Numerical analysis is carried out to study the sectional properties of the fiber-reinforced polymer(FRP)-confined reinforced concrete(RC)circular columns. The axial load ratio, the FRP confinement ratio and the lo...Numerical analysis is carried out to study the sectional properties of the fiber-reinforced polymer(FRP)-confined reinforced concrete(RC)circular columns. The axial load ratio, the FRP confinement ratio and the longitudinal reinforcement characteristic value are the three main parameters that can influence the neutral axis depth when concrete compression strain reaches an ultimate value. The formula for computing the central angle θ, corresponding to the compression zone, is established according to the data regression of the numerical analysis results. The numerical analysis results demonstrate that the concrete stress enhancement from transverse confinement and strain hardening of the longitudinal reinforcement can cause a much greater flexural strength than that defined by the design code. Based on the analytical studies and the test results of 36 large scale columns, the formula to calculate the flexural strength when columns fail under seismic loading is proposed, and the calculated results agree well with the test results. Finally, parametric studies are conducted on a typical column with different axial load ratios, longitudinal reinforcement characteristic value and FRP confinement ratios. Analysis of the results shows that the calculated flexural strength can be increased by 50% compared to that of unconfined columns defined by the code.展开更多
The emulsification of crude oil is caused by the oil flowing into the water,resulting in the increase of oil film tension,viscosity,water content,and volume,which brings great harm to the marine ecological environment...The emulsification of crude oil is caused by the oil flowing into the water,resulting in the increase of oil film tension,viscosity,water content,and volume,which brings great harm to the marine ecological environment and difficulties for the cleanup of marine emergency equipment.The realization observation of emulsification crude oil will increase the response speed of marine emergency response.Therefore,we set up crude oil emulsification samples to study the physical property in laboratory and conducted radar measurements at different incidence angles in outdoor.The radar is C band in resolution of 0.7 m by 0.7 m.A fully polarimetric scatterometer(HH,VV,and VH/HV)is mounted at 1.66 m(minimum altitude)height at an incidence angle between 35°and 60°.An asphalt content of less than 3%crude oil and the filtered seawater were used to the outdoor emulsification scattering experiment.The measurement results are as follows.The water content can be used to describe the process of emulsification and it is easy to measure.Wind speed,asphalt content,seawater temperature,and photo-oxidation affect the emulsifying process of crude oil,and affects the normalized radar cross section(NRCS)of oil film but wind is not the dominant factor.It is the first time to find that the emulsification of crude oil results in an increase of NRCS.展开更多
An appropriate Monte Carlo method was developed to simulate the three-dimensional normal grain growth more completely. Comparative investigation on the three-dimensional and the cross-sectional characteristics of norm...An appropriate Monte Carlo method was developed to simulate the three-dimensional normal grain growth more completely. Comparative investigation on the three-dimensional and the cross-sectional characteristics of normal grain growth was done. It was found that the time exponent of grain growth determined from cross-section exhibits the same rule of increasing slowly with time and approaching the theoretical value n = 0.5 of steadygrain growth as the three-dimensional (3-D) system. From change of the number of grains per unit area with timemeasured in cross-section, the state of 3-D normal grain growth may be predicted. The gtain size distribution incross-section is different from that in 3-D system and can not express the evolution characteristic of the 3-D distribution. Furthermore, there exists statistical connection between the topological parameters in cross-section and thosein three-dimensions.展开更多
The mechanical properties of rocks under cyclic and dynamic loading are important research topics for solving the structural stability of large engineering rocks. As underground mining in coal mines goes deeper, groun...The mechanical properties of rocks under cyclic and dynamic loading are important research topics for solving the structural stability of large engineering rocks. As underground mining in coal mines goes deeper, ground stresses are increasing and instability damage of coal rocks by shear loading is frequent. Therefore, in order to investigate the shear mechanical properties and section morphological characteristics of intact coal samples in the direct shear test, the RDS-200 rock direct shear instrument was used to carry out direct shear tests on intact coal samples under different normal stresses, and the shear section was scanned for three-dimensional morphology. The results show that: 1) from the strength characteristics, the peak shear strength of the coal samples increased linearly with increasing normal stress, and the residual shear strength increased logarithmically. 2) In terms of deformation characteristics, the peak shear displacement of the coal sample increases linearly with increasing normal stress, the pre-peak shear stiffness increases logarithmically, and the residual normal displacement decreases linearly. 3) From the morphological characteristics of the shear surface, with the increase of normal stress, the section transitions from high-order undulating to flattening type. The maximum height of the fracture surface profile and kurtosis coefficient of the shear section decreased linearly, and the profile area ratio and root mean square of slope decreased as a power function, i.e. the higher the normal stress, the smaller the undulation of the section, the sharpness of the roughness shape and the roughness coefficient JRC, and the flatter and smoother the section. The findings of this study can help to provide some reference for the evaluation of shear instability occurring in coal bodies under different normal stresses.展开更多
Differential equation of restrained torsion for rectangular-section box bar with honeycomb core was established and solved by using the method of undetermined function.Non-dimension normal stress, shear stress acting...Differential equation of restrained torsion for rectangular-section box bar with honeycomb core was established and solved by using the method of undetermined function.Non-dimension normal stress, shear stress acting in the faceplate and shear stress acting in the honeycomb-core and warping displacement were deduced. Numerical analysis shows the normal stress attenuates quickly along x-axis. Normal stress acting on the cross section at a distance of 20 h from the fixed end is only one per cent of that acting on the fixed end.展开更多
基金The National Basic Research Program of China (973 Program)(No.2007CB714200)the National Natural Science Foundationof China (No.50608015,50908102)
文摘Numerical analysis is carried out to study the sectional properties of the fiber-reinforced polymer(FRP)-confined reinforced concrete(RC)circular columns. The axial load ratio, the FRP confinement ratio and the longitudinal reinforcement characteristic value are the three main parameters that can influence the neutral axis depth when concrete compression strain reaches an ultimate value. The formula for computing the central angle θ, corresponding to the compression zone, is established according to the data regression of the numerical analysis results. The numerical analysis results demonstrate that the concrete stress enhancement from transverse confinement and strain hardening of the longitudinal reinforcement can cause a much greater flexural strength than that defined by the design code. Based on the analytical studies and the test results of 36 large scale columns, the formula to calculate the flexural strength when columns fail under seismic loading is proposed, and the calculated results agree well with the test results. Finally, parametric studies are conducted on a typical column with different axial load ratios, longitudinal reinforcement characteristic value and FRP confinement ratios. Analysis of the results shows that the calculated flexural strength can be increased by 50% compared to that of unconfined columns defined by the code.
基金Supported by the National Natural Science Foundation of China(No.41576032)the Major Program for the International Cooperation of the Chinese Academy of Sciences,China(No.133337KYSB20160002)partially supported by the National Natural Science Foundation of China(Nos.41576170,61371189)
文摘The emulsification of crude oil is caused by the oil flowing into the water,resulting in the increase of oil film tension,viscosity,water content,and volume,which brings great harm to the marine ecological environment and difficulties for the cleanup of marine emergency equipment.The realization observation of emulsification crude oil will increase the response speed of marine emergency response.Therefore,we set up crude oil emulsification samples to study the physical property in laboratory and conducted radar measurements at different incidence angles in outdoor.The radar is C band in resolution of 0.7 m by 0.7 m.A fully polarimetric scatterometer(HH,VV,and VH/HV)is mounted at 1.66 m(minimum altitude)height at an incidence angle between 35°and 60°.An asphalt content of less than 3%crude oil and the filtered seawater were used to the outdoor emulsification scattering experiment.The measurement results are as follows.The water content can be used to describe the process of emulsification and it is easy to measure.Wind speed,asphalt content,seawater temperature,and photo-oxidation affect the emulsifying process of crude oil,and affects the normalized radar cross section(NRCS)of oil film but wind is not the dominant factor.It is the first time to find that the emulsification of crude oil results in an increase of NRCS.
文摘An appropriate Monte Carlo method was developed to simulate the three-dimensional normal grain growth more completely. Comparative investigation on the three-dimensional and the cross-sectional characteristics of normal grain growth was done. It was found that the time exponent of grain growth determined from cross-section exhibits the same rule of increasing slowly with time and approaching the theoretical value n = 0.5 of steadygrain growth as the three-dimensional (3-D) system. From change of the number of grains per unit area with timemeasured in cross-section, the state of 3-D normal grain growth may be predicted. The gtain size distribution incross-section is different from that in 3-D system and can not express the evolution characteristic of the 3-D distribution. Furthermore, there exists statistical connection between the topological parameters in cross-section and thosein three-dimensions.
文摘The mechanical properties of rocks under cyclic and dynamic loading are important research topics for solving the structural stability of large engineering rocks. As underground mining in coal mines goes deeper, ground stresses are increasing and instability damage of coal rocks by shear loading is frequent. Therefore, in order to investigate the shear mechanical properties and section morphological characteristics of intact coal samples in the direct shear test, the RDS-200 rock direct shear instrument was used to carry out direct shear tests on intact coal samples under different normal stresses, and the shear section was scanned for three-dimensional morphology. The results show that: 1) from the strength characteristics, the peak shear strength of the coal samples increased linearly with increasing normal stress, and the residual shear strength increased logarithmically. 2) In terms of deformation characteristics, the peak shear displacement of the coal sample increases linearly with increasing normal stress, the pre-peak shear stiffness increases logarithmically, and the residual normal displacement decreases linearly. 3) From the morphological characteristics of the shear surface, with the increase of normal stress, the section transitions from high-order undulating to flattening type. The maximum height of the fracture surface profile and kurtosis coefficient of the shear section decreased linearly, and the profile area ratio and root mean square of slope decreased as a power function, i.e. the higher the normal stress, the smaller the undulation of the section, the sharpness of the roughness shape and the roughness coefficient JRC, and the flatter and smoother the section. The findings of this study can help to provide some reference for the evaluation of shear instability occurring in coal bodies under different normal stresses.
文摘Differential equation of restrained torsion for rectangular-section box bar with honeycomb core was established and solved by using the method of undetermined function.Non-dimension normal stress, shear stress acting in the faceplate and shear stress acting in the honeycomb-core and warping displacement were deduced. Numerical analysis shows the normal stress attenuates quickly along x-axis. Normal stress acting on the cross section at a distance of 20 h from the fixed end is only one per cent of that acting on the fixed end.