Guizhou Province is an important karst area in the world and a fragile ecological area in China. Ecological risk assessment is very necessary to be conducted in this region. This study investigates different character...Guizhou Province is an important karst area in the world and a fragile ecological area in China. Ecological risk assessment is very necessary to be conducted in this region. This study investigates different characteristics of the spatial-temporal changes of vegetation cover in Guizhou Province of Southern China using the data set of SPOT VEGETATION(1999–2015) at spatial resolution of 1-km and temporal resolution of 10-day. The coefficient of variation, the Theil-Sen median trend analysis, and the Mann-Kendall test are used to investigate the spatial-temporal change of vegetation cover and its future trend. Results show that: 1) the spatial distribution pattern of vegetation cover in Guizhou Plateau is high in the east whereas low in the west. The average annual normalized difference vegetation index(NDVI) from west to east is higher than that from south to north. 2) Average annual NDVI improved obviously in the past 17 years. The growth rate of average annual NDVI is 0.028/10 yr, which is slower than that of vegetation in the country(0.048/10 yr) from 1998 to 2007. Average annual NDVI in karst area is lower than that in non-karst area. However, the growing rate of average annual NDVI in karst area(0.030/10 yr) is faster than that in non-karst area(0.023/10 yr), indicating that vegetation coverage increases more rapidly in karst area. 3) Vegetation coverage in the study area is stable overall, but fluctuates in the local scales. 4) Vegetation coverage presents a continuous increasing trend. The Hurst exponent of NDVI in different vegetation types has an obvious threshold in various elevations. 5) The proportion of vegetation cover with sustainable increase is higher than that of vegetation cover with sustainable decrease. The improvement in vegetation cover may expand to most parts of the study area.展开更多
Manas River,the largest inland river to the north of the Tianshan Mountains,provides important water resources for human production and living.The seasonal snow cover and snowmelt play essential roles in the regulatio...Manas River,the largest inland river to the north of the Tianshan Mountains,provides important water resources for human production and living.The seasonal snow cover and snowmelt play essential roles in the regulation of spring runoff in the Manas River Basin(MRB).Snow cover is one of the most significant input parameters for obtaining accurate simulations and predictions of spring runoff.Therefore,it is especially important to extract snow-covered area correctly in the MRB.In this study,we qualitatively and quantitatively analyzed the uncertainties of snow cover extraction caused by the terrain factors and land cover types using TM and DEM data,along with the Per(the ratio of the difference between snow-covered area extracted by the Normalized Difference Snow Index(NDSI) method and visual interpretation method to the actual snow-covered area) and roughness.The results indicated that the difference of snow-covered area extracted by the two methods was primarily reflected in the snow boundary and shadowy areas.The value of Per varied significantly in different elevation zones.That is,the value generally presented a normal distribution with the increase of elevation.The peak value of Per occurred in the elevation zone of 3,700–4,200 m.Aspects caused the uncertainties of snow cover extraction with the order of sunny slope〉semi-shady and semi-sunny slope〉shady slope,due to the differences in solar radiation received by each aspect.Regarding the influences of various land cover types on snow cover extraction in the study area,bare rock was more influential on snow cover extraction than grassland.Moreover,shrub had the weakest impact on snow cover extraction.展开更多
Glaciers are highly sensitive to climate change and are undergoing significant changes in mid-latitudes.In this study,we analyzed the spatiotemporal changes of typical glaciers and their responses to climate change in...Glaciers are highly sensitive to climate change and are undergoing significant changes in mid-latitudes.In this study,we analyzed the spatiotemporal changes of typical glaciers and their responses to climate change in the period of 1990-2015 in 4 different mountainous sub-regions in Xinjiang Uygur Autonomous Region of Northwest China:the Bogda Peak and Karlik Mountain sub-regions in the Tianshan Mountains;the Yinsugaiti Glacier sub-region in the Karakorum Mountains;and the Youyi Peak sub-region in the Altay Mountains.The standardized snow cover index(NDSI)and correlation analysis were used to reveal the glacier area changes in the 4 sub-regions from 1990 to 2015.Glacial areas in the Bogda Peak,Karlik Mountain,Yinsugaiti Glacier,and Youyi Peak sub-regions in the period of 1990-2015 decreased by 57.7,369.1,369.1,and 170.4 km^(2),respectively.Analysis of glacier area center of gravity showed that quadrant changes of glacier areas in the 4 sub-regions moved towards the origin.Glacier area on the south aspect of the Karlik Mountain sub-region was larger than that on the north aspect,while glacier areas on the north aspect of the other 3 sub-regions were larger than those on the south aspect.Increased precipitation in the Karlik Mountain sub-region inhibited the retreat of glaciers to a certain extent.However,glacier area changes in the Bogda Peak and Youyi Peak sub-regions were not sensitive to the increased precipitation.On a seasonal time scale,glacier area changes in the Bogda Peak,Karlik Mountain,Yinsugaiti Glacier,and Youyi Peak sub-regions were mainly caused by accumulated temperature in the wet season;on an annual time scale,the correlation coefficient between glacier area and annual average temperature was-0.72 and passed the significance test at P<0.05 level in the Karlik Mountain sub-region.The findings of this study can provide a scientific basis for water resources management in the arid and semi-arid regions of Northwest China in the context of global warming.展开更多
Many studies showed that permafrost has profound influence on alpine ecosystem. However, former researches were mainly focused on typical points by temporal scales. There were few studies about the correlation between...Many studies showed that permafrost has profound influence on alpine ecosystem. However, former researches were mainly focused on typical points by temporal scales. There were few studies about the correlation between vegetation characteristics and different altitudes covering a large region in spatial pattern, especially in transitional permafrost(TP). There were continuous permafrost(CP) discontinuous permafrost(DCP) and seasonal frozen ground(SFG) in this study region. The types of permafrost changed from SFG to DCP, and finally become CP as the altitudes of Xidatan increase. In this paper, 112 845 points interpreted by HJ1-B(environment and disaster monitoring and prediction small satellite constellation), vegetation investigation points, thawing layer thickness research sites, ground temperature and water content observation plots were used to examine the spatial pattern of vegetation which were located in different altitudes in Xidatan, a typical TP region, in Qinghai-Tibetan Plateau. Vegetation characteristics, soil moisture content(SMC) and thaw depths were collected in 15 August to 25 August2012. Characteristics of vegetation were mainly represented by fractional vegetation cover(FVC) derived from the normalized difference vegetation index(NDVI), as well as above ground biomass(AGB). In this paper, we analyzed that the distinction of vegetation characteristics in each range through statistics data. These ranges were divided by varied altitudes. For examples, the ranges were divided into 50 m or 100 m. In this study we use a large area plots method to further discuss the relationship between the features of vegetation and the different regions of permafrost based on altitudes shifts in Xidatan. A diagram described the vegetation characteristics variability with rising altitudes in transitional permafrost region was drawn in this paper. Our results illustrated the FVCs first increased in SFG region and then decreased in DCP zone slowly, and in CP region FVCs soared then dropped dramatically. With the altitudes increased, the curve of FVCs indicated a parabolic distribution except a little difference in the first 200 m range.展开更多
Let Γ be a finite connected locally primitive Cayley graph of an abelian group.It is shown that one of the following holds:(1) Γ = Kn,Kn,n,Kn,n-nK2,Kn ×···× Kn;(2) Γ is the standard double ...Let Γ be a finite connected locally primitive Cayley graph of an abelian group.It is shown that one of the following holds:(1) Γ = Kn,Kn,n,Kn,n-nK2,Kn ×···× Kn;(2) Γ is the standard double cover of Kn ×···× Kn ;(3) Γ is a normal or a bi-normal Cayley graph of an elementary abelian or a meta-abelian 2-group.展开更多
In this paper, we investigate semisymmetric graphs of order 6p2 and of prime valency. First, we give a classification of the quasiprimitive permutation groups of degree dividing 3p2, and then, on the basis of the clas...In this paper, we investigate semisymmetric graphs of order 6p2 and of prime valency. First, we give a classification of the quasiprimitive permutation groups of degree dividing 3p2, and then, on the basis of the classification result, we prove that, for primes k and p, a connected graph Γ of order 6p2 and valency k is semisymmetric if and only if k = 3 and either Γ is the Gray graph, or p ≡ 1 (mod 6) and Γ is isomorphic to one known graph.展开更多
The authors investigate locally order 18p. It is shown that such a graph the Gray graph and the Tutte 12-cage. primitive bipartite regular connected graphs of is either arc-transitive or isomorphic to one of
基金Under the auspices of National Key Research Program of China(No.2016YFC0502300,2016YFC0502102,2014BAB03B00)National Key Research and Development Program(No.2014BAB03B02)+3 种基金Agricultural Science and Technology Key Project of Guizhou Province of China(No.2014-3039)Science and Technology Plan Projects of Guiyang Municipal Bureau of Science and Technology of China(No.2012-205)Science and Technology Plan of Guizhou Province of China(No.2012-6015)Guangxi Natural Science Foundation of China(No.2014GXNSFBA118221)
文摘Guizhou Province is an important karst area in the world and a fragile ecological area in China. Ecological risk assessment is very necessary to be conducted in this region. This study investigates different characteristics of the spatial-temporal changes of vegetation cover in Guizhou Province of Southern China using the data set of SPOT VEGETATION(1999–2015) at spatial resolution of 1-km and temporal resolution of 10-day. The coefficient of variation, the Theil-Sen median trend analysis, and the Mann-Kendall test are used to investigate the spatial-temporal change of vegetation cover and its future trend. Results show that: 1) the spatial distribution pattern of vegetation cover in Guizhou Plateau is high in the east whereas low in the west. The average annual normalized difference vegetation index(NDVI) from west to east is higher than that from south to north. 2) Average annual NDVI improved obviously in the past 17 years. The growth rate of average annual NDVI is 0.028/10 yr, which is slower than that of vegetation in the country(0.048/10 yr) from 1998 to 2007. Average annual NDVI in karst area is lower than that in non-karst area. However, the growing rate of average annual NDVI in karst area(0.030/10 yr) is faster than that in non-karst area(0.023/10 yr), indicating that vegetation coverage increases more rapidly in karst area. 3) Vegetation coverage in the study area is stable overall, but fluctuates in the local scales. 4) Vegetation coverage presents a continuous increasing trend. The Hurst exponent of NDVI in different vegetation types has an obvious threshold in various elevations. 5) The proportion of vegetation cover with sustainable increase is higher than that of vegetation cover with sustainable decrease. The improvement in vegetation cover may expand to most parts of the study area.
基金funded by the National Natural Science Foundation of China (91025001)the Key Project of the National Science and Technology (E0405/1112/05)
文摘Manas River,the largest inland river to the north of the Tianshan Mountains,provides important water resources for human production and living.The seasonal snow cover and snowmelt play essential roles in the regulation of spring runoff in the Manas River Basin(MRB).Snow cover is one of the most significant input parameters for obtaining accurate simulations and predictions of spring runoff.Therefore,it is especially important to extract snow-covered area correctly in the MRB.In this study,we qualitatively and quantitatively analyzed the uncertainties of snow cover extraction caused by the terrain factors and land cover types using TM and DEM data,along with the Per(the ratio of the difference between snow-covered area extracted by the Normalized Difference Snow Index(NDSI) method and visual interpretation method to the actual snow-covered area) and roughness.The results indicated that the difference of snow-covered area extracted by the two methods was primarily reflected in the snow boundary and shadowy areas.The value of Per varied significantly in different elevation zones.That is,the value generally presented a normal distribution with the increase of elevation.The peak value of Per occurred in the elevation zone of 3,700–4,200 m.Aspects caused the uncertainties of snow cover extraction with the order of sunny slope〉semi-shady and semi-sunny slope〉shady slope,due to the differences in solar radiation received by each aspect.Regarding the influences of various land cover types on snow cover extraction in the study area,bare rock was more influential on snow cover extraction than grassland.Moreover,shrub had the weakest impact on snow cover extraction.
基金sponsored by the National Key Research&Development Program of China(2017YFB0504204)the K.C.Wong Education Foundation(GJTD-2020-14)+1 种基金the International Collaboration Project of the Chinese Academy of Sciences(131965KYSB20200029)the New Water Resources Strategic Research Project in Southern Xinjiang Uygur Autonomous Region,China(403-1005-YBN-FT6I-8)。
文摘Glaciers are highly sensitive to climate change and are undergoing significant changes in mid-latitudes.In this study,we analyzed the spatiotemporal changes of typical glaciers and their responses to climate change in the period of 1990-2015 in 4 different mountainous sub-regions in Xinjiang Uygur Autonomous Region of Northwest China:the Bogda Peak and Karlik Mountain sub-regions in the Tianshan Mountains;the Yinsugaiti Glacier sub-region in the Karakorum Mountains;and the Youyi Peak sub-region in the Altay Mountains.The standardized snow cover index(NDSI)and correlation analysis were used to reveal the glacier area changes in the 4 sub-regions from 1990 to 2015.Glacial areas in the Bogda Peak,Karlik Mountain,Yinsugaiti Glacier,and Youyi Peak sub-regions in the period of 1990-2015 decreased by 57.7,369.1,369.1,and 170.4 km^(2),respectively.Analysis of glacier area center of gravity showed that quadrant changes of glacier areas in the 4 sub-regions moved towards the origin.Glacier area on the south aspect of the Karlik Mountain sub-region was larger than that on the north aspect,while glacier areas on the north aspect of the other 3 sub-regions were larger than those on the south aspect.Increased precipitation in the Karlik Mountain sub-region inhibited the retreat of glaciers to a certain extent.However,glacier area changes in the Bogda Peak and Youyi Peak sub-regions were not sensitive to the increased precipitation.On a seasonal time scale,glacier area changes in the Bogda Peak,Karlik Mountain,Yinsugaiti Glacier,and Youyi Peak sub-regions were mainly caused by accumulated temperature in the wet season;on an annual time scale,the correlation coefficient between glacier area and annual average temperature was-0.72 and passed the significance test at P<0.05 level in the Karlik Mountain sub-region.The findings of this study can provide a scientific basis for water resources management in the arid and semi-arid regions of Northwest China in the context of global warming.
基金Supported by National Natural Science Foundation of China(31260572)Special Fund for Science and Technology System Reform of Guizhou Province(Qian Ke He Z Zi[2012]4005)Guizhou Provincial Science and Technology Foundation(Qian Ke He J Zi[2013]2152)
文摘Many studies showed that permafrost has profound influence on alpine ecosystem. However, former researches were mainly focused on typical points by temporal scales. There were few studies about the correlation between vegetation characteristics and different altitudes covering a large region in spatial pattern, especially in transitional permafrost(TP). There were continuous permafrost(CP) discontinuous permafrost(DCP) and seasonal frozen ground(SFG) in this study region. The types of permafrost changed from SFG to DCP, and finally become CP as the altitudes of Xidatan increase. In this paper, 112 845 points interpreted by HJ1-B(environment and disaster monitoring and prediction small satellite constellation), vegetation investigation points, thawing layer thickness research sites, ground temperature and water content observation plots were used to examine the spatial pattern of vegetation which were located in different altitudes in Xidatan, a typical TP region, in Qinghai-Tibetan Plateau. Vegetation characteristics, soil moisture content(SMC) and thaw depths were collected in 15 August to 25 August2012. Characteristics of vegetation were mainly represented by fractional vegetation cover(FVC) derived from the normalized difference vegetation index(NDVI), as well as above ground biomass(AGB). In this paper, we analyzed that the distinction of vegetation characteristics in each range through statistics data. These ranges were divided by varied altitudes. For examples, the ranges were divided into 50 m or 100 m. In this study we use a large area plots method to further discuss the relationship between the features of vegetation and the different regions of permafrost based on altitudes shifts in Xidatan. A diagram described the vegetation characteristics variability with rising altitudes in transitional permafrost region was drawn in this paper. Our results illustrated the FVCs first increased in SFG region and then decreased in DCP zone slowly, and in CP region FVCs soared then dropped dramatically. With the altitudes increased, the curve of FVCs indicated a parabolic distribution except a little difference in the first 200 m range.
基金supported by National Natural Science Foundation of China (Grant Nos.10771132,11071210)Australia Research Council Discovery Grant
文摘Let Γ be a finite connected locally primitive Cayley graph of an abelian group.It is shown that one of the following holds:(1) Γ = Kn,Kn,n,Kn,n-nK2,Kn ×···× Kn;(2) Γ is the standard double cover of Kn ×···× Kn ;(3) Γ is a normal or a bi-normal Cayley graph of an elementary abelian or a meta-abelian 2-group.
文摘In this paper, we investigate semisymmetric graphs of order 6p2 and of prime valency. First, we give a classification of the quasiprimitive permutation groups of degree dividing 3p2, and then, on the basis of the classification result, we prove that, for primes k and p, a connected graph Γ of order 6p2 and valency k is semisymmetric if and only if k = 3 and either Γ is the Gray graph, or p ≡ 1 (mod 6) and Γ is isomorphic to one known graph.
基金supported by the National Natural Science Foundation of China(Nos.11271267,11371204)
文摘The authors investigate locally order 18p. It is shown that such a graph the Gray graph and the Tutte 12-cage. primitive bipartite regular connected graphs of is either arc-transitive or isomorphic to one of