Autism Spectrum Disorder(ASD)is a complex neurodevelopmental condition that causes multiple challenges in behavioral and communication activities.In the medical field,the data related to ASD,the security measures are ...Autism Spectrum Disorder(ASD)is a complex neurodevelopmental condition that causes multiple challenges in behavioral and communication activities.In the medical field,the data related to ASD,the security measures are integrated in this research responsibly and effectively to develop the Mobile Neuron Attention Stage-by-Stage Network(MNASNet)model,which is the integration of both Mobile Network(MobileNet)and Neuron Attention Stage-by-Stage.The steps followed to detect ASD with privacy-preserved data are data normalization,data augmentation,and K-Anonymization.The clinical data of individuals are taken initially and preprocessed using the Z-score Normalization.Then,data augmentation is performed using the oversampling technique.Subsequently,K-Anonymization is effectuated by utilizing the Black-winged Kite Algorithm to ensure the privacy of medical data,where the best fitness solution is based on data utility and privacy.Finally,after improving the data privacy,the developed approach MNASNet is implemented for ASD detection,which achieves highly accurate results compared to traditional methods to detect autism behavior.Hence,the final results illustrate that the proposed MNASNet achieves an accuracy of 92.9%,TPR of 95.9%,and TNR of 90.9%at the k-samples of 8.展开更多
A system reliability model based on Bayesian network(BN)is built via an evolutionary strategy called dual genetic algorithm(DGA).BN is a probabilistic approach to analyze relationships between stochastic events.In con...A system reliability model based on Bayesian network(BN)is built via an evolutionary strategy called dual genetic algorithm(DGA).BN is a probabilistic approach to analyze relationships between stochastic events.In contrast with traditional methods where BN model is built by professionals,DGA is proposed for the automatic analysis of historical data and construction of BN for the estimation of system reliability.The whole solution space of BN structures is searched by DGA and a more accurate BN model is obtained.Efficacy of the proposed method is shown by some literature examples.展开更多
In the era of digital signal processing,like graphics and computation systems,multiplication-accumulation is one of the prime operations.A MAC unit is a vital component of a digital system,like different Fast Fourier ...In the era of digital signal processing,like graphics and computation systems,multiplication-accumulation is one of the prime operations.A MAC unit is a vital component of a digital system,like different Fast Fourier Transform(FFT)algorithms,convolution,image processing algorithms,etcetera.In the domain of digital signal processing,the use of normalization architecture is very vast.The main objective of using normalization is to performcomparison and shift operations.In this research paper,an evolutionary approach for designing an optimized normalization algorithm is proposed using basic logical blocks such as Multiplexer,Adder etc.The proposed normalization algorithm is further used in designing an 8×8 bit Signed Floating-Point Multiply-Accumulate(SFMAC)architecture.Since the SFMAC can accept an 8-bit significand and a 3-bit exponent,the input to the said architecture can be somewhere between−(7.96872)_(10) to+(7.96872)_(10).The proposed architecture is designed and implemented using the Cadence Virtuoso using 90 and 130 nm technologies(in Generic Process Design Kit(GPDK)and Taiwan Semiconductor Manufacturing Company(TSMC),respectively).To reduce the power consumption of the proposed normalization architecture,techniques such as“block enabling”and“clock gating”are used rigorously.According to the analysis done on Cadence,the proposed architecture uses the least amount of power compared to its current predecessors.展开更多
A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all...A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all optimization problems. A self-adapting and efficient dandelion algorithm is proposed in this work to lower the number of DA's parameters and simplify DA's structure. Only the normal sowing operator is retained;while the other operators are discarded. An adaptive seeding radius strategy is designed for the core dandelion. The results show that the proposed algorithm achieves better performance on the standard test functions with less time consumption than its competitive peers. In addition, the proposed algorithm is applied to feature selection for credit card fraud detection(CCFD), and the results indicate that it can obtain higher classification and detection performance than the-state-of-the-art methods.展开更多
为解决传统神经网络在CIFAR-10(Canadian Institute For Advanced Research)数据集上进行图像分类识别时,存在的模型准确率较低和训练过程易发生过拟合现象等问题,提出了一种将卷积神经网络和批归一化相结合的新神经网络结构构建方法。...为解决传统神经网络在CIFAR-10(Canadian Institute For Advanced Research)数据集上进行图像分类识别时,存在的模型准确率较低和训练过程易发生过拟合现象等问题,提出了一种将卷积神经网络和批归一化相结合的新神经网络结构构建方法。该方法首先对数据集进行数据增强和边界填充处理,其次对典型的CNN(Convolutional Neural Networks)网络结构进行改进,移除了卷积层组中的池化层,仅保留了卷积层和BN(Batch Normalization)层,并适量增加卷积层组。为了验证模型的有效性和准确性,设计了6组不同的神经网络结构对模型进行训练。实验结果表明,在相同训练周期数下,推荐使用的model-6模型表现最佳,测试准确率高达90.17%,突破了长期以来经典CNN在CIFAR-10数据集上难于达到90%准确率的瓶颈,为图像分类识别提供了新的解决方案和模型参考。展开更多
文摘Autism Spectrum Disorder(ASD)is a complex neurodevelopmental condition that causes multiple challenges in behavioral and communication activities.In the medical field,the data related to ASD,the security measures are integrated in this research responsibly and effectively to develop the Mobile Neuron Attention Stage-by-Stage Network(MNASNet)model,which is the integration of both Mobile Network(MobileNet)and Neuron Attention Stage-by-Stage.The steps followed to detect ASD with privacy-preserved data are data normalization,data augmentation,and K-Anonymization.The clinical data of individuals are taken initially and preprocessed using the Z-score Normalization.Then,data augmentation is performed using the oversampling technique.Subsequently,K-Anonymization is effectuated by utilizing the Black-winged Kite Algorithm to ensure the privacy of medical data,where the best fitness solution is based on data utility and privacy.Finally,after improving the data privacy,the developed approach MNASNet is implemented for ASD detection,which achieves highly accurate results compared to traditional methods to detect autism behavior.Hence,the final results illustrate that the proposed MNASNet achieves an accuracy of 92.9%,TPR of 95.9%,and TNR of 90.9%at the k-samples of 8.
基金National Natural Science Foundation of China(No.61203184)
文摘A system reliability model based on Bayesian network(BN)is built via an evolutionary strategy called dual genetic algorithm(DGA).BN is a probabilistic approach to analyze relationships between stochastic events.In contrast with traditional methods where BN model is built by professionals,DGA is proposed for the automatic analysis of historical data and construction of BN for the estimation of system reliability.The whole solution space of BN structures is searched by DGA and a more accurate BN model is obtained.Efficacy of the proposed method is shown by some literature examples.
基金This work was supported by Research Support Fund(RSF)of Symbiosis International(Deemed University),Pune,India。
文摘In the era of digital signal processing,like graphics and computation systems,multiplication-accumulation is one of the prime operations.A MAC unit is a vital component of a digital system,like different Fast Fourier Transform(FFT)algorithms,convolution,image processing algorithms,etcetera.In the domain of digital signal processing,the use of normalization architecture is very vast.The main objective of using normalization is to performcomparison and shift operations.In this research paper,an evolutionary approach for designing an optimized normalization algorithm is proposed using basic logical blocks such as Multiplexer,Adder etc.The proposed normalization algorithm is further used in designing an 8×8 bit Signed Floating-Point Multiply-Accumulate(SFMAC)architecture.Since the SFMAC can accept an 8-bit significand and a 3-bit exponent,the input to the said architecture can be somewhere between−(7.96872)_(10) to+(7.96872)_(10).The proposed architecture is designed and implemented using the Cadence Virtuoso using 90 and 130 nm technologies(in Generic Process Design Kit(GPDK)and Taiwan Semiconductor Manufacturing Company(TSMC),respectively).To reduce the power consumption of the proposed normalization architecture,techniques such as“block enabling”and“clock gating”are used rigorously.According to the analysis done on Cadence,the proposed architecture uses the least amount of power compared to its current predecessors.
基金supported by the Institutional Fund Projects(IFPIP-1481-611-1443)the Key Projects of Natural Science Research in Anhui Higher Education Institutions(2022AH051909)+1 种基金the Provincial Quality Project of Colleges and Universities in Anhui Province(2022sdxx020,2022xqhz044)Bengbu University 2021 High-Level Scientific Research and Cultivation Project(2021pyxm04)。
文摘A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all optimization problems. A self-adapting and efficient dandelion algorithm is proposed in this work to lower the number of DA's parameters and simplify DA's structure. Only the normal sowing operator is retained;while the other operators are discarded. An adaptive seeding radius strategy is designed for the core dandelion. The results show that the proposed algorithm achieves better performance on the standard test functions with less time consumption than its competitive peers. In addition, the proposed algorithm is applied to feature selection for credit card fraud detection(CCFD), and the results indicate that it can obtain higher classification and detection performance than the-state-of-the-art methods.
文摘为解决传统神经网络在CIFAR-10(Canadian Institute For Advanced Research)数据集上进行图像分类识别时,存在的模型准确率较低和训练过程易发生过拟合现象等问题,提出了一种将卷积神经网络和批归一化相结合的新神经网络结构构建方法。该方法首先对数据集进行数据增强和边界填充处理,其次对典型的CNN(Convolutional Neural Networks)网络结构进行改进,移除了卷积层组中的池化层,仅保留了卷积层和BN(Batch Normalization)层,并适量增加卷积层组。为了验证模型的有效性和准确性,设计了6组不同的神经网络结构对模型进行训练。实验结果表明,在相同训练周期数下,推荐使用的model-6模型表现最佳,测试准确率高达90.17%,突破了长期以来经典CNN在CIFAR-10数据集上难于达到90%准确率的瓶颈,为图像分类识别提供了新的解决方案和模型参考。
文摘目前贝叶斯网络(Bayesian networks,BN)的传统结构学习算法在处理高维数据时呈现出计算负担过大、在合理时间内难以得到期望精度结果的问题.为了在高维数据下学习稀疏BN的最优结构,本文提出了一种学习稀疏BN最优结构的改进K均值分块学习算法.该算法采用分而治之的策略,首先采用互信息作为节点间距离度量,利用融合互信息的改进K均值算法对网络分块;其次,使用MMPC(Max-min parent and children)算法得到整个网络的架构,根据架构找到块间所有边的可能连接方向,从而找到所有可能的图结构;之后,对所有图结构依次进行结构学习;最终利用评分找到最优BN.实验证明,相比现有分块结构学习算法,本文提出的算法不仅习得了网络的精确结构,且学习速度有一定提高;相比非分块经典结构学习算法,本文提出的算法在保证精度基础上,学习速度大幅提高,解决了非分块经典结构学习算法无法在合理时间内处理高维数据的难题.