期刊文献+
共找到216篇文章
< 1 2 11 >
每页显示 20 50 100
Nonparametric statistical analysis of system resilience migration and application for electric distribution structures
1
作者 ZhiQiang Chen Prativa Sharma 《Resilient Cities and Structures》 2024年第3期92-105,共14页
This paper proposes a set of nonparametric statistical tools for analyzing the system resilience of civil structures and infrastructure and its migration upon changes in critical system parameters.The work is founded ... This paper proposes a set of nonparametric statistical tools for analyzing the system resilience of civil structures and infrastructure and its migration upon changes in critical system parameters.The work is founded on the classic theoretic framework that system resilience is defined in multiple dimensions for a constructed system.Consequentially,system resilience can lose its parametric form as a random variable,falling into the realm of nonparametric statistics.With this nonparametric shift,traditional distribution-based statistics are ineffective in characterizing the migration of system resilience due to the variation of system parameters.Three statistical tools are proposed under the nonparametric statistical resilience analysis(npSRA)framework,including nonparametric copula-based sensitivity analysis,two-sample resilience test analysis,and a novel tool for resilience attenuation analysis.To demonstrate the use of this framework,we focus on electric distribution systems,commonly found in many urban,suburban,and rural areas and vulnerable to tropical storms.A novel procedure for considering resourcefulness parameters in the socioeconomic space is proposed.Numerical results reveal the complex sta-tistical relations between the distributions of system resilience,physical aging,and socioeconomic parameters for the power distribution system.The proposed resilience distance computing and resilience attenuation anal-ysis further suggests two proper nonparametric distance metrics,the Earth Moving Distance(EMD)metric and the Cramévon Mises(CVM)metric,for characterizing the migration of system resilience for electric distribution systems. 展开更多
关键词 RESILIENCE Electric distribution Statistical distance RESOURCEFULNESS nonparametric statistics
在线阅读 下载PDF
Data-driven Nonparametric Model Adaptive Precision Control for Linear Servo Systems 被引量:2
2
作者 Rong-Min Cao Zhong-Sheng Hou Hui-Xing Zhou 《International Journal of Automation and computing》 EI CSCD 2014年第5期517-526,共10页
Nowadays, high-precision motion controls are needed in modern manufacturing industry. A data-driven nonparametric model adaptive control(NMAC) method is proposed in this paper to control the position of a linear servo... Nowadays, high-precision motion controls are needed in modern manufacturing industry. A data-driven nonparametric model adaptive control(NMAC) method is proposed in this paper to control the position of a linear servo system. The controller design requires no information about the structure of linear servo system, and it is based on the estimation and forecasting of the pseudo-partial derivatives(PPD) which are estimated according to the voltage input and position output of the linear motor. The characteristics and operational mechanism of the permanent magnet synchronous linear motor(PMSLM) are introduced, and the proposed nonparametric model control strategy has been compared with the classic proportional-integral-derivative(PID) control algorithm. Several real-time experiments on the motion control system incorporating a permanent magnet synchronous linear motor showed that the nonparametric model adaptive control method improved the system s response to disturbances and its position-tracking precision, even for a nonlinear system with incompletely known dynamic characteristics. 展开更多
关键词 Data-driven control nonparametric model adaptive control precision motion control permanent magnet synchronous linear motor ROBUSTNESS
原文传递
Nonparametric estimation for hazard rate monotonously decreasing system 被引量:1
3
作者 HanFengyan LiWeisong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期220-223,共4页
Estimation of density and hazard rate is very important to the reliability analysis of a system. In order to estimate the density and hazard rate of a hazard rate monotonously decreasing system, a new nonparametric es... Estimation of density and hazard rate is very important to the reliability analysis of a system. In order to estimate the density and hazard rate of a hazard rate monotonously decreasing system, a new nonparametric estimator is put forward. The estimator is based on the kernel function method and optimum algorithm. Numerical experiment shows that the method is accurate enough and can be used in many cases. 展开更多
关键词 RELIABILITY hazard rate nonparametric estimation monotonously decreasing.
在线阅读 下载PDF
Dynamic Analysis of Geared Rotor System with Hybrid Uncertainties
4
作者 Wei Feng Luji Wu +3 位作者 Yanxu Liu Baoguo Liu Zongyao Liu Kun Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第5期248-257,共10页
Current research on the dynamics and vibrations of geared rotor systems primarily focuses on deterministic models.However,uncertainties inevitably exist in the gear system,which cause uncertainties in system parameter... Current research on the dynamics and vibrations of geared rotor systems primarily focuses on deterministic models.However,uncertainties inevitably exist in the gear system,which cause uncertainties in system parameters and subsequently influence the accurate evaluation of system dynamic behavior.In this study,a dynamic model of a geared rotor system with mixed parameters and model uncertainties is proposed.Initially,the dynamic model of the geared rotor-bearing system with deterministic parameters is established using a finite element method.Subsequently,a nonparametric method is introduced to model the hybrid uncertainties in the dynamic model.Deviation coefficients and dispersion parameters are used to reflect the levels of parameter and model uncertainty.For example,the study evaluates the effects of uncertain bearing and mesh stiffness on the vibration responses of a geared rotor system.The results demonstrate that the influence of uncertainty varies among different model types.Model uncertainties have a more significant than parametric uncertainties,whereas hybrid uncertainties increase the nonlinearities and complexities of the system’s dynamic responses.These findings provide valuable insights into understanding the dynamic behavior of geared system with hybrid uncertainties. 展开更多
关键词 Geared rotor system Dynamic response Hybrid uncertainty nonparametric modeling
在线阅读 下载PDF
Nonparametric Statistical Feature Scaling Based Quadratic Regressive Convolution Deep Neural Network for Software Fault Prediction
5
作者 Sureka Sivavelu Venkatesh Palanisamy 《Computers, Materials & Continua》 SCIE EI 2024年第3期3469-3487,共19页
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software w... The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods. 展开更多
关键词 Software defect prediction feature selection nonparametric statistical Torgerson-Gower scaling technique quadratic censored regressive convolution deep neural network softstep activation function nelder-mead method
在线阅读 下载PDF
Nonparametric Estimation of the Trend Function for Stochastic Processes Driven by Fractional Brownian Motion of the Second Kind
6
作者 WANG Yihan ZHANG Xuekang 《应用数学》 北大核心 2024年第4期885-892,共8页
The present paper deals with the problem of nonparametric kernel density estimation of the trend function for stochastic processes driven by fractional Brownian motion of the second kind.The consistency,the rate of co... The present paper deals with the problem of nonparametric kernel density estimation of the trend function for stochastic processes driven by fractional Brownian motion of the second kind.The consistency,the rate of convergence,and the asymptotic normality of the kernel-type estimator are discussed.Besides,we prove that the rate of convergence of the kernel-type estimator depends on the smoothness of the trend of the nonperturbed system. 展开更多
关键词 nonparametric estimation Fractional Brownian motion Uniform consistency Asymptotic normality
在线阅读 下载PDF
A Practical Guide to Statistical Tests in the Biomedical Field: From Parametric to Nonparametric, Where and How?
7
作者 Adil Gourinda Hicham El Bouri +5 位作者 Faïza Charif Zaynab Mahdi Fadila Bousgheiri Karima Sammoud Saloua Lemrabett Adil Najdi 《Journal of Biosciences and Medicines》 2024年第11期1-14,共14页
Healthcare decisions are based on scientific evidence obtained from medical studies by gathering data and analyzing it to obtain the best results. When analyzing data, biostatistics is a powerful tool, but healthcare ... Healthcare decisions are based on scientific evidence obtained from medical studies by gathering data and analyzing it to obtain the best results. When analyzing data, biostatistics is a powerful tool, but healthcare professionals lack knowledge in this field. This lack of knowledge can manifest itself in situations such as choosing the wrong statistical test for the right situation or applying a statistical test without checking its assumptions, leading to inaccurate results and misleading conclusions. With the help of this “narrative review”, the aim is to bring biostatistics closer to healthcare professionals by answering certain questions: how to describe the distribution of data? how to assess the normality of data? how to transform data? and how to choose between nonparametric and parametric tests? Through this work, our hope is that the reader will be able to choose the right test for the right situation, in order to obtain the most accurate results. 展开更多
关键词 Teaching Statistics Distribution NORMALITY TRANSFORMATION nonparametric Test Parametric Test
在线阅读 下载PDF
Nonparametric Feature Screening via the Variance of the Regression Function
8
作者 Won Chul Song Michael G. Akritas 《Open Journal of Statistics》 2024年第4期413-438,共26页
This article develops a procedure for screening variables, in ultra high-di- mensional settings, based on their predictive significance. This is achieved by ranking the variables according to the variance of their res... This article develops a procedure for screening variables, in ultra high-di- mensional settings, based on their predictive significance. This is achieved by ranking the variables according to the variance of their respective marginal regression functions (RV-SIS). We show that, under some mild technical conditions, the RV-SIS possesses a sure screening property, which is defined by Fan and Lv (2008). Numerical comparisons suggest that RV-SIS has competitive performance compared to other screening procedures, and outperforms them in many different model settings. 展开更多
关键词 Sure Independence Screening nonparametric Regression Ultrahigh-Dimensional Data Variable Selection
在线阅读 下载PDF
Modulation classification of MPSK signals based on nonparametric Bayesian inference
9
作者 陈亮 程汉文 吴乐南 《Journal of Southeast University(English Edition)》 EI CAS 2009年第2期171-174,共4页
A nonparametric Bayesian method is presented to classify the MPSK (M-ary phase shift keying) signals. The MPSK signals with unknown signal noise ratios (SNRs) are modeled as a Gaussian mixture model with unknown m... A nonparametric Bayesian method is presented to classify the MPSK (M-ary phase shift keying) signals. The MPSK signals with unknown signal noise ratios (SNRs) are modeled as a Gaussian mixture model with unknown means and covariances in the constellation plane, and a clustering method is proposed to estimate the probability density of the MPSK signals. The method is based on the nonparametric Bayesian inference, which introduces the Dirichlet process as the prior probability of the mixture coefficient, and applies a normal inverse Wishart (NIW) distribution as the prior probability of the unknown mean and covariance. Then, according to the received signals, the parameters are adjusted by the Monte Carlo Markov chain (MCMC) random sampling algorithm. By iterations, the density estimation of the MPSK signals can be estimated. Simulation results show that the correct recognition ratio of 2/4/8PSK is greater than 95% under the condition that SNR 〉5 dB and 1 600 symbols are used in this method. 展开更多
关键词 modulation classification M-ary phase shift keying Dirichlet process nonparametric Bayesian inference Monte Carlo Markov chain
在线阅读 下载PDF
DIAGNOSTIC CHECKING FOR TIME SERIES MODELS USING NONPARAMETRIC APPROACH
10
作者 钟登华 尼伯伦丁 《Transactions of Tianjin University》 EI CAS 1997年第1期45-49,共5页
In time series modeling, the residuals are often checked for white noise and normality. In practice, the useful tests are Ljung Box test. Mcleod Li test and Lin Mudholkar test. In this paper, we present a nonparame... In time series modeling, the residuals are often checked for white noise and normality. In practice, the useful tests are Ljung Box test. Mcleod Li test and Lin Mudholkar test. In this paper, we present a nonparametric approach for checking the residuals of time series models. This approach is based on the maximal correlation coefficient ρ 2 * between the residuals and time t . The basic idea is to use the bootstrap to form the null distribution of the statistic ρ 2 * under the null hypothesis H 0:ρ 2 * =0. For calculating ρ 2 * , we proposes a ρ algorithm, analogous to ACE procedure. Power study shows this approach is more powerful than Ljung Box test. Meanwhile, some numerical results and two examples are reported in this paper. 展开更多
关键词 BOOTSTRAP diagnostic checking nonparametric approach time series white noise ρ algorithm
在线阅读 下载PDF
Comparison of the Statistical Power of Siegel-Tukey and Savage Tests: A Study with Monte Carlo Simulation
11
作者 Elnur Hasan Mikail HakanÇora Sahib Ramazanov 《Economics World》 2025年第2期95-105,共11页
This study presents the results of a Monte Carlo simulation to compare the statistical power of Siegel-Tukey and Savage tests.The main purpose of the study is to evaluate the statistical power of both tests in scenari... This study presents the results of a Monte Carlo simulation to compare the statistical power of Siegel-Tukey and Savage tests.The main purpose of the study is to evaluate the statistical power of both tests in scenarios involving Normal,Platykurtic and Skewed distributions over different sample sizes and standard deviation values.In the study,standard deviation ratios were set as 2,3,4,1/2,1/3 and 1/4 and power comparisons were made between small and large sample sizes.For equal sample sizes,small sample sizes of 5,8,10,12,16 and 20 and large sample sizes of 25,50,75 and 100 were used.For different sample sizes,the combinations of(4,16),(8,16),(10,20),(16,4),(16,8)and(20,10)small sample sizes and(10,30),(30,10),(50,75),(50,100),(75,50),(75,100),(100,50)and(100,75)large sample sizes were examined in detail.According to the findings,the power analysis under variance heterogeneity conditions shows that the Siegel-Tukey test has a higher statistical power than the other nonparametric Savage test at small and large sample sizes.In particular,the Siegel-Tukey test was reported to offer higher precision and power under variance heterogeneity,regardless of having equal or different sample sizes. 展开更多
关键词 nonparametric test statistical power Siegel-Tukey test Savage test Monte Carlo simulation
在线阅读 下载PDF
PPFormer:Patch Prototype Transformer for Semantic Segmentation
12
作者 Shanyuan Liu Yonggang Lu 《Journal of Beijing Institute of Technology》 2025年第4期405-417,共13页
Since the introduction of vision Transformers into the computer vision field,many vision tasks such as semantic segmentation tasks,have undergone radical changes.Although Transformer enhances the correlation of each l... Since the introduction of vision Transformers into the computer vision field,many vision tasks such as semantic segmentation tasks,have undergone radical changes.Although Transformer enhances the correlation of each local feature of an image object in the hidden space through the attention mechanism,it is difficult for a segmentation head to accomplish the mask prediction for dense embedding of multi-category and multi-local features.We present patch prototype vision Transformer(PPFormer),a Transformer architecture for semantic segmentation based on knowledge-embedded patch prototypes.1)The hierarchical Transformer encoder can generate multi-scale and multi-layered patch features including seamless patch projection to obtain information of multiscale patches,and feature-clustered self-attention to enhance the interplay of multi-layered visual information with implicit position encodes.2)PPFormer utilizes a non-parametric prototype decoder to extract region observations which represent significant parts of the objects by unlearnable patch prototypes and then calculate similarity between patch prototypes and pixel embeddings.The proposed contrasting patch prototype alignment module,which uses new patch prototypes to update prototype bank,effectively maintains class boundaries for prototypes.For different application scenarios,we have launched PPFormer-S,PPFormer-M and PPFormer-L by expanding the scale.Experimental results demonstrate that PPFormer can outperform fully convolutional networks(FCN)-and attention-based semantic segmentation models on the PASCAL VOC 2012,ADE20k,and Cityscapes datasets. 展开更多
关键词 hierarchical backbones patch prototype nonparametric learning semantic segmentation
在线阅读 下载PDF
Nonparametric Control Scheme for Monitoring Phase Ⅱ Nonlinear Profiles with Varied Argument Values 被引量:6
13
作者 ZHANG Yang HE Zhen +1 位作者 FANG Juntao ZHANG Min 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第3期587-597,共11页
Profile monitoring is used to check the stability of the quality of a product over time when the product quality is best represented by a function at each time point.However,most previous monitoring approaches have no... Profile monitoring is used to check the stability of the quality of a product over time when the product quality is best represented by a function at each time point.However,most previous monitoring approaches have not considered that the argument values may vary from profile to profile,which is common in practice.A novel nonparametric control scheme based on profile error is proposed for monitoring nonlinear profiles with varied argument values.The proposed scheme uses the metrics of profile error as the statistics to construct the control charts.More details about the design of this nonparametric scheme are also discussed.The monitoring performance of the combined control scheme is compared with that of alternative nonparametric methods via simulation.Simulation studies show that the combined scheme is effective in detecting parameter error and is sensitive to small shifts in the process.In addition,due to the properties of the charting statistics,the out-of-control signal can provide diagnostic information for the users.Finally,the implementation steps of the proposed monitoring scheme are given and applied for monitoring the blade manufacturing process.With the application in blade manufacturing of aircraft engines,the proposed nonparametric control scheme is effective,interpretable,and easy to apply. 展开更多
关键词 statistical process control profile monitoring nonparametric metric profile error
在线阅读 下载PDF
Strong Convergence of Partitioning Estimation for Nonparametric Regression Function under Dependence Samples 被引量:4
14
作者 LING Neng-xiang DU Xue-qiao 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2005年第1期28-33,共6页
In this paper, we study the strong consistency for partitioning estimation of regression function under samples that axe φ-mixing sequences with identically distribution.Key words: nonparametric regression function; ... In this paper, we study the strong consistency for partitioning estimation of regression function under samples that axe φ-mixing sequences with identically distribution.Key words: nonparametric regression function; partitioning estimation; strong convergence;φ-mixing sequences. 展开更多
关键词 nonparametric regression function partitioning estimation strong convergence φ-mixing sequences
在线阅读 下载PDF
NONPARAMETRIC DETECTION OF RADAR TARGET IN NONHOMOGENEOUS ENVIRONMENTS 被引量:3
15
作者 Mohamed B. El Mashade Abdel Aty Moussa(Electrical Engineering Dept., Faculty of Engineering, AI Azhar University. Nasr City, Cairo. Egypt) 《Journal of Electronics(China)》 1998年第4期302-313,共12页
This poaper is devoted to the performance evaluation of the Generalized Sigu(GS). Trimmed Generalized Sign(TGS), Modified Savage(MS). Mann-Whitney(MW) and a new proposed detector in multiple target situations. The ana... This poaper is devoted to the performance evaluation of the Generalized Sigu(GS). Trimmed Generalized Sign(TGS), Modified Savage(MS). Mann-Whitney(MW) and a new proposed detector in multiple target situations. The analysis is carried out for both fluctuating and nonfluctuating received signals. The simulation results show that the new proposed detector has the best detection performance in homogeneous as well as nonhomogeneous background conditions, while TGS procedure is better than the GS detector in distinguishing the primary target from the secondary interfering ones. 展开更多
关键词 RADAR system nonparametric detection: Nonhumogeneous environments
在线阅读 下载PDF
Using Evolutionary Computation to Solve Problems in Nonparametric Regression 被引量:2
16
作者 Ding Lixin Kang Lishan +1 位作者 Chen Yuping Pan Zhengjun 《Wuhan University Journal of Natural Sciences》 EI CAS 1998年第1期27-31,共5页
This paper studies evolutionary mechanism of parameter selection in the construction of weight function for Nearest Neighbour Estimate in nonparametric regression. Construct an algorithm which adaptively evolves fine ... This paper studies evolutionary mechanism of parameter selection in the construction of weight function for Nearest Neighbour Estimate in nonparametric regression. Construct an algorithm which adaptively evolves fine weight and makes good prediction about unknown points. The numerical experiments indicate that this method is effective. It is a meaningful discussion about practicability of nonparametric regression and methodology of adaptive model-building. 展开更多
关键词 nonparametric regression Nearest Neighbour Estimate evolutionary computation nonhomogeneous selection adaptive model-building
在线阅读 下载PDF
Nonparametric estimations of the sea state bias for a radar altimeter 被引量:1
17
作者 MIAO Hongli JING Yujie +3 位作者 JIA Yongjun LIN Mingsen ZHANG Guoshou WANG Guizhong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第9期108-113,共6页
To estimate the sea state bias(SSB) for radar altimeter, two nonparametric models, including a Nadaraya-Watson(NW) kernel estimator and a local linear regression(LLR) estimator, are studied based on the Jason-2 ... To estimate the sea state bias(SSB) for radar altimeter, two nonparametric models, including a Nadaraya-Watson(NW) kernel estimator and a local linear regression(LLR) estimator, are studied based on the Jason-2 altimeter data. Selecting from different combinations of the Gaussian kernel function, spherical Epanechnikov kernel function, a fixed bandwidth and a local adjustable bandwidth, it is observed that the LLR method with the spherical Epanechnikov kernel function and the local adjustable bandwidth is the optimal nonparametric model for the SSB estimation. The comparisons between the nonparametric and parametric models are conducted and the results show that the nonparametric model performs relatively better at high-latitudes of the Northern Hemisphere. This method has been applied to the HY-2A altimeter as well and the same conclusion can be obtained. 展开更多
关键词 radar altimeter sea state bias significant wave height wind speed nonparametric model parametric model
在线阅读 下载PDF
BOOTSTRAP WAVELET IN THE NONPARAMETRIC REGRESSION MODEL WITH WEAKLY DEPENDENT PROCESSES 被引量:1
18
作者 林路 张润楚 《Acta Mathematica Scientia》 SCIE CSCD 2004年第1期61-70,共10页
This paper introduces a method of bootstrap wavelet estimation in a non-parametric regression model with weakly dependent processes for both fixed and random designs. The asymptotic bounds for the bias and variance of... This paper introduces a method of bootstrap wavelet estimation in a non-parametric regression model with weakly dependent processes for both fixed and random designs. The asymptotic bounds for the bias and variance of the bootstrap wavelet estimators are given in the fixed design model. The conditional normality for a modified version of the bootstrap wavelet estimators is obtained in the fixed model. The consistency for the bootstrap wavelet estimator is also proved in the random design model. These results show that the bootstrap wavelet method is valid for the model with weakly dependent processes. 展开更多
关键词 nonparametric regression weakly dependent process BOOTSTRAP WAVELET
在线阅读 下载PDF
Floating Car Data Based Nonparametric Regression Model for Short-Term Travel Speed Prediction 被引量:2
19
作者 翁剑成 扈中伟 +1 位作者 于泉 任福田 《Journal of Southwest Jiaotong University(English Edition)》 2007年第3期223-230,共8页
A K-nearest neighbor (K-NN) based nonparametric regression model was proposed to predict travel speed for Beijing expressway. By using the historical traffic data collected from the detectors in Beijing expressways,... A K-nearest neighbor (K-NN) based nonparametric regression model was proposed to predict travel speed for Beijing expressway. By using the historical traffic data collected from the detectors in Beijing expressways, a specically designed database was developed via the processes including data filtering, wavelet analysis and clustering. The relativity based weighted Euclidean distance was used as the distance metric to identify the K groups of nearest data series. Then, a K-NN nonparametric regression model was built to predict the average travel speeds up to 6 min into the future. Several randomly selected travel speed data series, collected from the floating car data (FCD) system, were used to validate the model. The results indicate that using the FCD, the model can predict average travel speeds with an accuracy of above 90%, and hence is feasible and effective. 展开更多
关键词 K-Nearest neighbor Short-term prediction Travel speed nonparametric regression Intelligence transportation system ITS Floating car data (FCD)
在线阅读 下载PDF
Nonparametric TOA estimators for low-resolution IR-UWB digital receiver 被引量:1
20
作者 Yanlong Zhang Weidong Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第1期26-31,共6页
Nonparametric time-of-arrival(TOA) estimators for impulse radio ultra-wideband(IR-UWB) signals are proposed. Nonparametric detection is obviously useful in situations where detailed information about the statistic... Nonparametric time-of-arrival(TOA) estimators for impulse radio ultra-wideband(IR-UWB) signals are proposed. Nonparametric detection is obviously useful in situations where detailed information about the statistics of the noise is unavailable or not accurate. Such TOA estimators are obtained based on conditional statistical tests with only a symmetry distribution assumption on the noise probability density function. The nonparametric estimators are attractive choices for low-resolution IR-UWB digital receivers which can be implemented by fast comparators or high sampling rate low resolution analog-to-digital converters(ADCs),in place of high sampling rate high resolution ADCs which may not be available in practice. Simulation results demonstrate that nonparametric TOA estimators provide more effective and robust performance than typical energy detection(ED) based estimators. 展开更多
关键词 conditional test nonparametric estimator time-of-arrival(TOA) low-resolution
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部