期刊文献+
共找到53,884篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of feature selection and normalization on network intrusion detection 被引量:3
1
作者 Mubarak Albarka Umar Zhanfang Chen +1 位作者 Khaled Shuaib Yan Liu 《Data Science and Management》 2025年第1期23-39,共17页
The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more e... The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more efficient and reliable intrusion detection systems(IDSs).However,the advent of larger IDS datasets has negatively impacted the performance and computational complexity of AI-based IDSs.Many researchers used data preprocessing techniques such as feature selection and normalization to overcome such issues.While most of these researchers reported the success of these preprocessing techniques on a shallow level,very few studies have been performed on their effects on a wider scale.Furthermore,the performance of an IDS model is subject to not only the utilized preprocessing techniques but also the dataset and the ML/DL algorithm used,which most of the existing studies give little emphasis on.Thus,this study provides an in-depth analysis of feature selection and normalization effects on IDS models built using three IDS datasets:NSL-KDD,UNSW-NB15,and CSE–CIC–IDS2018,and various AI algorithms.A wrapper-based approach,which tends to give superior performance,and min-max normalization methods were used for feature selection and normalization,respectively.Numerous IDS models were implemented using the full and feature-selected copies of the datasets with and without normalization.The models were evaluated using popular evaluation metrics in IDS modeling,intra-and inter-model comparisons were performed between models and with state-of-the-art works.Random forest(RF)models performed better on NSL-KDD and UNSW-NB15 datasets with accuracies of 99.86%and 96.01%,respectively,whereas artificial neural network(ANN)achieved the best accuracy of 95.43%on the CSE–CIC–IDS2018 dataset.The RF models also achieved an excellent performance compared to recent works.The results show that normalization and feature selection positively affect IDS modeling.Furthermore,while feature selection benefits simpler algorithms(such as RF),normalization is more useful for complex algorithms like ANNs and deep neural networks(DNNs),and algorithms such as Naive Bayes are unsuitable for IDS modeling.The study also found that the UNSW-NB15 and CSE–CIC–IDS2018 datasets are more complex and more suitable for building and evaluating modern-day IDS than the NSL-KDD dataset.Our findings suggest that prioritizing robust algorithms like RF,alongside complex models such as ANN and DNN,can significantly enhance IDS performance.These insights provide valuable guidance for managers to develop more effective security measures by focusing on high detection rates and low false alert rates. 展开更多
关键词 CYBERSECURITY Intrusion detection system Machine learning Deep learning Feature selection normalization
在线阅读 下载PDF
Low-Complexity Hardware Architecture for Batch Normalization of CNN Training Accelerator
2
作者 Go-Eun Woo Sang-Bo Park +2 位作者 Gi-Tae Park Muhammad Junaid Hyung-Won Kim 《Computers, Materials & Continua》 2025年第8期3241-3257,共17页
On-device Artificial Intelligence(AI)accelerators capable of not only inference but also training neural network models are in increasing demand in the industrial AI field,where frequent retraining is crucial due to f... On-device Artificial Intelligence(AI)accelerators capable of not only inference but also training neural network models are in increasing demand in the industrial AI field,where frequent retraining is crucial due to frequent production changes.Batch normalization(BN)is fundamental to training convolutional neural networks(CNNs),but its implementation in compact accelerator chips remains challenging due to computational complexity,particularly in calculating statistical parameters and gradients across mini-batches.Existing accelerator architectures either compromise the training accuracy of CNNs through approximations or require substantial computational resources,limiting their practical deployment.We present a hardware-optimized BN accelerator that maintains training accuracy while significantly reducing computational overhead through three novel techniques:(1)resourcesharing for efficient resource utilization across forward and backward passes,(2)interleaved buffering for reduced dynamic random-access memory(DRAM)access latencies,and(3)zero-skipping for minimal gradient computation.Implemented on a VCU118 Field Programmable Gate Array(FPGA)on 100 MHz and validated using You Only Look Once version 2-tiny(YOLOv2-tiny)on the PASCALVisualObjectClasses(VOC)dataset,our normalization accelerator achieves a 72%reduction in processing time and 83%lower power consumption compared to a 2.4 GHz Intel Central Processing Unit(CPU)software normalization implementation,while maintaining accuracy(0.51%mean Average Precision(mAP)drop at floating-point 32 bits(FP32),1.35%at brain floating-point 16 bits(bfloat16)).When integrated into a neural processing unit(NPU),the design demonstrates 63%and 97%performance improvements over AMD CPU and Reduced Instruction Set Computing-V(RISC-V)implementations,respectively.These results confirm that our proposed BN hardware design enables efficient,high-accuracy,and power-saving on-device training for modern CNNs.Our results demonstrate that efficient hardware implementation of standard batch normalization is achievable without sacrificing accuracy,enabling practical on-device CNN training with significantly reduced computational and power requirements. 展开更多
关键词 Convolutional neural network normalization batch normalization deep learning TRAINING HARDWARE
在线阅读 下载PDF
Analytic approximation of periodic orbits with renormalization group
3
作者 Haoyi Huang Tianyi Wang +1 位作者 Pengfei Guo Yueheng Lan 《Communications in Theoretical Physics》 2025年第8期11-24,共14页
Renormalization group analysis has been proposed to eliminate secular terms in perturbation solutions of differential equations and thus expand the domain of their validity.Here we extend the method to treat periodic ... Renormalization group analysis has been proposed to eliminate secular terms in perturbation solutions of differential equations and thus expand the domain of their validity.Here we extend the method to treat periodic orbits or limit cycles.Interesting normal forms could be derived through a generalization of the concept'resonance',which offers nontrivial analytic approximations.Compared with traditional techniques such as multi-scale methods,the current scheme proceeds in a very straightforward and simple way,delivering not only the period and the amplitude but also the transient path to limit cycles.The method is demonstrated with several examples including the Duffing oscillator,van der Pol equation and Lorenz equation.The obtained solutions match well with numerical results and with those derived by traditional analytic methods. 展开更多
关键词 nonlinear dynamics cycles renormalization group analytic solution normal forms
原文传递
Switchable Normalization Based Faster RCNN for MRI Brain Tumor Segmentation
4
作者 Rachana Poongodan Dayanand Lal Narayan +2 位作者 Deepika Gadakatte Lokeshwarappa Hirald Dwaraka Praveena Dae-Ki Kang 《Computers, Materials & Continua》 2025年第9期5751-5772,共22页
In recent decades,brain tumors have emerged as a serious neurological disorder that often leads to death.Hence,Brain Tumor Segmentation(BTS)is significant to enable the visualization,classification,and delineation of ... In recent decades,brain tumors have emerged as a serious neurological disorder that often leads to death.Hence,Brain Tumor Segmentation(BTS)is significant to enable the visualization,classification,and delineation of tumor regions in Magnetic Resonance Imaging(MRI).However,BTS remains a challenging task because of noise,non-uniform object texture,diverse image content and clustered objects.To address these challenges,a novel model is implemented in this research.The key objective of this research is to improve segmentation accuracy and generalization in BTS by incorporating Switchable Normalization into Faster R-CNN,which effectively captures the fine-grained tumor features to enhance segmentation precision.MRI images are initially acquired from three online datasets:Dataset 1—Brain Tumor Segmentation(BraTS)2018,Dataset 2—BraTS 2019,and Dataset 3—BraTS 2020.Subsequently,the Switchable Normalization-based Faster Regions with Convolutional Neural Networks(SNFRC)model is proposed for improved BTS in MRI images.In the proposed model,Switchable Normalization is integrated into the conventional architecture,enhancing generalization capability and reducing overfitting to unseen image data,which is essential due to the typically limited size of available datasets.The network depth is increased to obtain discriminative semantic features that improve segmentation performance.Specifically,Switchable Normalization captures the diverse feature representations from the brain images.The Faster R-CNN model develops end-to-end training and effective regional proposal generation,with an enhanced training stability using Switchable Normalization,to perform an effective segmentation in MRI images.From the experimental results,the proposed model attains segmentation accuracies of 99.41%,98.12%,and 96.71%on Datasets 1,2,and 3,respectively,outperforming conventional deep learning models used for BTS. 展开更多
关键词 Brain tumor segmentation computer-aided system deep learning models magnetic resonance imaging medical images switchable normalization
在线阅读 下载PDF
基于TZ Normalization规整的话者确认阈值选取 被引量:3
5
作者 刘明辉 陈继旭 +1 位作者 戴蓓蒨 李辉 《数据采集与处理》 CSCD 北大核心 2005年第3期311-317,共7页
针对说话人确认中,各目标话者模型输出评分分布不一致而导致系统确认阈值设置的困难,本文采取了通过评分规整确定系统最小检测代价函数(DCF)确认阈值的方法。在分析了已有的两种评分规整方法Z norm a l-ization和T norm a lization的基... 针对说话人确认中,各目标话者模型输出评分分布不一致而导致系统确认阈值设置的困难,本文采取了通过评分规整确定系统最小检测代价函数(DCF)确认阈值的方法。在分析了已有的两种评分规整方法Z norm a l-ization和T norm a lization的基础上,提出了一种结合两者优点的组合规整方法——TZ norm a lization,并据此给出了一种阈值动态修正方法,有效地提高了系统的性能和阈值选取的鲁棒性。对历年的N IST(手机电话语音)评测语料库进行了实验,表明了该方法的有效性。 展开更多
关键词 说话人确认 评分规整 TZ normalization 最小DCF阈值
在线阅读 下载PDF
融合全局指针网络与对比学习的嵌套命名实体识别
6
作者 刘继 谢京城 《计算机应用研究》 北大核心 2026年第1期129-135,共7页
为解决现有嵌套命名实体识别方法中存在的实体表示不充分、边界模糊和语义相似实体难以区分的问题,提出了一种基于全局指针网络与对比学习融合的中文嵌套命名实体识别方法。采用全局指针机制,通过构建实体头尾指针矩阵,将实体识别转换... 为解决现有嵌套命名实体识别方法中存在的实体表示不充分、边界模糊和语义相似实体难以区分的问题,提出了一种基于全局指针网络与对比学习融合的中文嵌套命名实体识别方法。采用全局指针机制,通过构建实体头尾指针矩阵,将实体识别转换为指针预测问题,引入对比学习框架增强实体表示的语义判别能力,采用基于移动平均的梯度归一化策略,平衡多任务学习中各子任务的优化难度。在CLUENER2020和CMeEE数据集上的实验表明,该方法与基线global pointer模型相比,F 1值分别提升2.30和2.55个百分点,验证了其在中文嵌套命名实体识别任务中的有效性。 展开更多
关键词 命名实体识别 嵌套实体 全局指针网络 对比学习 梯度归一化
在线阅读 下载PDF
基于CNN和Group Normalization的校园垃圾图像分类 被引量:11
7
作者 王玉 王梦佳 张伟红 《吉林大学学报(信息科学版)》 CAS 2020年第6期744-750,共7页
为解决大学校园的垃圾回收分类问题,提出了一种基于卷积神经网络和归一化技术的垃圾图像分类方法,不需要对输入的图像进行复杂的处理,网络模型即可根据算法提取图像特征,通过加入群组归一化(Group Normalization)和网络模型各层之间的协... 为解决大学校园的垃圾回收分类问题,提出了一种基于卷积神经网络和归一化技术的垃圾图像分类方法,不需要对输入的图像进行复杂的处理,网络模型即可根据算法提取图像特征,通过加入群组归一化(Group Normalization)和网络模型各层之间的协作,克服传统分类算法的缺点,实现对垃圾图像的分类。实验表明,该识别方法具有较高准确率,可以较好识别不可回收及可回收垃圾。 展开更多
关键词 卷积神经网络 群组归一化 图像分类 深度学习
在线阅读 下载PDF
因子混合模型稳健贝叶斯分析
8
作者 吕天予 夏业茂 《应用数学》 北大核心 2026年第1期161-172,共12页
为了降低异常点或极值数据影响,本文对因子混合模型建立了稳健分析.在参数统计框架内,基于正态尺度混合分布,对数据点赋以适当的权重来降低异常点的影响.我们还对因子负荷采用稀疏化技术来提高模型的泛化能力,并对因子个数和混合分量个... 为了降低异常点或极值数据影响,本文对因子混合模型建立了稳健分析.在参数统计框架内,基于正态尺度混合分布,对数据点赋以适当的权重来降低异常点的影响.我们还对因子负荷采用稀疏化技术来提高模型的泛化能力,并对因子个数和混合分量个数展开选择.随机模拟和对橄榄油数据分析展示了方法的有效性和实用性. 展开更多
关键词 混合因子模型 正态尺度混合 全局-局部收缩 MCMC抽样
在线阅读 下载PDF
偏正态数据下三臂非劣效性检验的贝叶斯方法
9
作者 李梦 梁帆 吴刘仓 《应用数学》 北大核心 2026年第1期48-59,共12页
本文提出药物药效数据服从偏正态分布的三臂非劣效性检验的贝叶斯方法,并构造贝叶斯置信区间,同时讨论了样本量的确定问题.通过结合历史数据信息,构造参数的后验分布,给出抽样算法,建立偏正态数据下三臂非劣效性检验的贝叶斯决策准则以... 本文提出药物药效数据服从偏正态分布的三臂非劣效性检验的贝叶斯方法,并构造贝叶斯置信区间,同时讨论了样本量的确定问题.通过结合历史数据信息,构造参数的后验分布,给出抽样算法,建立偏正态数据下三臂非劣效性检验的贝叶斯决策准则以及参数的置信下限.模拟实验给出犯第一类错误率、功效、样本量和经验覆盖概率值,模拟结果显示出所提出方法的有效性.最后,将该方法应用于一个真实的HIV数据集,显示了该方法的实际应用价值. 展开更多
关键词 三臂非劣效性检验 偏正态分布 贝叶斯方法 置信区间
在线阅读 下载PDF
重型创伤性脑损伤患者急性期凝血功能与入院一周内死亡的相关性分析
10
作者 施兆佳 李育平 +1 位作者 史甜 周华萍 《精准医学杂志》 2026年第1期50-53,共4页
目的探讨重型创伤性脑损伤(sTBI)患者损伤急性期凝血功能与入院一周内死亡的相关性。方法选择2016年6月—2021年3月我院收治的412例sTBI患者,根据患者入院一周时的预后转归,将其分为存活组(350例)和死亡组(62例)。收集并比较两组患者的... 目的探讨重型创伤性脑损伤(sTBI)患者损伤急性期凝血功能与入院一周内死亡的相关性。方法选择2016年6月—2021年3月我院收治的412例sTBI患者,根据患者入院一周时的预后转归,将其分为存活组(350例)和死亡组(62例)。收集并比较两组患者的基础资料、入院时格拉斯哥昏迷评分(GCS)及入院时凝血功能相关指标,将有差异的指标进行二元logistic回归分析,以确定患者入院一周内死亡的影响因素。结果两组患者入院时的GCS得分及血浆中纤维蛋白原水平、纤维蛋白降解产物水平、D-二聚体水平、活化部分凝血活酶时间、国际标准化比值、血小板计数均差异显著(t=-13.11~8.83,P<0.01)。Logistic回归分析结果显示,血浆纤维蛋白原水平、纤维蛋白降解产物水平、D-二聚体水平、活化部分凝血活酶时间及血小板计数是sTBI患者入院一周内死亡的影响因素(P<0.05)。结论sTBI急性期血浆纤维蛋白原水平、纤维蛋白降解产物水平、D-二聚体水平、活化部分凝血活酶时间以及血小板计数是患者入院一周内死亡的影响因素,或可作为sTBI患者不良转归的预测指标用于临床。 展开更多
关键词 脑损伤 创伤性 血小板计数 纤维蛋白原 部分促凝血酶原时间 国际标准化比值 死亡 影响因素分析
暂未订购
正常高值血压人群血压轨迹对心血管疾病发病风险的影响:基于开滦队列研究
11
作者 鹿妍秋 吴云涛 +7 位作者 刘少鹏 林海颖 邓惠友 武英 黄喆 杨鹏 吴寿岭 李云 《中国全科医学》 北大核心 2026年第3期299-310,共12页
背景心血管疾病(CVD)是全球过早死亡和医疗费用上涨的主要原因。据估计,中国约有3.3亿人受到CVD的影响,给国家带来了巨大的医疗和财政负担。中国18岁以上未被诊断过高血压的成年人中,有50.9%的人处于正常高值血压,正常高值血压与CVD发... 背景心血管疾病(CVD)是全球过早死亡和医疗费用上涨的主要原因。据估计,中国约有3.3亿人受到CVD的影响,给国家带来了巨大的医疗和财政负担。中国18岁以上未被诊断过高血压的成年人中,有50.9%的人处于正常高值血压,正常高值血压与CVD发病风险增加有关,有效控制正常高值血压可预防10%以上的CVD病例。目的本研究采用群组轨迹模型(GBTM)探索正常高值血压人群的血压轨迹变化模式,探究正常高值血压人群血压轨迹对CVD发病风险的影响,为制订正常高值血压人群血压管理和CVD预防策略提供科学依据。方法选取参加开滦研究2006—2012年度健康体检且首次参加体检时为正常高值血压者为研究对象,通过问卷调查、人体测量学指标检查及实验室生化检测收集基线资料。对患者进行随访,随访结局事件为首次发生CVD事件[心肌梗死(MI)和脑卒中],随访终止时间为2022-12-31。采用GBTM拟合研究对象的收缩压(SBP)和舒张压(DBP)的轨迹模型。采用Kaplan-Meier生存曲线分析不同轨迹组CVD累积发病率,Log-rank检验比较组间差异。采用多因素Cox比例风险回归模型或不受比例风险假设约束的加权多因素Cox比例风险回归模型分析不同血压轨迹组发生CVD事件的风险。采用Cox比例风险回归模型分析性别、年龄与血压轨迹之间存在的潜在相乘交互作用并进行分层分析。进行敏感性分析验证结果的稳健性。结果最终纳入21745名研究对象,平均年龄(54.0±11.4)岁,男17556名(80.74%),女4289名(19.26%)。GBTM结果显示,SBP确定了4条不同的轨迹,每条轨迹均根据其SBP范围和随体检时间变化的模式(即稳定、下降和上升)进行标记,7088名研究对象的SBP稳定在115 mmHg(1 mmHg=0.133 kPa)左右,称为“正常高值血压下降组”,11662名研究对象的SBP稳定在130 mmHg左右,称为“正常高值血压稳定组”,1710名研究对象在轨迹期从129 mmHg逐渐增长到160 mmHg左右,称为“正常高值血压上升组”,1285名研究对象的SBP增长到158 mmHg左右后再下降到140 mmHg以下,称为“正常高值血压上升-下降组”。DBP确定了4条不同的轨迹,每条轨迹都根据其DBP范围和随体检时间变化的模式(即稳定、下降和上升)进行标记,4856名研究对象的DBP稳定在75 mmHg左右,称为“正常高值血压下降组”,13668名研究对象的DBP稳定在83 mmHg左右,称为“正常高值血压稳定组”,1640名研究对象在轨迹期DBP从82 mmHg逐渐增长到100 mmHg左右,称为“正常高值血压上升组”,1581名研究对象的SBP增长到98 mmHg左右后再下降到90 mmHg以下,称为“正常高值血压上升-下降组”。不同SBP轨迹组中研究对象年龄、性别、BMI、受教育程度、吸烟、饮酒、体育锻炼、SBP、DBP、低密度脂蛋白胆固醇(LDL-C)、三酰甘油(TG)、总胆固醇(TC)、空腹血糖(FBG)、超敏C反应蛋白、估算肾小球滤过率(eGFR)、单纯收缩期高血压(ISH)、单纯舒张期高血压(IDH)、高血压、糖尿病、服用降压药、服用降糖药比例比较,差异有统计学意义(P<0.05)。不同DBP轨迹组中研究对象年龄、性别、BMI、受教育程度、吸烟、饮酒、喜盐、SBP、DBP、高密度脂蛋白胆固醇(HDL-C)、LDL-C、TG、TC、FBG、超敏C反应蛋白、eGFR、ISH、IDH、高血压、糖尿病、服用降压药比例比较,差异有统计学意义(P<0.05)。患者平均随访时间(9.43±1.94)年,共计发生CVD1429例(259例MI,1170例脑卒中,两者同时发生20例)。SBP轨迹分组正常高值血压下降组、正常高值血压稳定组、正常高值血压上升组和正常高值血压上升-下降组新发CVD病例分别为274例、794例、191例和170例;DBP轨迹分组正常高值血压下降组、正常高值血压稳定组、正常高值血压上升组和正常高值血压上升-下降组CVD新发病例分别为227例、881例、163例和158例。绘制研究对象CVD累积发病率生存曲线,Log-rank检验结果显示不同SBP轨迹组、DBP轨迹组CVD累积发病率比较,差异有统计学意义(χ^(2)=275.39、90.69,P<0.001)。采用Cox比例风险回归模型计算不同SBP轨迹组发生CVD的HR(95%CI),以正常高值血压下降组作为参照组,正常高值血压稳定组、正常高值血压上升组和正常高值血压上升-下降组发生CVD的HR(95%CI)分别为1.41(1.22~1.62)、1.92(1.58~2.33)和2.24(1.84~2.74),发生脑卒中的HR(95%CI)分别为1.46(1.25~1.71)、2.04(1.65~2.53)和2.37(1.90~2.96),发生MI的HR(95%CI)分别为1.25(0.92~1.72)、1.42(0.90~2.23)和1.81(1.14~2.86)。使用不受比例风险假设约束的加权多因素Cox比例风险回归模型计算发生CVD的aHR(95%CI),以正常高值血压下降组作为参照组,正常高值血压稳定组、正常高值血压上升组和正常高值血压上升-下降组发生CVD的aHR(95%CI)分别为1.43(1.12~1.82)、2.59(1.62~4.13)和2.11(1.40~3.17),发生脑卒中的aHR(95%CI)分别为1.45(1.11~1.71)、2.95(1.75~4.97)和2.34(1.48~3.71),发生MI的aHR(95%CI)分别为1.34(0.76~2.34)、1.17(0.62~2.19)和1.32(0.69~2.55)。分层分析结果提示只有SBP轨迹与性别和年龄的相乘交互作用有统计学意义(P交互<0.05),DBP轨迹与性别和年龄的相乘交互作用无统计学意义(P交互>0.05)。男性人群中,以SBP轨迹正常高值血压下降组作为参照组,正常高值血压稳定组、正常高值血压上升组和正常高值血压上升-下降组发生CVD发生HR(95%CI)分别为1.42(1.20~1.67)、1.93(1.53~2.42)和2.30(1.82~2.90);女性人群中,以SBP轨迹正常高值血压下降组作为参照组,正常高值血压稳定组、正常高值血压上升组和正常高值血压上升-下降组发生CVD发生HR(95%CI)分别为1.80(1.14~2.85)、2.91(1.62~5.21)和2.79(1.43~5.43)。年龄<60岁的正常高值血压人群中,以SBP轨迹正常高值血压下降组作为参照组,发生CVD的HR(95%CI)分别为1.48(1.22~1.78)、2.00(1.46~2.71)和3.01(2.24~4.06),年龄≥60岁的正常高值血压人群中,以SBP轨迹正常高值血压下降组作为参照组,发生CVD的HR(95%CI)分别为1.35(1.01~1.79)、1.94(1.40~2.69)和1.91(1.35~2.69)。结论在正常高值血压人群中具有CVD发病风险更高的不同血压轨迹类型。在SBP血压轨迹中,高水平且波动大的轨迹模式发生CVD的风险最高,在DBP轨迹中上升趋势且基线DBP高的轨迹模式发生CVD的风险最高。正常高值血压人群即使血压稳定在120~139/80~89 mmHg范围内且没有较大的变化波动,但依然存在发生CVD的风险。 展开更多
关键词 心血管疾病 正常高值血压 血压轨迹 开滦队列研究 群组化轨迹模型 COX比例风险回归模型
暂未订购
Auto-normalization algorithm for robotic precision drilling system in aircraft component assembly 被引量:37
12
作者 Tian Wei Zhou Weixue +2 位作者 Zhou Wei Liao Wenhe Zeng Yuanfan 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第2期495-500,共6页
A novel approach is proposed to detect the normal vector to product surface in real time for the robotic precision drilling system in aircraft component assembly, and the auto-normalization algorithm is presented base... A novel approach is proposed to detect the normal vector to product surface in real time for the robotic precision drilling system in aircraft component assembly, and the auto-normalization algorithm is presented based on the detection system. Firstly, the deviation between the normal vector and the spindle axis is measured by the four laser displacement sensors installed at the head of the multi-function end effector. Then, the robot target attitude is inversely solved according to the auto-normalization algorithm. Finally, adjust the robot to the target attitude via pitch and yaw rotations about the tool center point and the spindle axis is corrected in line with the normal vector simultaneously. To test and verify the auto-normalization algorithm, an experimental platform is established in which the laser tracker is introduced for accurate measurement. The results show that the deviations between the corrected spindle axis and the normal vector are all reduced to less than 0.5°, with the mean value 0.32°. It is demonstrated the detection method and the autonormalization algorithm are feasible and reliable. 展开更多
关键词 Aircraft assembly Auto-normalization Industrial robots Normal vector detection Robotic precision drilling
原文传递
Evaluation of Two Absolute Radiometric Normalization Algorithms for Pre-processing of Landsat Imagery 被引量:13
13
作者 徐涵秋 《Journal of China University of Geosciences》 SCIE CSCD 2006年第2期146-150,157,共6页
In order to evaluate radiometric normalization techniques, two image normalization algorithms for absolute radiometric correction of Landsat imagery were quantitatively compared in this paper, which are the Illuminati... In order to evaluate radiometric normalization techniques, two image normalization algorithms for absolute radiometric correction of Landsat imagery were quantitatively compared in this paper, which are the Illumination Correction Model proposed by Markham and Irish and the Illumination and Atmospheric Correction Model developed by the Remote Sensing and GIS Laboratory of the Utah State University. Relative noise, correlation coefficient and slope value were used as the criteria for the evaluation and comparison, which were derived from pseudo-invarlant features identified from multitemporal Landsat image pairs of Xiamen (厦门) and Fuzhou (福州) areas, both located in the eastern Fujian (福建) Province of China. Compared with the unnormalized image, the radiometric differences between the normalized multitemporal images were significantly reduced when the seasons of multitemporal images were different. However, there was no significant difference between the normalized and unnorrealized images with a similar seasonal condition. Furthermore, the correction results of two algorithms are similar when the images are relatively clear with a uniform atmospheric condition. Therefore, the radiometric normalization procedures should be carried out if the multitemporal images have a significant seasonal difference. 展开更多
关键词 LANDSAT radiometrie correction data normalization pseudo-invariant features image processing.
在线阅读 下载PDF
基于Moment Normalization和M序列的二值水印算法
14
作者 刘娟梅 李乔良 +1 位作者 唐子惠 杨琦 《计算机技术与发展》 2008年第5期153-155,167,共4页
针对因特网上数字图像的版权保护、认证和完整性等问题,基于DCT变换、image moment normalization和m序列,提出了一种二值水印嵌入算法,实现了二值图像的嵌入和提取。根据m序列的伪随机性和抗干扰性能,使水印具有良好的隐蔽性和稳健性;... 针对因特网上数字图像的版权保护、认证和完整性等问题,基于DCT变换、image moment normalization和m序列,提出了一种二值水印嵌入算法,实现了二值图像的嵌入和提取。根据m序列的伪随机性和抗干扰性能,使水印具有良好的隐蔽性和稳健性;使用了moment normalization能抵制各种几何攻击。实验表明该算法具有很好的鲁棒性、实用性和可操作性。 展开更多
关键词 数字水印 DTC MOMENT normalization M序列
在线阅读 下载PDF
实体程序协同视角下起诉解除后撤诉的审查与效果——以《民法典合同编通则解释》第54条为核心
15
作者 刘子赫 《法治研究》 北大核心 2026年第1期94-107,共14页
《民法典》规定了合同通知解除权的普通形成权性质和通知行使方式,对诉讼外自行通知解除和起诉解除一并适用。《民法典合同编通则解释》第54条专门对起诉解除合同后撤诉又再次起诉的解除时间作出规定,认为撤诉后不发生解除效果,释义书... 《民法典》规定了合同通知解除权的普通形成权性质和通知行使方式,对诉讼外自行通知解除和起诉解除一并适用。《民法典合同编通则解释》第54条专门对起诉解除合同后撤诉又再次起诉的解除时间作出规定,认为撤诉后不发生解除效果,释义书解释增加了解除权行使须经人民法院确认的程序条件,与《民法典》规定形成冲突。从实体法保障相对人信赖目的出发,可将起诉解除后撤诉区分为撤回意思表示型撤诉和撤销意思表示型撤诉,前者应在起诉状副本发出前完成,或在发出后及时向被告撤回解除表示;后者则限于被告尚未形成信赖或未造成损失可撤销的情形。对撤回、撤销意思表示的判断,可以内化于撤诉许可裁量中,保持撤诉与解除通知不生效力的一致性,排除不可撤销与双方和解的情形。实体法需要关注诉讼场景,诉讼行为亦不在实体法评价范围之外。 展开更多
关键词 起诉解除 普通形成权 撤诉 撤回意思表示 撤销意思表示
在线阅读 下载PDF
Improved normalization method for ductile fracture toughness determination based on dimensionless load separation principle 被引量:12
16
作者 Chen Bao Lixun Cai +2 位作者 Kaikai Shi Chen Dan Yao Yao 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2015年第2期168-181,共14页
This study successfully deals with the inhomogeneous dimension problem of load separation assumption, which is the theoretical basis of the normalization method. According to the dimensionless load separation principl... This study successfully deals with the inhomogeneous dimension problem of load separation assumption, which is the theoretical basis of the normalization method. According to the dimensionless load separation principle, the normalization method has been improved by intro- ducing a forcible blunting correction. With the improved normalization method, the J-resistance curves of five different metallic materials of CT and SEB specimens are estimated. The forcible blunting correction of initial crack size plays an important role in the J-resistance curve estima- tion, which is closely related to the strain hardening level of material. The higher level of strain hardening leads to a greater difference in JQ determined by different slopes of the blunting line. If the blunting line coefficient recommended by ASTM E1820-11 is used in the improved nor- realization method, it will lead to greater fracture resistance than that processed by the blunting line coefficient recommended by ISO 12135-2002. Therefore, the influence of the blunting line on the determination of JQ must be taken into full account in the fracture toughness assessment of metallic materials. 展开更多
关键词 dimensionless load separation improved normalization method dimension inho-mogeneous J-resistance curve forcible blunting correction
原文传递
Identification of stable normalization genes for quantitative real-time PCR in porcine articular cartilage 被引量:2
17
作者 Ryan S McCulloch Melissa S Ashwell +1 位作者 Audrey T O'Nan Peter L Mente 《Journal of Animal Science and Biotechnology》 SCIE CAS 2012年第4期181-187,共7页
Background: Expression levels for genes of interest must be normalized with an appropriate reference, or housekeeping gene, to make accurate comparisons of quantitative real-time PCR results. The purpose of this stud... Background: Expression levels for genes of interest must be normalized with an appropriate reference, or housekeeping gene, to make accurate comparisons of quantitative real-time PCR results. The purpose of this study was to identify the most stable housekeeping genes in porcine articular cartilage subjected to a mechanical injury from a panel of 10 candidate genes. Results: Ten candidate housekeeping genes were evaluated in three different treatment groups of mechanically impacted porcine articular cartilage. The genes evaluated were: beta actin, beta-2-microglobulin, glyceraldehyde-3-phosphate dehydrogenase, hydroxymethylbilane synthase, hypoxanthine phosphoribosyl transferase, peptidylprolyl isomerase A (cyclophilin A), ribosomal protein L4, succinate dehydrogenase flavoprotein subunit A, TATA box binding protein, and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein--zeta polypeptide The stability of the genes was measured using geNorm, BestKeeper, and NormFinder software. The four most stable genes measured via geNorm were (most to least stable) succinate dehydrogenase flavoprotein, subunit A, peptidylprolyl isomerase A, glyceraldehyde-3-phosphate dehydrogenase, beta actin; the four most stable genes measured via BestKeeper were glyceraldehyde-3-phosphate dehydrogenase, peptidylprolyl isomerase A, beta actin, succinate dehydrogenase flavoprotein, subunit A; and the four most stable genes measured via NormFinder were peptidylprolyl isomerase A, sucdnate dehydrogenase flavoprotein, subunit A, glyceraldehyde-3-phosphate dehydrogenase, beta actin. Conclusions: BestKeeper, geNorm, and NormFinder all generated similar results for the most stable genes in porcine articular cartilage. The use of these appropriate reference genes will facilitate accurate gene expression studies of porcine articular cartilage and suggest appropriate housekeeping genes for articular cartilage studies in other species. 展开更多
关键词 CARTILAGE HOUSEKEEPING normalization PORCINE REFERENCE Stability
在线阅读 下载PDF
基于Kano模型的正常高值血压人群中医健康管理需求研究
18
作者 朱璐 张悦 +3 位作者 王康美 张亦然 朱盛财 黄沂 《护理研究》 北大核心 2026年第1期53-59,共7页
目的:基于Kano模型分析正常高值血压人群中医健康管理需求属性,为中医药服务改进提供参考。方法:选取广西某三级甲等医院及其社区卫生服务中心建档就诊的345名正常高值血压人群为研究对象,运用Kano模型识别其中医健康管理需求的必备型需... 目的:基于Kano模型分析正常高值血压人群中医健康管理需求属性,为中医药服务改进提供参考。方法:选取广西某三级甲等医院及其社区卫生服务中心建档就诊的345名正常高值血压人群为研究对象,运用Kano模型识别其中医健康管理需求的必备型需求(must-be quality,M)、期望型需求(one-dimensional quality,O)、魅力型需求(attractive quality,A)、无差异型需求(indifferent quality,I)及逆向型需求(reverse quality,R)。结果:36项需求服务包含必备属性12项,期望、魅力及无差异属性各8项;同时,筛选待改进指标26项,其中中医理念和正常高值血压相关知识讲解、建立正常高值血压中医健康信息官方网络平台、“未病先防”危险指标监测等改进强度突出;必备型需求属性的中医便民诊疗服务、期望型需求属性的中医理念和正常高值血压相关知识讲解、魅力型需求属性的共同制定中医健康管理方案改进需求强度较高。结论:正常高值血压人群对中医健康管理需求偏高且层次丰富,但整体服务仍有不足。未来应加强中医服务便捷性建设,以期惠及社区和家庭,平衡区域及人群差异;并针对中医药宣教、共同决策等能力缺陷,逐步调整相关人才培养模式,注重人群个体化偏好,强化中医信息平台的推广应用,促进该人群中医健康管理意识及行为转化,进而有效延缓或遏制疾病进程。 展开更多
关键词 高血压 正常高值血压 中医健康管理 需求 属性 KANO模型
暂未订购
基于改进浣熊优化算法的永磁同步电机参数辨识
19
作者 谭志博 刘雨 +1 位作者 张巧芬 李明智 《制造技术与机床》 北大核心 2026年第1期154-161,共8页
针对表贴式永磁同步电机(permanent magnet synchronous motor, PMSM)在参数辨识过程中存在辨识精度低且收敛时间长的问题,提出一种用于电机参数辨识的改进浣熊优化算法(improved coati optimization algorithm, ICOA)。改进后的算法使... 针对表贴式永磁同步电机(permanent magnet synchronous motor, PMSM)在参数辨识过程中存在辨识精度低且收敛时间长的问题,提出一种用于电机参数辨识的改进浣熊优化算法(improved coati optimization algorithm, ICOA)。改进后的算法使用分段线性混沌映射(piecewise linear chaotic map, PWLCM)策略,提升了浣熊初始种群的随机性和多样性;使用正交Lévy全局探索器,增加了搜索路径,提升全局搜索能力;使用引入种群多样性指标与迭代进度因子的自适应正态云模型,解决了算法早熟收敛的问题。对表贴式永磁同步电机进行数学建模,并使用ICOA算法对电机永磁体磁链、d-q轴电感、定子电阻进行参数辨识。仿真结果表明,相较于传统COA算法,4种参数辨识精度分别提升了12.33%、2.75%、1.13%、0.75%,且均控制在1.7%之内。 展开更多
关键词 电机参数辨识 浣熊优化算法 混沌映射 正态云模型 正交Lévy全局探索器
在线阅读 下载PDF
基于3D打印的深部开采中煤矿岩体结构面剪切特性研究
20
作者 张鑫昊 王欣良 +3 位作者 马啸威 褚占福 张浩 姜政 《陕西煤炭》 2026年第1期50-55,共6页
【目的及方法】深部岩体处于极其复杂的应力环境中,但随着开采深度的不断增加,深部的围岩应力重新分布,造成部分岩体产生高应力显现。鉴于此,针对同一类岩石试件,利用3D打印技术,制备了4组不同粗糙度系数的结构面剪切试件,进行了不同法... 【目的及方法】深部岩体处于极其复杂的应力环境中,但随着开采深度的不断增加,深部的围岩应力重新分布,造成部分岩体产生高应力显现。鉴于此,针对同一类岩石试件,利用3D打印技术,制备了4组不同粗糙度系数的结构面剪切试件,进行了不同法向应力下结构面剪切实验。【结果】结果显示,结构面破坏形式基本分为3个阶段。当法向应力为2.3 MPa时,岩体较为完整,属于剪切滑移破坏。【结论】当法向应力小于16.1 MPa大于2.3 MPa时,结构面剪切时沿着起伏体中部发生破坏,为拉剪混合破坏;当法向应力为20.7 MPa时,试件上下覆岩体破坏严重,为轴向劈裂破坏;当法向应力为20.7 MPa时,粗糙度系数并不会对结构面峰值剪切强度产生较大影响,并且在同一法向应力下,粗糙度系数的改变主要影响结构面产生裂隙的数量,为判断施加于试件法向应力的大小提供了参考。 展开更多
关键词 深部开采 法向应力 抗剪强度 结构面剪切 粗糙度
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部