期刊文献+
共找到213篇文章
< 1 2 11 >
每页显示 20 50 100
Testing heteroscedasticity in nonparametric regression models based on residual analysis 被引量:1
1
作者 ZHANG Lei MEI Chang-lin 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2008年第3期265-272,共8页
The importance of detecting heteroscedasticity in regression analysis is widely recognized because efficient inference for the regression function requires that heteroscedasticity should be taken into account. In this... The importance of detecting heteroscedasticity in regression analysis is widely recognized because efficient inference for the regression function requires that heteroscedasticity should be taken into account. In this paper, a simple test for heteroscedasticity is proposed in nonparametric regression based on residual analysis. Furthermore, some simulations with a comparison with Dette and Munk's method are conducted to evaluate the performance of the proposed test. The results demonstrate that the method in this paper performs quite satisfactorily and is much more powerful than Dette and Munk's method in some cases. 展开更多
关键词 HETEROSCEDASTICITY nonparametric regression residual analysis
在线阅读 下载PDF
Robust Classification through a Nonparametric Kernel Discriminant Analysis 被引量:1
2
作者 Macdonald G. Obudho George O. Orwa +1 位作者 Romanus O. Otieno Festus A. Were 《Open Journal of Statistics》 2022年第4期443-455,共13页
The problem of classification in situations where the assumption of normality in the data is violated, and there are non-linear clustered structures in the dataset is addressed. A robust nonparametric kernel discrimin... The problem of classification in situations where the assumption of normality in the data is violated, and there are non-linear clustered structures in the dataset is addressed. A robust nonparametric kernel discriminant classification function, which is able to address this challenge, has been developed and the misclassification rates computed for various bandwidth matrices. A comparison with existing parametric classification functions such as the linear discriminant and quadratic discriminant is conducted to evaluate the performance of this classification function using simulated datasets. The results presented in this paper show good performance in terms of misclassification rates for the kernel discriminant classifier when the correct bandwidth is selected as compared to other identified existing classifiers. In this regard, the study recommends the use of the proposed kernel discriminant classification rule when one wishes to classify units into one of several categories or population groups where parametric classifiers might not be applicable. 展开更多
关键词 Discriminant analysis Kernel Discriminant nonparametric
在线阅读 下载PDF
Discriminant embedding by sparse representation and nonparametric discriminant analysis for face recognition
3
作者 杜春 周石琳 +2 位作者 孙即祥 孙浩 王亮亮 《Journal of Central South University》 SCIE EI CAS 2013年第12期3564-3572,共9页
A novel supervised dimensionality reduction algorithm, named discriminant embedding by sparse representation and nonparametric discriminant analysis(DESN), was proposed for face recognition. Within the framework of DE... A novel supervised dimensionality reduction algorithm, named discriminant embedding by sparse representation and nonparametric discriminant analysis(DESN), was proposed for face recognition. Within the framework of DESN, the sparse local scatter and multi-class nonparametric between-class scatter were exploited for within-class compactness and between-class separability description, respectively. These descriptions, inspired by sparse representation theory and nonparametric technique, are more discriminative in dealing with complex-distributed data. Furthermore, DESN seeks for the optimal projection matrix by simultaneously maximizing the nonparametric between-class scatter and minimizing the sparse local scatter. The use of Fisher discriminant analysis further boosts the discriminating power of DESN. The proposed DESN was applied to data visualization and face recognition tasks, and was tested extensively on the Wine, ORL, Yale and Extended Yale B databases. Experimental results show that DESN is helpful to visualize the structure of high-dimensional data sets, and the average face recognition rate of DESN is about 9.4%, higher than that of other algorithms. 展开更多
关键词 dimensionality reduction sparse representation nonparametric discriminant analysis
在线阅读 下载PDF
A nonparametric spectrum estimation method for dispersion and attenuation analysis of borehole acoustic measurements
4
作者 Bing Wang Wei Li +1 位作者 Qing Ye Kun-Yu Ma 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期241-248,共8页
Dispersion and attenuation analysis can be used to determine formation anisotropy induced by fractures,or stresses.In this paper,we propose a nonparametric spectrum estimation method to get phase dispersion characteri... Dispersion and attenuation analysis can be used to determine formation anisotropy induced by fractures,or stresses.In this paper,we propose a nonparametric spectrum estimation method to get phase dispersion characteristics and attenuation coefficient.By designing an appropriate vector filter,phase velocity,attenuation coefficient and amplitude can be inverted from the waveform recorded by the receiver array.Performance analysis of this algorithm is compared with Extended Prony Method(EPM)and Forward and Backward Matrix Pencil(FBMP)method.Based on the analysis results,the proposed method is capable of achieving high resolution and precision as the parametric spectrum estimation methods.At the meantime,it also keeps high stability as the other nonparametric spectrum estimation methods.At last,applications to synthetic waveforms modeled using finite difference method and real data show its efficiency.The real data processing results show that the P-wave attenuation log is more sensitive to oil formation compared to S-wave;and the S-wave attenuation log is more sensitive to shale formation compared to P-wave. 展开更多
关键词 Dispersion analysis Attenuation factor nonparametric spectrum estimation method Acoustic logging Fluid type evaluation
原文传递
Change-Point Detection for General Nonparametric Regression Models 被引量:1
5
作者 Murray D. Burke Gildas Bewa 《Open Journal of Statistics》 2013年第4期261-267,共7页
A number of statistical tests are proposed for the purpose of change-point detection in a general nonparametric regression model under mild conditions. New proofs are given to prove the weak convergence of the underly... A number of statistical tests are proposed for the purpose of change-point detection in a general nonparametric regression model under mild conditions. New proofs are given to prove the weak convergence of the underlying processes which assume remove the stringent condition of bounded total variation of the regression function and need only second moments. Since many quantities, such as the regression function, the distribution of the covariates and the distribution of the errors, are unspecified, the results are not distribution-free. A weighted bootstrap approach is proposed to approximate the limiting distributions. Results of a simulation study for this paper show good performance for moderate samples sizes. 展开更多
关键词 change-point Detection nonparametric Regression MODELS WEIGHTED BOOTSTRAP
在线阅读 下载PDF
Trade, financial development and the environment: analysis of BRI countries having direct connectivity with China
6
作者 Muhammad Salam Xu Yingzhi +1 位作者 Muhammad Zubair Chishti Muhammad Kamran Khan 《Financial Innovation》 2025年第1期3008-3036,共29页
The number of countries participating in China’s Belt and Road Initiative(BRI)has been increasing since its official launch in 2013.Although the number of BRI participating countries has reached 145,only some are dir... The number of countries participating in China’s Belt and Road Initiative(BRI)has been increasing since its official launch in 2013.Although the number of BRI participating countries has reached 145,only some are directly connected with China through land,sea,and other trade routes developed under the BRI project.Because of their direct links with China,these countries have significantly increased their trade with China.In addition to increased trade,these countries have also been undergoing financial development(FD).Since trade and financial development are closely related to the production of goods and services,therefore;both of these are expected to have environmental impact.The current study examines the effect of trade and FD on carbon dioxide(CO2)emissions in selected BRI countries for the period 2001–2019.This study follows a proper estimation strategy based on preliminary tests,cointegration analysis,and coefficient estimation.The results suggest that trade between China and selected BRI countries has no significant effect on CO2 emissions,whereas,financial development has significantly increased CO2 emissions in these countries.Moreover,BRI countries’imports from China significantly reduce CO2 emissions,whereas their exports to China significantly increase CO2 emission in the BRI countries.The policy recommendations suggest that these BRI countries should leverage their direct connections with China for technology transfer.By utilizing environmentally friendly technology,these countries could also reduce the pollution associated with their exports to China and the rest of the world.Furthermore,their financial sectors should divert funds to industries advancing trade in environmental rather than pollution-intensive goods. 展开更多
关键词 Environment TRADE EXPORTS IMPORTS nonparametric panel analysis
在线阅读 下载PDF
Classification of Stateless People through a Robust Nonparametric Kernel Discriminant Function
7
作者 Macdonald G. Obudho George O. Orwa +1 位作者 Romanus O. Otieno Festus A. Were 《Open Journal of Statistics》 2022年第5期563-580,共18页
Statelessness is the absence of any Nationality. These include the Pemba, Shona, Galjeel, people of Burundi and Rwanda descent, and children born in Kenya to British Overseas Citizens after 1983. Frequently, they are ... Statelessness is the absence of any Nationality. These include the Pemba, Shona, Galjeel, people of Burundi and Rwanda descent, and children born in Kenya to British Overseas Citizens after 1983. Frequently, they are not only undocumented but also often overlooked and not included in National Administrative Registers. Accordingly, find it hard to participate in Social and Economic Affairs. There has been a major push by UNHCR and international partners to “map” the size of stateless populations and their demographic profile, as well as causes, potential solutions and human rights situation. One of the requirements by the UNHCR in their push is for countries to find a potential solution to statelessness which starts with classifying/associating a person from these communities to a particular local community that is recognized in Kenya. This paper addresses this problem by adopting a Robust Nonparametric Kernel Discriminant function to correctly classify the stateless communities in Kenya and compare the performance of this method with the existing techniques through their classification rates. This is because Non-parametric functions have proven to be more robust and useful especially when there exists auxiliary information which can be used to increase precision. The findings from this paper indicate that Nonparametric discriminant classifiers provide a good classification method for classifying the stateless communities in Kenya. This is because they exhibit lower classification rates compared to the parametric methods such as Linear and Quadratic discriminant functions. In addition, the finding shows that based on certain similarities in characteristics that exist in these communities that surround the Pemba Community, the Pemba community can be classified as Giriama or Rabai in which they seem to have a strong link. In this regard, the study recommends the use of the Kernel discriminant classifiers in classifying the stateless persons and that the Government of Kenya consider integrating/recognizing the Pemba community into Giriama or Rabai so that they can be issued with the National Identification Cards and be recognized as Kenyans. 展开更多
关键词 Discriminant analysis Kernel Discriminant nonparametric CLASSIFICATION Statelessness
在线阅读 下载PDF
Reliability Evaluation of Two-Phase Degradation Process with a Fuzzy Change-Point
8
作者 LIU Kai DANG Wei +3 位作者 ZOU Tianji LÜCongmin LI Peng ZHANG Haitao 《Journal of Shanghai Jiaotong university(Science)》 EI 2022年第6期867-872,共6页
For some products,degradation mechanisms change during testing,and therefore,their degradation patterns vary at different points in time;these points are called change-points.Owing to the limitation of measurement cos... For some products,degradation mechanisms change during testing,and therefore,their degradation patterns vary at different points in time;these points are called change-points.Owing to the limitation of measurement costs,time intervals for degradation measurements are usually very long,and thus,the value of change-points cannot be determined.Conventionally,a certain degradation measurement is selected as the change-point in a two-phase degradation process.According to the tendency of the two-phase degradation process,the change-point is probably located in the interval between two neighboring degradation measurements,and it is a fuzzy variable.The imprecision of the change-point may lead to the incorrect product’s reliability evaluation results.In this paper,based on the fuzzy theory,a two-phase degradation model with a fuzzy change-point and a statistical analysis method are proposed.First,a two-phase Wiener degradation model is developed according to the membership function of the change-point.Second,the reliability evaluation is carried out using maximum likelihood estimation and a fuzzy simulation approach.Finally,the proposed methodology is verified via a case study.The results of the study show that the proposed methodology can achieve more believable reliability evaluation results compared with those of the conventional approach. 展开更多
关键词 two-phase degradation Wiener process fuzzy change-point membership function reliability evaluation statistical analysis
原文传递
THE TRANSFORMED NONPARAMETRIC FLOOD FREQUENCY ANALYSIS
9
作者 Kaz Adamowski(Department of Civil Engineering University of Ottawa, Ottawa, Canada)Wojciech Feluch(Institute of Environmental Engineering , Technical University of Warsaw, Warsaw, Poland) 《Journal of Computational Mathematics》 SCIE CSCD 1994年第4期330-338,共9页
The nonparametric kernel estimation of probability density function (PDF) pro-vides a uniform and accurate estimate of flood frequency-magnitude relationship.However, the kernel estimate has the disadvantage that the ... The nonparametric kernel estimation of probability density function (PDF) pro-vides a uniform and accurate estimate of flood frequency-magnitude relationship.However, the kernel estimate has the disadvantage that the smoothing factor h is estimate empirically and is not locally adjusted, thus possibly resulting in deteri oration of density estimate when PDF is not smooth and is heavy-tailed. Such a problem can be alleviate by estimating the density of a transformed random vari able, and then taking the inverse transform. A new and efficient circular transform is proposed and investigated in this paper 展开更多
关键词 TRT RES THE TRANSFORMED nonparametric FLOOD FREQUENCY analysis
原文传递
基于情感增强非参数模型的社交媒体观点聚类
10
作者 刘勘 陈昱 何佳瑞 《中文信息学报》 北大核心 2025年第3期148-158,共11页
观点分析对于社交媒体这一关键的网络舆论阵地有着重要的现实意义。该文基于非参数模型的文本聚类技术,将社交媒体文本根据用户主张的观点汇总,直观呈现用户群体所持有的不同立场。针对社交媒体文本长度短、数量多、情感丰富等特点,该... 观点分析对于社交媒体这一关键的网络舆论阵地有着重要的现实意义。该文基于非参数模型的文本聚类技术,将社交媒体文本根据用户主张的观点汇总,直观呈现用户群体所持有的不同立场。针对社交媒体文本长度短、数量多、情感丰富等特点,该文提出使用情感分布增强(Sentiment Distribution Enhanced,SDE)方法改进现有基于狄利克雷过程混合模型的短文本流聚类算法,以高斯分布建模文本情感,并推导相应的坍缩吉布斯采样算法推断参数。该方法在捕获文本情感特征的同时,能够自动确定聚类簇数量并实现观点聚类。与现有先进方法在Tweets、Google News数据集上的对比实验显示,该文提出的方法在标准化互信息、准确度等指标上取得了超越现有模型的聚类表现,并且在主观性较强的数据集上具有更显著的优势。 展开更多
关键词 观点分析 短文本流聚类 非参数模型 社交媒体
在线阅读 下载PDF
考虑历史数据筛选及关键断面约束的电力系统运行灵活性评估方法 被引量:3
11
作者 周文毅 高红均 +3 位作者 郭明浩 王长浩 杨易达 刘俊勇 《高电压技术》 北大核心 2025年第1期180-190,共11页
近年来,中国电力系统新能源占比逐步提高,系统随机性、不确定性愈加明显,电力系统灵活性量化评估成为系统安全运行的核心问题。为此,该文提出了一种基于历史数据筛选的误差分布计算方法,该方法基于历史数据,结合Spearman系数以及非参数... 近年来,中国电力系统新能源占比逐步提高,系统随机性、不确定性愈加明显,电力系统灵活性量化评估成为系统安全运行的核心问题。为此,该文提出了一种基于历史数据筛选的误差分布计算方法,该方法基于历史数据,结合Spearman系数以及非参数核密度估计法,能够较好地表征系统的不确定性;其次,综合考虑火电机组、储能以及负荷侧灵活性资源特点,提出了系统灵活性供给能力评估方法;然后,计及关键断面潮流限值,分析其对系统灵活性平衡的影响,提出了考虑关键断面传输约束的系统运行灵活性评估方法。最后,通过改进的IEEE 30节点系统进行仿真计算,结果表明所提预测误差概率分布能够真实反映系统所面临的不确定性,考虑关键断面约束后的灵活性评估方法能为源-网-荷-储复杂场景下灵活性量化分析提供理论支撑。 展开更多
关键词 相关性分析 非参数核密度估计 灵活性评估 关键断面 蒙特卡洛模拟
原文传递
一种基于核函数的函数型数据非参数回归方法 被引量:1
12
作者 柳心阳 李秀英 耿发展 《常熟理工学院学报》 2025年第2期103-106,共4页
函数型数据分析因其在不同领域的广泛应用而受到统计学习的广泛关注,现有的函数型数据回归方法大多集中在线性模型上,非线性函数型数据回归的相关研究较少.本文基于再生核函数提出一种新的函数型数据非参数回归方法,并通过数值实验验证... 函数型数据分析因其在不同领域的广泛应用而受到统计学习的广泛关注,现有的函数型数据回归方法大多集中在线性模型上,非线性函数型数据回归的相关研究较少.本文基于再生核函数提出一种新的函数型数据非参数回归方法,并通过数值实验验证了所提出的方法的有效性和鲁棒性. 展开更多
关键词 函数型数据分析 非线性回归方法 核方法 非参数回归
在线阅读 下载PDF
基于改进生成对抗网络的供应链数据异常识别模型研究
13
作者 邹昕彤 金辉 《计算机应用与软件》 北大核心 2025年第7期107-110,174,共5页
针对供应链数据设计一种基于改进GAN(Generative Adversarial Network)的异常识别模型。运用联合分布和多配对样本Friedman检验对供应链数据进行探索性分析。针对数据特性进行异常检测,为了捕捉数据的时间相关性,利用LSTM(Long Short-Te... 针对供应链数据设计一种基于改进GAN(Generative Adversarial Network)的异常识别模型。运用联合分布和多配对样本Friedman检验对供应链数据进行探索性分析。针对数据特性进行异常检测,为了捕捉数据的时间相关性,利用LSTM(Long Short-Term Memory)作为生成器和判别器的基础模型,并在生成器中用Cycle Consistency损失防止编码器和解码器矛盾,判别器中用Wasserstein损失克服模式崩溃问题,同时引入非参数动态阈值方法进行优化,进而识别异常。运用精确率、召回率、F1值进行模型评价,并与基线方法进行比较研究。结果表明,该改进模型更贴近供应链数据的实际情况,可增强供应链柔性,具有较高的异常识别性能。 展开更多
关键词 数据分析 异常值识别 TadGAN 非参数动态阈值
在线阅读 下载PDF
基于随机截尾数据非参化Nelson-Aalen可靠性评估模型
14
作者 刘新玲 唐家银 +1 位作者 王劲博 吴怡 《航空动力学报》 北大核心 2025年第1期359-369,共11页
针对可靠性工程试验中的随机截尾数据,从累积失效率函数的分析角度出发,基于NelsonAalen(NA)估计理论,实现了对产品的非参数化可靠性评估。基于所获离散样本,给出累积失效率在连续和离散形式下的非参数极大似然估计,并推导出随机截尾样... 针对可靠性工程试验中的随机截尾数据,从累积失效率函数的分析角度出发,基于NelsonAalen(NA)估计理论,实现了对产品的非参数化可靠性评估。基于所获离散样本,给出累积失效率在连续和离散形式下的非参数极大似然估计,并推导出随机截尾样本下累积失效率函数的NA估计形式;由NA估计所得的可靠度衍生完全非参数化置信评估模型;构建广义加权滑动平均模型,实现了对样本最大观测时间之后的可靠度估计。算例分析表明:在对寿命分布信息完全未知时,NA模型实现了基于随机截尾受测型寿命数据对产品可靠性的有效置信评估,估计相对偏差率控制在0.9787%以下,且估计精度随着样本量的增加和截尾比例的减小而显著提高。结果验证了NA可靠性计算的有效性和评估精准性。 展开更多
关键词 Nelson-Aalen估计 随机截尾数据 非参数极大似然估计 置信评估 可靠性分析
原文传递
青山湖源头流域景观格局对河流总氮浓度的影响
15
作者 杨紫清 徐佳妮 +5 位作者 邢梦潇 刘东鑫 王成 邬建红 何圣嘉 姜培坤 《应用生态学报》 北大核心 2025年第11期3387-3396,共10页
研究江河源头流域景观格局与水质的关系,有助于制定可持续景观发展政策以保护水源区水质。本研究以青山湖源头流域为研究对象,基于2023—2024年间流域内25个水质监测断面的数据,采用偏最小二乘法(PLSR)、非参数突变点分析和bootstrap方... 研究江河源头流域景观格局与水质的关系,有助于制定可持续景观发展政策以保护水源区水质。本研究以青山湖源头流域为研究对象,基于2023—2024年间流域内25个水质监测断面的数据,采用偏最小二乘法(PLSR)、非参数突变点分析和bootstrap方法,定量评估景观格局对丰水期、平水期和枯水期河流氮营养盐浓度的影响。结果表明:研究区不同子流域景观优势度和景观破碎度差异较大;景观空间负荷对比指数(LWLI)>0.50的高值区主要分布在“源”景观面积占比大的低海拔缓坡区域,<0.10的低值区主要分布在以林地为主的中高海拔山区。最优PLSR模型分别解释了丰水期、平水期和枯水期总氮(TN)浓度变异的60.6%、69.7%和78.3%。变量重要性(VIP)分析结果表明,LWLI是全年影响TN浓度变化的关键景观因子;建设用地占比主要影响丰水期TN浓度;草地占比和最大斑块指数在平水期影响较大;林地占比则在枯水期影响较大。LWLI和建设用地占比对TN浓度有正效应,而草地占比、最大斑块指数和林地占比对TN浓度有明显的负效应。当LWLI值超过0.35时,丰水期河流中TN浓度突变的累积概率超过95.0%,河流水质恶化的风险加剧。优化景观格局可有效控制非点源污染,从而改善源头流域的水质。 展开更多
关键词 景观格局 氮污染 景观空间负荷对比指数 偏最小二乘法 非参数突变点分析
原文传递
小麦品种丰产性和稳产性的非参数分析 被引量:7
16
作者 曹雯梅 刘松涛 +2 位作者 杨青华 赵喜茹 张新俊 《麦类作物学报》 CAS CSCD 北大核心 2008年第3期528-530,共3页
为给小麦区试资料分析提供更合理、更全面的评价方法,采用非参数统计分析法,对2004-2005年国家黄淮海南片小麦区试品种的丰产性和稳产性进行了分析。结果表明,丰产性和稳产性均好的小麦品种有连9791、豫农035和周麦18,与品种在生产... 为给小麦区试资料分析提供更合理、更全面的评价方法,采用非参数统计分析法,对2004-2005年国家黄淮海南片小麦区试品种的丰产性和稳产性进行了分析。结果表明,丰产性和稳产性均好的小麦品种有连9791、豫农035和周麦18,与品种在生产上的实际表现相一致。说明非参数统计法具有分析简单、直观、实用的特点,适合于评价区试资料的品种表现。 展开更多
关键词 小麦 丰产性 稳定性 非参数统计分析
在线阅读 下载PDF
南通地区1960年-2007年气温与降水的年际和季节变化特征 被引量:17
17
作者 王涛 陶辉 杨强 《资源科学》 CSSCI CSCD 北大核心 2011年第11期2080-2089,共10页
以南通地区7个观测站点逐月平均气温、平均最高气温、平均最低气温和降水量数据为基础,采用线性趋势法、滑动平均法、Mann-Kendall非参数检验法、滑动t检验法和小波分析方法,分析了1960年-2007年南通地区气温、降水的年际和季节变化趋... 以南通地区7个观测站点逐月平均气温、平均最高气温、平均最低气温和降水量数据为基础,采用线性趋势法、滑动平均法、Mann-Kendall非参数检验法、滑动t检验法和小波分析方法,分析了1960年-2007年南通地区气温、降水的年际和季节变化趋势和突变、周期变化特征。结果表明:1960年-2007年,年际变化以最低气温的较大增幅和较早突变为特征。季节变化以秋冬季平均气温、平均最低气温增温明显,且冬季降水量增加,以及秋冬季增暖突变较早为主要特征。周期变化上,气温和降水参数多存在较大时间尺度上较为稳定的变化特征,如年平均气温21~30a和春季降水量14~25a时间尺度的变化。小尺度上(10a以下)的变化较为频繁,但不是很稳定。总体上,南通地区气温突变时间要晚于我国西部和中部地区,而降水变化不显著。 展开更多
关键词 线性趋势 Mann—Kendall检验 小波分析 气温 降水 南通
原文传递
基于稀疏表示和非参数判别分析的降维算法 被引量:7
18
作者 杜春 孙即祥 +2 位作者 周石琳 王亮亮 赵晶晶 《国防科技大学学报》 EI CAS CSCD 北大核心 2013年第2期143-147,共5页
针对人脸识别问题提出一种新的监督降维算法。算法首先基于稀疏表示理论,利用同类样本间的稀疏重构来构建图。此方案不仅可以克服传统图构造方法中参数选择的困难,而且能够更好地刻画类内信息。然后,算法采用非参数类间离差来刻画类间信... 针对人脸识别问题提出一种新的监督降维算法。算法首先基于稀疏表示理论,利用同类样本间的稀疏重构来构建图。此方案不仅可以克服传统图构造方法中参数选择的困难,而且能够更好地刻画类内信息。然后,算法采用非参数类间离差来刻画类间信息,非参数类间离差在处理复杂分布数据时相比于参数类间离差更具判别力。最后,算法通过保持类内稀疏重构关系的同时最大化非参数类间离差来求得最优的投影矩阵。在ORL和Extended Yale B公共人脸数据库的实验表明,该算法能够获得较好的识别结果。 展开更多
关键词 降维 稀疏表示 非参数判别分析
在线阅读 下载PDF
非参数回归法在孔隙度参数预测中的应用 被引量:13
19
作者 乐友喜 王永刚 《地质科学》 CAS CSCD 北大核心 2002年第1期118-126,共9页
目前有很多利用地震属性进行储层参数预测的方法 ,多数方法都是针对一种特定的参数模型而制定的统计方法 ,即只有在一定的参数模型中才能使用的统计方法。实际应用中 ,由于地震属性与储层参数之间的关系十分复杂 ,事先无法给出合适的、... 目前有很多利用地震属性进行储层参数预测的方法 ,多数方法都是针对一种特定的参数模型而制定的统计方法 ,即只有在一定的参数模型中才能使用的统计方法。实际应用中 ,由于地震属性与储层参数之间的关系十分复杂 ,事先无法给出合适的、具体的参数模型 ,使用参数模型就有可能产生较大误差。本文简要介绍了非参数回归预测方法的基本原理和方法特点 ,对如何分析和选取具有明确物理意义的、反映储层参数横向变化较为敏感的、与储层参数关系较为密切的地震属性进行了讨论。用非参数回归法对大港唐家河工区进行了孔隙度参数的平面分布预测 。 展开更多
关键词 非参数回归 最小二乘法 地震属性 非参数模型 孔隙度参数预测 聚类分析 储层参数
在线阅读 下载PDF
基于聚类分析和非参数检验的房地产预警指标体系选择 被引量:18
20
作者 杨佃辉 陈轶 屠梅曾 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第2期59-62,75,共5页
为了寻求一种有效的房地产预警指标选择方法,基于定量方法并与定性方法相结合,在现有房地产指标数据库的基础上,通过聚类分析和非参数检验,建立了一套预警指标体系,然后利用它对上海市房地产市场进行了扩散指数(DI)预警实证分析。结果表... 为了寻求一种有效的房地产预警指标选择方法,基于定量方法并与定性方法相结合,在现有房地产指标数据库的基础上,通过聚类分析和非参数检验,建立了一套预警指标体系,然后利用它对上海市房地产市场进行了扩散指数(DI)预警实证分析。结果表明,基于聚类分析和非参数检验的预警指标体系可以较为准确地对房地产市场的景气状况进行客观度量,这种指标选择方法是有效的。 展开更多
关键词 预警 聚类分析 非参数检验 房地产
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部