. 展开更多
关键词 foreign object detection railway protection edge computing spatial attention module channel attention module
在线阅读 下载PDF
Two-Layer Attention Feature Pyramid Network for Small Object Detection
19
作者 Sheng Xiang Junhao Ma +2 位作者 Qunli Shang Xianbao Wang Defu Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期713-731,共19页
Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain les... Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors. 展开更多
关键词 Small object detection two-layer attention module small object detail enhancement module feature pyramid network
在线阅读 下载PDF
Fusion of Convolutional Self-Attention and Cross-Dimensional Feature Transformationfor Human Posture Estimation
20
作者 Anzhan Liu Yilu Ding Xiangyang Lu 《Journal of Beijing Institute of Technology》 EI CAS 2024年第4期346-360,共15页
Human posture estimation is a prominent research topic in the fields of human-com-puter interaction,motion recognition,and other intelligent applications.However,achieving highaccuracy in key point localization,which ... Human posture estimation is a prominent research topic in the fields of human-com-puter interaction,motion recognition,and other intelligent applications.However,achieving highaccuracy in key point localization,which is crucial for intelligent applications,contradicts the lowdetection accuracy of human posture detection models in practical scenarios.To address this issue,a human pose estimation network called AT-HRNet has been proposed,which combines convolu-tional self-attention and cross-dimensional feature transformation.AT-HRNet captures significantfeature information from various regions in an adaptive manner,aggregating them through convolu-tional operations within the local receptive domain.The residual structures TripNeck and Trip-Block of the high-resolution network are designed to further refine the key point locations,wherethe attention weight is adjusted by a cross-dimensional interaction to obtain more features.To vali-date the effectiveness of this network,AT-HRNet was evaluated using the COCO2017 dataset.Theresults show that AT-HRNet outperforms HRNet by improving 3.2%in mAP,4.0%in AP75,and3.9%in AP^(M).This suggests that AT-HRNet can offer more beneficial solutions for human posture estimation. 展开更多
关键词 human posture estimation adaptive fusion method cross-dimensional interaction attention module high-resolution network
在线阅读 下载PDF
上一页 1 2 78 下一页 到第
使用帮助 返回顶部