This work is concerned with a kind of optimal control problem for a size-structured biological population model.Well-posedness of the state system and an adjoint system are proved by means of Banach's fixed point the...This work is concerned with a kind of optimal control problem for a size-structured biological population model.Well-posedness of the state system and an adjoint system are proved by means of Banach's fixed point theorem.Existence and uniqueness of optimal control are shown by functional analytical approach.Optimality conditions describing the optimal strategy are established via tangent and normal cones technique.The results are of the first ones for this novel structure.展开更多
On the basis of analyzing some limitations in the existing algorithm, a modified Monte Carlo methodwas proposed to simulate two-dimensional normal grain growth. With the modified method. the simulated time exponent of...On the basis of analyzing some limitations in the existing algorithm, a modified Monte Carlo methodwas proposed to simulate two-dimensional normal grain growth. With the modified method. the simulated time exponent of grain growth attained n=0.49±0.01, which is very close to the theoretical value of the steady graingrowth n=0.5, indicating the possibility to investigate the total process of normal grain growth. The relationbetween the Hillert and the von Neumann equations were studied and identified, the Hillert's basic equation hasbeen found to hold during the normal grain growth. The grain size distribution was found to van continuouslyand slowly with the simulated time in the total growth process, the lognormal and the Hillert functions may betwo types of the expression forms during its transition, and the later seemingly corresponds at the distribution ofthe steady stage were n≈0.50.展开更多
Normal pressure hydrocephalus is a devious phenomenon. It is a disease that is difficult to diagnose and difficult to treat, the only treatment being a ventriculo-peritoneal shunt, though good shunting results rarely ...Normal pressure hydrocephalus is a devious phenomenon. It is a disease that is difficult to diagnose and difficult to treat, the only treatment being a ventriculo-peritoneal shunt, though good shunting results rarely pass a 70% level of effectiveness. We need to understand its pathophysiology better before things will improve. Although some colleagues know it as a possible “reversible dementia” others hardly know about its existence. Solutions would also have value for the general understanding of hydrocephalus of other types. Many theories have been published recently in the search for the missing pieces in this puzzle and I feel that my own postulations could turn out to be useful. After years of diagnosing and operating on hydrocephalus patients I propose that: 1) There is reason to believe that patients with the Apoprotein E3/3 genotype and a high head size percentile are particularly vulnerable to developing idiopathic normal pressure hydrocephalus (iNPH). 2) The classical theory that the arachnoid granulations (AG) transport cerebrospinal fluid (CSF) into the venous circulation is wrong. I postulate, that the AG essentially are sensors, registering the pressure differences between the CSF in the subarachnoidal space at the top of the skull and the venous pressure in the sagittal sinus. The AG’s endothelium produces nitric oxide (NO) as a messenger that is received by the vagus nerve at the jugular foramen. 3) The disease has its fundamental pathology in the subpial space in the large cisternas and along the large vessels under the brain. Here the intravenous absorption of cerebrospinal fluid (CSF) takes place. Cerebrospinal fluid is transported into the subpial venules and veins, driven by the pulse pressure of the subpial arteries. Morphological changes in the pial/subpial anatomy explain the existence of acquired normal pressure hydrocephalus (aNPH).展开更多
In this paper after analyzing the adaptation process of the proportionate normalized least mean square(PNLMS) algorithm, a statistical model is obtained to describe the convergence process of each adaptive filter coef...In this paper after analyzing the adaptation process of the proportionate normalized least mean square(PNLMS) algorithm, a statistical model is obtained to describe the convergence process of each adaptive filter coefcient. Inspired by this result, a modified PNLMS algorithm based on precise magnitude estimate is proposed. The simulation results indicate that in contrast to the traditional PNLMS algorithm, the proposed algorithm achieves faster convergence speed in the initial convergence state and lower misalignment in the stead stage with much less computational complexity.展开更多
基金Supported by the ZPNSFC (LY12A01023)the National Natural Science Foundation of China (11271104,11061017)
文摘This work is concerned with a kind of optimal control problem for a size-structured biological population model.Well-posedness of the state system and an adjoint system are proved by means of Banach's fixed point theorem.Existence and uniqueness of optimal control are shown by functional analytical approach.Optimality conditions describing the optimal strategy are established via tangent and normal cones technique.The results are of the first ones for this novel structure.
文摘On the basis of analyzing some limitations in the existing algorithm, a modified Monte Carlo methodwas proposed to simulate two-dimensional normal grain growth. With the modified method. the simulated time exponent of grain growth attained n=0.49±0.01, which is very close to the theoretical value of the steady graingrowth n=0.5, indicating the possibility to investigate the total process of normal grain growth. The relationbetween the Hillert and the von Neumann equations were studied and identified, the Hillert's basic equation hasbeen found to hold during the normal grain growth. The grain size distribution was found to van continuouslyand slowly with the simulated time in the total growth process, the lognormal and the Hillert functions may betwo types of the expression forms during its transition, and the later seemingly corresponds at the distribution ofthe steady stage were n≈0.50.
文摘Normal pressure hydrocephalus is a devious phenomenon. It is a disease that is difficult to diagnose and difficult to treat, the only treatment being a ventriculo-peritoneal shunt, though good shunting results rarely pass a 70% level of effectiveness. We need to understand its pathophysiology better before things will improve. Although some colleagues know it as a possible “reversible dementia” others hardly know about its existence. Solutions would also have value for the general understanding of hydrocephalus of other types. Many theories have been published recently in the search for the missing pieces in this puzzle and I feel that my own postulations could turn out to be useful. After years of diagnosing and operating on hydrocephalus patients I propose that: 1) There is reason to believe that patients with the Apoprotein E3/3 genotype and a high head size percentile are particularly vulnerable to developing idiopathic normal pressure hydrocephalus (iNPH). 2) The classical theory that the arachnoid granulations (AG) transport cerebrospinal fluid (CSF) into the venous circulation is wrong. I postulate, that the AG essentially are sensors, registering the pressure differences between the CSF in the subarachnoidal space at the top of the skull and the venous pressure in the sagittal sinus. The AG’s endothelium produces nitric oxide (NO) as a messenger that is received by the vagus nerve at the jugular foramen. 3) The disease has its fundamental pathology in the subpial space in the large cisternas and along the large vessels under the brain. Here the intravenous absorption of cerebrospinal fluid (CSF) takes place. Cerebrospinal fluid is transported into the subpial venules and veins, driven by the pulse pressure of the subpial arteries. Morphological changes in the pial/subpial anatomy explain the existence of acquired normal pressure hydrocephalus (aNPH).
文摘In this paper after analyzing the adaptation process of the proportionate normalized least mean square(PNLMS) algorithm, a statistical model is obtained to describe the convergence process of each adaptive filter coefcient. Inspired by this result, a modified PNLMS algorithm based on precise magnitude estimate is proposed. The simulation results indicate that in contrast to the traditional PNLMS algorithm, the proposed algorithm achieves faster convergence speed in the initial convergence state and lower misalignment in the stead stage with much less computational complexity.