In this paper,we obtain a normality criterion for families of meromorphic functions concerning‘wandering’shared functions,which generalizes and improves Montel’s criterion and the related results due to Schwick,Xu-...In this paper,we obtain a normality criterion for families of meromorphic functions concerning‘wandering’shared functions,which generalizes and improves Montel’s criterion and the related results due to Schwick,Xu-Fang,Xu-Qiu,and Grahl-Nevo.Also,a normality relationship between two families is given.展开更多
The following heteroscedastic regression model Yi = g(xi) +σiei (1 ≤i ≤ n) is 2 considered, where it is assumed that σi^2 = f(ui), the design points (xi,ui) are known and nonrandom, g and f are unknown f...The following heteroscedastic regression model Yi = g(xi) +σiei (1 ≤i ≤ n) is 2 considered, where it is assumed that σi^2 = f(ui), the design points (xi,ui) are known and nonrandom, g and f are unknown functions. Under the unobservable disturbance ei form martingale differences, the asymptotic normality of wavelet estimators of g with f being known or unknown function is studied.展开更多
Let G be a finite group and H a subgroup of G.The normal index of H in G is defined as the order of K/H_(G),where K is a normal supplement of H in G such that|K|is minimal and H_(G)≤K■G.Let p be a prime which divide...Let G be a finite group and H a subgroup of G.The normal index of H in G is defined as the order of K/H_(G),where K is a normal supplement of H in G such that|K|is minimal and H_(G)≤K■G.Let p be a prime which divides the order of a group G.In this paper,some characterizations of G being p-solvable or p-supersolvable were obtained by analyzing the normal index of certain subgroups of G.These results can be viewed as local version of recent results in the literature.展开更多
Let F be a family of functions meromorphic in a domain D, let n ≥ 2 be a positive integer, and let a ≠ 0, b be two finite complex numbers. If, for each f ∈ F, all of whose zeros have multiplicity at least k + 1, a...Let F be a family of functions meromorphic in a domain D, let n ≥ 2 be a positive integer, and let a ≠ 0, b be two finite complex numbers. If, for each f ∈ F, all of whose zeros have multiplicity at least k + 1, and f + a(f^(k))^n≠b in D, then F is normal in D.展开更多
In this paper, we investigate the normality relationship between algebroid multifunctions and their coefficient functions. We prove that the normality of a k-valued entire algebroid multifunctions family is equivalent...In this paper, we investigate the normality relationship between algebroid multifunctions and their coefficient functions. We prove that the normality of a k-valued entire algebroid multifunctions family is equivalent to their coefficient functions in some conditions. Furthermore, we obtain some new normality criteria for algebroid multifunctions families based on these results. We also provide some examples to expound that some restricted conditions of our main results are necessary.展开更多
We investigate the consistency and asymptotic normality of nearest-neighbor density estimator of a sample data process based on α-mixing assumption. We extend the correspondent result under independent identical cases.
This paper based on the essay [1], studies in case that replicated observations are available in some experimental points., the parameters estimation of one dimensional linear errors-in-variables (EV) models. Asymptot...This paper based on the essay [1], studies in case that replicated observations are available in some experimental points., the parameters estimation of one dimensional linear errors-in-variables (EV) models. Asymptotic normality is established.展开更多
By using the definition of Hausdorff distance, we prove some normality criteria for families of meromorphic algebroid functions. Some examples are given to complement the theory in this article.
In this study, to power comparison test, different univariate normality testing procedures are compared by using new algorithm. Different univariate and multivariate test are also analyzed here. And also review effici...In this study, to power comparison test, different univariate normality testing procedures are compared by using new algorithm. Different univariate and multivariate test are also analyzed here. And also review efficient algorithm for calculating the size corrected power of the test which can be used to compare the efficiency of the test. Also to test the randomness of generated random numbers. For this purpose, 1000 data sets with combinations of sample size n = 10, 20, 25, 30, 40, 50, 100, 200, 300 were generated from uniform distribution and tested by using different tests for randomness. The assessment of normality using statistical tests is sensitive to the sample size. Observed that with the increase of n, overall powers are increased but Shapiro Wilk (SW) test, Shapiro Francia (SF) test and Andeson Darling (AD) test are the most powerful test among other tests. Cramer-Von-Mises (CVM) test performs better than Pearson chi-square, Lilliefors test has better power than Jarque Bera (JB) Test. Jarque Bera (JB) Test is less powerful test among other tests.展开更多
Let F be a family of meromorphic functions in D, and let ψ(≠ 0) be a meromorphic function in D all of whose poles are simple. Suppose that, for each f ∈ F, f ≠0 in D. If for each pair of functions {f, g} ∩ F, f...Let F be a family of meromorphic functions in D, and let ψ(≠ 0) be a meromorphic function in D all of whose poles are simple. Suppose that, for each f ∈ F, f ≠0 in D. If for each pair of functions {f, g} ∩ F, f′ and g′ share ψ in D, then F is normal in D.展开更多
In this paper, we use Pang-Zalcman lemma to investigate the normal family of meromorphic functions concerning shared analytic function, which improves some earlier related results.
Let F be a family of functions meromorphic in a domain D, let m, n k , k be three positive integers and b be a finite nonzero complex number. Suppose that, (1) for eachf∈F, all zeros of f have multiplicities at least...Let F be a family of functions meromorphic in a domain D, let m, n k , k be three positive integers and b be a finite nonzero complex number. Suppose that, (1) for eachf∈F, all zeros of f have multiplicities at least k ; (2) for each pair of functions f, g ∈F,P(f)H(f) and P(g)H(g) share b, where P(f) and H(f) were defined as (1.1) and (1.2) and nk ≥ max 1≤i≤k-1 {n i }; (3) m ≥ 2 or nk ≥ 2, k ≥ 2, then F is normal in D.展开更多
Let k be a positive integer,let h(z)■0 be a holomorphic functions in a domain D,and let F be a family of zero-free meromorphic functions in D,all of whose poles have order at least l.If,for each f∈P(f)(z)-h(z) has a...Let k be a positive integer,let h(z)■0 be a holomorphic functions in a domain D,and let F be a family of zero-free meromorphic functions in D,all of whose poles have order at least l.If,for each f∈P(f)(z)-h(z) has at most k+l-1 distinct zeros(ignoring multiplicity) in D,where P(f)(z)=f(k)(z)+a1(z)f((k-1)(z)+…+ak(z)f(z) is a differential polynomial of f and aj(z)(j=1,2,···,k) are holomorphic functions in D,then F is normal in D.展开更多
Let f be a holomorphic function on a domain D (?) C, and let a be a finite complex number. We denote by Ef(α) = {z∈ D : f(z) = a, ignoring multiplicity} the set of all distinct α-points of f. Let F be a family of h...Let f be a holomorphic function on a domain D (?) C, and let a be a finite complex number. We denote by Ef(α) = {z∈ D : f(z) = a, ignoring multiplicity} the set of all distinct α-points of f. Let F be a family of holomorphic functions on D. If there exist three finite values a, b(≠ 0, a) and c(≠0) such that for every f ∈ F, Ef(0) (?) Ef'(a) and Ef'(b)(?) Ef(c), then F is a normal family on D.展开更多
基金Supported by the National Natural Science Foundation of China(Grant No.11471163)。
文摘In this paper,we obtain a normality criterion for families of meromorphic functions concerning‘wandering’shared functions,which generalizes and improves Montel’s criterion and the related results due to Schwick,Xu-Fang,Xu-Qiu,and Grahl-Nevo.Also,a normality relationship between two families is given.
基金Partially supported by the National Natural Science Foundation of China(10571136)
文摘The following heteroscedastic regression model Yi = g(xi) +σiei (1 ≤i ≤ n) is 2 considered, where it is assumed that σi^2 = f(ui), the design points (xi,ui) are known and nonrandom, g and f are unknown functions. Under the unobservable disturbance ei form martingale differences, the asymptotic normality of wavelet estimators of g with f being known or unknown function is studied.
基金Supported by the National Natural Science Foundation of China(Grant No.12071092)Guangdong Basic and Applied Basic Research Foundation(Grant No.2025A1515012072)+1 种基金the Natural Science Research Project of Anhui Educational Committee(Grant No.2024AH051298)the Scientific Research Foundation of Bozhou University(Grant No.BYKQ202419).
文摘Let G be a finite group and H a subgroup of G.The normal index of H in G is defined as the order of K/H_(G),where K is a normal supplement of H in G such that|K|is minimal and H_(G)≤K■G.Let p be a prime which divides the order of a group G.In this paper,some characterizations of G being p-solvable or p-supersolvable were obtained by analyzing the normal index of certain subgroups of G.These results can be viewed as local version of recent results in the literature.
基金Supported by the NNSF of China(11071083)the Tianyuan Foundation(11126267)
文摘Let F be a family of functions meromorphic in a domain D, let n ≥ 2 be a positive integer, and let a ≠ 0, b be two finite complex numbers. If, for each f ∈ F, all of whose zeros have multiplicity at least k + 1, and f + a(f^(k))^n≠b in D, then F is normal in D.
文摘In this paper, we investigate the normality relationship between algebroid multifunctions and their coefficient functions. We prove that the normality of a k-valued entire algebroid multifunctions family is equivalent to their coefficient functions in some conditions. Furthermore, we obtain some new normality criteria for algebroid multifunctions families based on these results. We also provide some examples to expound that some restricted conditions of our main results are necessary.
基金Sponsored by the National Natural Science Foundation of China 10771163
文摘We investigate the consistency and asymptotic normality of nearest-neighbor density estimator of a sample data process based on α-mixing assumption. We extend the correspondent result under independent identical cases.
基金the National Natural Science Foundation of China (Grant No. 19631040)
文摘This paper based on the essay [1], studies in case that replicated observations are available in some experimental points., the parameters estimation of one dimensional linear errors-in-variables (EV) models. Asymptotic normality is established.
基金Sponsored by the NSFC (10871076)the RFDP (20050574002)
文摘By using the definition of Hausdorff distance, we prove some normality criteria for families of meromorphic algebroid functions. Some examples are given to complement the theory in this article.
文摘In this study, to power comparison test, different univariate normality testing procedures are compared by using new algorithm. Different univariate and multivariate test are also analyzed here. And also review efficient algorithm for calculating the size corrected power of the test which can be used to compare the efficiency of the test. Also to test the randomness of generated random numbers. For this purpose, 1000 data sets with combinations of sample size n = 10, 20, 25, 30, 40, 50, 100, 200, 300 were generated from uniform distribution and tested by using different tests for randomness. The assessment of normality using statistical tests is sensitive to the sample size. Observed that with the increase of n, overall powers are increased but Shapiro Wilk (SW) test, Shapiro Francia (SF) test and Andeson Darling (AD) test are the most powerful test among other tests. Cramer-Von-Mises (CVM) test performs better than Pearson chi-square, Lilliefors test has better power than Jarque Bera (JB) Test. Jarque Bera (JB) Test is less powerful test among other tests.
基金the National Natural Science Foundation of China(Grant Nos.1137113911261029+1 种基金11001081)the Scientific Research Foundation of CUIT(Grant No.KYTZ201403)
文摘Let F be a family of meromorphic functions in D, and let ψ(≠ 0) be a meromorphic function in D all of whose poles are simple. Suppose that, for each f ∈ F, f ≠0 in D. If for each pair of functions {f, g} ∩ F, f′ and g′ share ψ in D, then F is normal in D.
文摘In this paper, we use Pang-Zalcman lemma to investigate the normal family of meromorphic functions concerning shared analytic function, which improves some earlier related results.
基金Foundation item: Supported by the NNSF of China(11071083) Supported by the National Natural Science Foundation of Tianyuan Foundation(11126267)
文摘Let F be a family of functions meromorphic in a domain D, let m, n k , k be three positive integers and b be a finite nonzero complex number. Suppose that, (1) for eachf∈F, all zeros of f have multiplicities at least k ; (2) for each pair of functions f, g ∈F,P(f)H(f) and P(g)H(g) share b, where P(f) and H(f) were defined as (1.1) and (1.2) and nk ≥ max 1≤i≤k-1 {n i }; (3) m ≥ 2 or nk ≥ 2, k ≥ 2, then F is normal in D.
文摘Let k be a positive integer,let h(z)■0 be a holomorphic functions in a domain D,and let F be a family of zero-free meromorphic functions in D,all of whose poles have order at least l.If,for each f∈P(f)(z)-h(z) has at most k+l-1 distinct zeros(ignoring multiplicity) in D,where P(f)(z)=f(k)(z)+a1(z)f((k-1)(z)+…+ak(z)f(z) is a differential polynomial of f and aj(z)(j=1,2,···,k) are holomorphic functions in D,then F is normal in D.
基金The NNSF (19871050) the RFDP (98042209) of China.
文摘Let f be a holomorphic function on a domain D (?) C, and let a be a finite complex number. We denote by Ef(α) = {z∈ D : f(z) = a, ignoring multiplicity} the set of all distinct α-points of f. Let F be a family of holomorphic functions on D. If there exist three finite values a, b(≠ 0, a) and c(≠0) such that for every f ∈ F, Ef(0) (?) Ef'(a) and Ef'(b)(?) Ef(c), then F is a normal family on D.