In this paper,we obtain a normality criterion for families of meromorphic functions concerning‘wandering’shared functions,which generalizes and improves Montel’s criterion and the related results due to Schwick,Xu-...In this paper,we obtain a normality criterion for families of meromorphic functions concerning‘wandering’shared functions,which generalizes and improves Montel’s criterion and the related results due to Schwick,Xu-Fang,Xu-Qiu,and Grahl-Nevo.Also,a normality relationship between two families is given.展开更多
In this paper,we study normal families of meromorphic functions.By using the idea in[11],we obtain some normality criteria for families of meromorphic functions that concern the number of zeros of the differential pol...In this paper,we study normal families of meromorphic functions.By using the idea in[11],we obtain some normality criteria for families of meromorphic functions that concern the number of zeros of the differential polynomial,which extends the related result of Li,and Chen et al..An example is given to show that the hypothesis on the zeros of a(z)is necessary.展开更多
现有目标检测算法对背景复杂下小交通标志的检测效果并不理想。为此,提出了一种基于归一化通道注意力机制YOLOv7的交通标志检测算法(YOLOv7 based on normalized channel attention mechanism,YOLOv7-NCAM)。为了使YOLOv7-NCAM模型具有...现有目标检测算法对背景复杂下小交通标志的检测效果并不理想。为此,提出了一种基于归一化通道注意力机制YOLOv7的交通标志检测算法(YOLOv7 based on normalized channel attention mechanism,YOLOv7-NCAM)。为了使YOLOv7-NCAM模型具有像素级建模能力,提高它对小目标交通标志特征的提取能力,YOLOv7-NCAM算法使用FReLU激活函数构建了DBF和CBF两种卷积层,并用它们来组建模型的Backbone模块和Neck模块;提出一种归一化通道注意力机制(normalized channel attention mechanism,NCAM)并加入Head模块中。通过与整体网络一起训练,得到归一化(batch normalization,BN)缩放因子,利用缩放因子算出各个通道的权重因子,提升网络对交通标志特征的表达能力,从而使YOLOv7-NCAM网络模型能够集中关注检测目标交通标志。通过在CCTSDB-2021交通标志检测数据集上的测试,与YOLOv7网络模型对比结果表明,YOLOv7-NCAM算法对背景复杂下小交通标志的检测各项指标均有明显提高:准确率(precision,P)达到91.5%,比原网络高出9.5个百分点;召回率(recall,R)达到85.9%,比原网络高出5.7个百分点;均值平均精度(mean average precision,mAP)达到了91.4%,比原网络高出4.7个百分点。与现有的交通标志检测算法相比,YOLOv7-NCAM算法的检测准确率也有提高,且检测速度48.3 FPS,能满足实时需求。展开更多
基金Supported by the National Natural Science Foundation of China(Grant No.11471163)。
文摘In this paper,we obtain a normality criterion for families of meromorphic functions concerning‘wandering’shared functions,which generalizes and improves Montel’s criterion and the related results due to Schwick,Xu-Fang,Xu-Qiu,and Grahl-Nevo.Also,a normality relationship between two families is given.
文摘In this paper,we study normal families of meromorphic functions.By using the idea in[11],we obtain some normality criteria for families of meromorphic functions that concern the number of zeros of the differential polynomial,which extends the related result of Li,and Chen et al..An example is given to show that the hypothesis on the zeros of a(z)is necessary.
文摘现有目标检测算法对背景复杂下小交通标志的检测效果并不理想。为此,提出了一种基于归一化通道注意力机制YOLOv7的交通标志检测算法(YOLOv7 based on normalized channel attention mechanism,YOLOv7-NCAM)。为了使YOLOv7-NCAM模型具有像素级建模能力,提高它对小目标交通标志特征的提取能力,YOLOv7-NCAM算法使用FReLU激活函数构建了DBF和CBF两种卷积层,并用它们来组建模型的Backbone模块和Neck模块;提出一种归一化通道注意力机制(normalized channel attention mechanism,NCAM)并加入Head模块中。通过与整体网络一起训练,得到归一化(batch normalization,BN)缩放因子,利用缩放因子算出各个通道的权重因子,提升网络对交通标志特征的表达能力,从而使YOLOv7-NCAM网络模型能够集中关注检测目标交通标志。通过在CCTSDB-2021交通标志检测数据集上的测试,与YOLOv7网络模型对比结果表明,YOLOv7-NCAM算法对背景复杂下小交通标志的检测各项指标均有明显提高:准确率(precision,P)达到91.5%,比原网络高出9.5个百分点;召回率(recall,R)达到85.9%,比原网络高出5.7个百分点;均值平均精度(mean average precision,mAP)达到了91.4%,比原网络高出4.7个百分点。与现有的交通标志检测算法相比,YOLOv7-NCAM算法的检测准确率也有提高,且检测速度48.3 FPS,能满足实时需求。